用户名: 密码: 验证码:
基于振动模态分析管道腐蚀损伤检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道是现行的五大运输工具之一,其在运送液体、气体等方面具有特殊的优势,尤其在石油化工及天然气等产业中具有不可替代的作用。随着管道事故的大量增加,对管道的安全性能的损伤检测成为目前的热点课题。对管道进行实时监测和诊断成为管道无损检测技术应用中的一个重要方面。目前用于工业管道和海洋平台结构等管道系统的无损检测技术主要有漏磁场检测技术、超声检测技术、交流磁场检测技术、涡流检测技术、射线检测技术和声发射技术等。这些常规检测技术的特点是必须对被检对象进行逐点扫描、检测速度慢、效率低、费用昂贵等。利用振动模态检测方法能够大量快速地对在用工业管道进行检测,是管道检测的一种新的研究方向。本文研究了利用振动模态参数进行管道结构的腐蚀损伤识别的定位及定量的方法。其主要内容如下:
     第一章主要介绍了本研究的背景及意义,讨论了振动特性损伤识别的背景及现状,给出了本文的主要研究内容。
     第二章本章主要介绍振动模型的建立及模态分析理论及模态试验测试的基本知识及管道模态试验步骤。
     第三章根据Kim和Stubbs提出的指标法,计算了几种模态与频率的损伤指标,即特征参数损伤识别指标及刚度敏度比模态指标,通过对梁型管道数值模与试验验证来判断这几种损伤指标的定位的有效性。数值模拟表明,特征参数损伤识别指标仅能识别单一损伤单元,对于多损伤情况该方法不能准确判断。而刚度敏度比指标对单一及多损伤管道较理想定位。试验验证表明,特征参数损伤识别指标识别结果很不理想,但刚度敏度比模态指标对缺陷较大的管道能有效识别,但对于缺陷较小的损伤则判断困难。
     第四章基于上模态振动分析理论基础上,针对管道腐蚀灾变形成的缺陷,提出了应变敏度比的概念,建立了应变敏度比检测方法。首先测得管道结构的频率及位移模态,再利用模态叠加法求出应变模态,并建立了腐蚀管道的定位检测判据。其次进行数值模拟,验算该检测判据的可行性及精度,结果表明该方法简便实用。最后制备不同缺陷的管道,应用应变敏度比法检测判断缺陷位置,结果表明,检测位置与实际损伤位置完全一致。通过实测和数值算例证明了只测试损伤及未损伤结构的低阶模态参量,便可对管道结构进行有效的检测,而低阶参量是相对简单易测,从而使该方法应用于工程实际更显便利。
     第五章提出正交条件敏度法,通过管道损伤的数值模拟对该方法进行验证,结果表明该方法利用低阶频率及模态值对管道损伤能够准确定腐蚀损伤位置及损伤程度,这为管道腐蚀损伤检测提供了有利的理论保障。真实管道试验测试也表明只需要测得结构的低阶模态频率和模态向量,通过模态修正及正交条件敏度法算出损伤参数指标,对管道腐蚀损伤能够准确判定损伤位置和损伤程度。通过理论模拟及实验验证表明,把正交条件敏度法应用于损伤管道检测是一种方便简单的有效方法。
     第六章本章提出了管道损伤缺陷尺寸检测方法,这一方法从断裂力学角度出发,建立了缺陷尺寸计算表达式,从而可评定损伤尺寸大小,经过理论模拟及试验分析,此方法效果理想且精度较好,为管道安全评定提供了可靠依据。
     最后,对全文工作进行了总结,并提出了需要进一步研究的内容。
Pipeline which is one of the five leading transportation tools plays an important role in transiting liquid and gas. Transportation by pipeline can never be replaced in petro-chemistry and natural gas industry. Due to tremendous growth of pipeline accidents, damage detection in pipeline is an important issue from the point of view of safety and functionality. It is essential to carry out periodical inspection in pipelines to detect any pipeline damage, which may require major or minor repair for safety and serviceability of the structures. The cost of repair is obviously lesser than that required for the reconstruction of the whole pipeline system. Nondestructive technique such as leak magnetic field methods, ultrasonic testing, altemating current magnetic field methods, eddy-current methods, radiograph, acousticemission, etc., may be used to detect damage in the industry pipelines and offshore platform pipelines. However, most of these nondestructive techniques used to evaluate the damage in pipeline require much time and money to be applied. Therefore, the development of damage identification methods which are cheaper and faster to perform is very important. The problems can be avoided through the Use of vibration-monitoring such as modal analysis. Much of pipeline system can be quickly detected using modal analysis detection method which is new tool applied for pipeline damage detection recently. The main task of this research work focuses on how to determine the location and magnitude of damage in a pipeline structure. The major contents are summarized as follows:
     In section 1, the history of the physical basis for the vibration-based nondestructive damage detection techniques is introduced and the main work of this dissertation is drawing out.
     In section 2, vibration models are constructed and the fundamentals of modal theory and pipeline modal test are introduced.
     In section 3, according to damage index which is proposed by Kim and Stubbs, numerical examples and experimental studies are carried out to verify the feasibility of the eigenparameter method and stiffness sentivity ratio method in pipeline structure. Numerical examples have been studied to show this method can only indicate the location of the one damaged element region of the beam-like pipeline. For multiple damage scenarios the parameter is not able to locate clearly the damaged zones. Apart from numerical examples, experimental studies are also carried out to verify the feasibility of these methodologies in real pipeline structure. The results show that the eigenparameter method is not effective for real pipeline structure and stiffness sentivity ratio method can only detect the large damage.
     In section 4, based on structural modal test theory and finite element method, strain sensitivity ratio method of detection for the corrosion damage in pressure pipeline is presented. First, the damage-locatization criterions to locate damage through displacement mode and strain mode are established. Secondly, the numerical example verifies that the result using the first three order modal shape is basically consistent with the practical damage. Finally, all kinds of pipelines with different damages are prepared and detected by this damage detection method. The result shows that the damage location predicted by this method is the same as the practical one. These results proved that strain sensitivity ratio method locating damage in pressure pipeline only required measurements of few of the pipeline's natural frequencies and the lower displacement mode under both the undamaged and damaged states. And this method is shown to provide good predictions of damage location. For thelower-order modal shape can be measured easily, this method has many advantages at practical engineering applications.
     In section 5, the orthogonality conditions sensitivities method is presented for damage identification of pipeline structures. Numerical examples demonstrate that the proposed methods are effective and reliable for the simulated pipeline vibration model by using few of the pipeline's natural frequencies and the lower displacement mode. Experimental studies are also carried out to verify the feasibility of the methodology in real pipeline structures applications. This method is shown to provide good predictions of pipeline damage location through numerical examples and experimental studies. This method has many advantages at practical engineering applications.
     In section 6, a practical method estimate size of corrosion pipeline damage using changes in natural frequencies of a pipeline structure is presented, which is based on fracture mechanics. Numerical examples and experimental studies show that the size of pipeline damage can be estimated with a relatively small size error. This method is effective and feasible for the safety assessment of pipelines.
     In the last of this dissertation, the research is summarized and the future extensions of the relevant study are discussed.
引文
[1] 严大凡.输油管道设计与管理.北京:石油工业出版社,1986.1-11,135-189.
    [2] 方华灿.油气长输管道的安全可靠性分析.北京:石油工业出版社,2002.1-113.
    [3] 严大凡,张劲军.油气储运工程.北京:石油工业出版社,2003.1-200.
    [4] 粟京,海底管道的外探测装置及其检测技术—国家“863”高技术发展计划课题,《海底油气管线检测评估和修复技术》研讨会报告,2002.1,1-6.
    [5] 黎文友.海底油气管线的防护和维修,《海底油气管线检测评估和修复技术》研讨会报告,2002,1—11.
    [6] 李文波,苏国胜,国外长输管道安全管理与技术综述,安全、健康和环境2005年第5卷第1期.
    [7] Doherty, J. E. "Nondestructive evaluation." In Handbook on Experimental Mechanics, 2nd ed., 1993, New York: VCH: Bethel: Society for Experimental Mechanics.
    [8] 宋小春,黄松岭,赵伟.天然气长输管道裂纹的无损检测方法.天然气工业,2006,26(7):103-106.
    [9] Pandy A K, Biswas M, Samman M. M., Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 142(2).
    [10] Yam L H., Theoretical and experimental study of model strain analysis. Journal of Sound and Vibration, 1996, 191(2).
    [11] Salawa O. S., Detection of structural damage through changes in frequencies, A Review. Engineering Structures, 1997, 19(9): 718-723.
    [12] MASAHIKO HIRAO, HIROTSU GU OGI. A SH-wave EMAT technique for gas pipeline inspection[J]. NDT &E International, 1999, 32 (3):127-132.
    [13] SCHMIDT T. R. Remote field eddy current inspection technique [J]. Materials Evaluation, 1984, 42(4): 252-230.
    [14] BICKERSTAFF R, et al. Review of sensor technologies for in-line inspection of natural gas pipelines [J]. Pipes and Pipelines international, 2003, 48 (1):25-28.
    [15] BATTELLE U S Corporation. Implementing current In-line inspection technologies on crawler systems[R]. Battelle: Technology Researc h Report, 2004.
    [16] Egle D M, Brown A E. A note on pseudo-acoustic emission sources [J]. Journal of Testing and Evaluation, 1976, 4(3):196-199.
    [17] Adams, R. D., Cawley, p., Pye, C. T. Stone, B. T., 1978. A Vibration Technique for Non-destructively Assessing the Integrity of Structures. J. Mechan. Eng. Sci, 20(2), 93-100.
    [18] Kato, M., Shimada, S., 1986. Vibration of PC Bridge During Failure Process. J. Struct. Eng. 112(7) 1692-1703.
    [19] Samman, M. M., Biswas, M., 1994 b. Vibration testing for nondestructive evaluation of bridges. Ⅱ: results. J. Struct. Eng. 120(1), 290-306.
    [20] Maeck J, Abdel M. Damage Identification in Reinforced concrete structures by Dynamic Stiffness Detection [J] Eng. Struct, 2000, 22: 1339-1349
    [21] Borbon, I. Marquez, et al. Large scale sensing arrays based on fiber Bragg gratings, Proceedings of SPIE-The International Society for Optical Engineering, v 4578, 2001, 320~327.
    [22] Nikles, M. et al. Greatly extended distance pipeline monitoring using fiber optics, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE, v 3, Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, 2005 OMAE2005, 2005, 539~546.
    [23] Zingaretti, Primo. et al. Imaging Approach to Real-time Tracking of Submarine Pipeline, Proceedings of SPIE-The International Society for Optical Engineering, v 2661, 1996, 129~137.
    [24] 深圳市锅炉容器检验所,深圳开展在用压力管道检验情况.中国压力容器安全,1999;15(5)46—47.
    [25] 耿艳峰,张朝晖.气体长输管线泄漏检测技术.仪器仪表学报,2001,22(4):328-330.
    [26] 程载斌,王志华,马宏伟.管道应力波检测技术及研究进展.太原理工大学学报,2003.3a(4):426-430.
    [27] 高芳清,金建民,高淑英.基于模态分析的结构损伤检测方法研究[J].西南交通大学学报,1998.33(1):108-113.
    [28] 高芳清,王凤勤.模态变化对刚桁梁的损伤检测研究[J].西南交通大学学报,1999,34(2):158-162.
    [29] 于德介,李佳升,结构局部损伤的一种定量诊断方法[J].动态分析与检测技术.
    [30] 邓炎,严普强,桥梁结构损伤的振动模态检测[J],振动、测试与诊断,1999,19(3):157-163
    [31] Cooley, J. W. and Turkey J. W. (1965). "An algorithm for the machine calculation of complex Fourier series." Mathematics of Computation, 19, 297-301
    [32] Doebling S W, Farrar, C R, Prime M. B. A Review of Damage Identification Methods that Examine Changes in Dynamics Properties. The Shock and Vibration Digest, 1998 (2): 91-105
    [33] Alvina K F, Robertsonb A N, Reichc G W, Parkd K C, Structural System Identification: From Reality to Models, Computers and Structures, 2003, 8I: 1149-1176.
    [34] 马宏伟,杨桂通.结构损伤探测的基本方法和研究进展.力学进展,1999,29(4):513-527.
    [35] 董聪,郭晓华.结构系统故障诊断的理论与方法.强度与环境,2000(1):1-16.
    [36] 宗周红,Wang T L.桥梁健康监测应用与研究现状.福州大学学报(自然科学版)2002,30(2):127-152.
    [37] 李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评.地震工程与工程振动,2002,22(3):82-90.
    [38] 韩大建,王文东.基于振动的结构损伤识别方法的近期研究进展.华南理工大学学报(自然科学版),2003,30(1):91-96.
    [39] 袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展.同济大学学报,1999,27(2):5-8.
    [40] 李雪艳,刘济科,韩琳.结构损伤识别方法综述,第七届全国振动理论及其应用学术会议论文集,同济大学出版社,1999.
    [41] Rytter, Vibration based inspection of civil engineering structures. Doctoral Dissertation, Dept. of Building Technology and Structural Engineering, University of Aalborg, Denmark, 1993.
    [42] 苗玉彬等.基于有限元分析的特征值反问题求解的逆摄动方法[J].计算力学学报,2001,18(1):48-55.
    [43] O. S. Salawu. Detection of Structural Damage Through Changes in Frequency: A Review[J]. Engineering Structures, 1997, 19(9)718-723.
    [44] Cawley P et al. The location of defects in structures from measurements of natural frequencies, Journal Strain Analysis, 1979, 14(2): 49-57.
    [45] Stubbs N., Broome T. H., and Osegueda R. Nondestructive construction error detection in large space structures. AIAA Journal, 1990, 28(1): I46-152.
    [46] Stubbs N., Osegueda R. Global non-destructive damage evaluation in solids. The International Journal of Analytical and Experimental Modal Analysis, 1990, 5(2): 67-79.
    [47] Stubbs N., Osegueda R. Global damage detection in solids-experimental verification. The International Journal of Analytical and Experimental Modal Analysis, 5(2):81-97.
    [48] Sanders D., Kim Y. I., and Stubbs R. N. Nondestructive evaluation of damage in composite structures using modal parameters. Experimental Mechanics, 1992, 32: 240-241.
    [49] Friswell M. I., Penny J. E. T. and Wilson DAL Using vibration data and statistical measures to locate damage in structures. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 1994, 9(4):239-254.
    [50] Williams, E. J., Contrursi, T. and Messina, A (1996). "Damage detection and localization using natural frequencies sensitivity." Proceedings of conference on Identification in Engineering system, U. K., 368-376
    [51] Hearn G, Testa R B. Modal analysis for damage detection in structures. Journal of Structural Engineering, ASCE, 1991, 117: 3042-3063
    [52] A. Messina, E. J. Williams and T. Contursi. Structural Damage Detection by a Sensitivity and Statistical-Based Method [J]. Journal of Sound and Vibration. 1998 216(5): 791-808.
    [53] Countursi T., Messina A., Williams E. J. (1998). "A multiple damage location assurance criterion based on natural frequency changes" Journal of Vibration and Control, 4(5), 619-633.
    [54] X. Wang, N. Hu, Hisao Fukunaga, Z. H. Yao. Structural damage identification using static test data and changes in frequencies. Engineering Structures, 23(2001), 610-621.
    [55] Kim J.-T., Stubbs N. "Crack Detection in Beam-type Structures Using Frequency Data" Journal of Sound and Vibration, (2003) 259(1), 145-160.
    [56] 李洪升,陶恒亮,郭杏林,基于频率变化平方比的压力管道损伤定位方法[J].大连理工大学学报,2002,42(4):400-403.
    [57] Salawn O. S. et al. Damage location using vibration mode shape. Proceedings of 12th IMAC, 1994, 993-999.
    [58] West, W. M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen. Proceeding of the Air Force Conference on Aircraft Structural Integrity, 1984, 1-6.
    [59] Lieven N. A. J. and Ewins D. J. Spatial correlation of mode shapes, the Coordinate Modal Assurance Criterion (COMAC). Proceeding of the 6th International Modal Analysis Conference 1, (1988), 690-695.
    [60] S. W. Doebling, C. R. Farrar, M. B. Prime, D. W. Shevitz, Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: a Literature Review [R], Los Alamos National Laboratory Report, LA-13070-MS, 1996.
    [61] Yuen M. M. F. A numerical study of the eigen-parameters of a damaged cantilever. Journal of Sound and Vibration, 103, 301-310.
    [62] Ko J. M., Wong C. W. and Lam H. F. Damage detection in steel framed structures by vibration measurement approach. Proc. of the 12th International Modal Analysis Conference, 1994, Honolulu Hawaii, 280-286.
    [63] Fox C. H. J. Error location of defects in structures: a comparison of natural frequency and mode shade data. Proc. of the 10th International Modal Analysis Conference, USA, 1992: 886-891.
    [64] RATCLIFFE C P. Damage detection using a modified laplacian operator on mode shape data [J]. J Sound and Vibration, 1997, 204(3): 505-517.
    [65] Mayes R. L. Error localization using mode shape: An application to a two link robot arm. Proc. of the 10th International Modal Analysis Conference, 886-891.
    [66] Cobb R. G., Liebst B. S. Structural damage identification using assigned partial eigenstructure. AIAA Journal, 1997, 35(1): 153-158.
    [67] Skjaeraek P. S., Nielsen S. R. K., Cakmak A. S. Identification of damage in reinforced-concrete structure from earthquake records: optimal locationof sensors. Soil Dynamics and Earthquake Engineering, 1996, 15(6): 347-358.
    [68] A. K. Pandey, M. Biswas. Damage detection from changes in curvature mode shapes Journal of Sound and Vibration. 1991, 145(2): 321-332.
    [69] 周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究[j].湖南大学学报,1997,24(5):69-74.
    [70] 顾培英,丁伟农.模态试验在梁损伤诊断中的应用研究[J].振动与冲击.2004,23(3):60-63.
    [71] 黄东梅,瞿伟廉.高耸塔架结构节点损伤的指标分析与反分析两步诊断法[J].华中科技大学学报(城市科学版).2003,20(2):61-64.
    [72] 董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社.2001,282-304.
    [73] Abdo, M. A. B. and Hori, M. (2002). A numerical study of structural damage detection using changes in the rotation of mode shapes. Journal of Sound and Vibration, 251(2), 227-239.
    [74] 任权,李洪升,郭杏林.基于应变模态变化率的压力管道无损检测.大连理工大学学报,2001,41(6):648-652
    [75] Chen, J. C. and Garba, J. A. (1988). On-orbit damage assessment for large space structures. AIAA Journal, 26(9), 1119-1126.
    [76] Kashangaki, T. A. L., Smith, S. W. and Lim, T. W. Underlying modal data issues for detecting damage in truss structures. Proceeding of the AIAA/ASME/ASCE/AHS/ASC/33rd Structures, Structural Dynamics, and Materials Conference, Washington, D. C., 1992 AIAA paper 92-2264.
    [77] Yao, G. C., Chang. K. C., and Lee, G. C. Damage diagnosis of steel frames using vibrational signature analysis. [J], Journal of Engineering Mechanics, 1992, 118(9), 1949-1961. 8.
    [78] Stubbs, N. and J. -T. Kim, Field Verification of a Nondestructive Damage Localization and Severity Estimation Algorithm, [R], Texas. A&M Univ. report prepared for New Mexico State Univ., 1994.
    [79] Stubbs, N., J. -T. Kim, and C. R. Farrar, Field Verification of a Nondestructive Damage Localization and Severity Estimation Algorithm, [C]: Proceedings of the 13th International Modal Analysis Conference, 1995, 1. 210-218.
    [80] S. S. Law, Z. Y. Shi, L. M. Zhang. Structural Damage Detection from Incomplete and Noisy Modal Test Data. Journal of Engineering Mechanics, (1998) 124(11), 1280-1288.
    [81] 史治宇,吕令毅.由模态应变能法诊断结构破损的实验研究[J].东南大学学报.1999,29(2):134-13.
    [82] Shi, Z. Y., Law, S. S. and Zhang, L. M. Damage location by directly using incomplete mode shapes. (2000a) Journal of Engineering Mechanics, 126(6), 656-660.
    [83] Shi, Z. Y., Law, S. S. and Zhang, L. M. Improved damage quantification from elemental modal strain energy change. Journal of Engineering Mechanics, 2002, 128(5), 521-529.
    [84] Aktan A. E., Lee K. L., Chuntabvan C., and Aksel T. Modal testing for structural identification and condition assessment of constructed facilities. Proceedings of the 12th International Modal Analysis Conference, 1994:462-468.
    [85] Pandey A. K., Biswas M. Damage detection from changes in flexibility. Journal of Sound and Vibration, 1994, 169(1): 3-17.
    [86] Lu, Q., Ren, G. and Zhao, Y. Multiple damage location with flexibility curvature and relative frequency change for beam structures. Journal of Sound and Vibration, 2002, 253(5), 1101-1114.
    [87] Doebling, S. W., Peterson, L. D. and Alvin, K. F. Estimation of reciprocal residual flexibility from experimental modal data. AIAA journal, 1996, 34(8), 1678-1685.
    [88] Denoyer K. K., Peterson LD. Method for structural mode) update using dynamically measured static flexibility matrices. AIAA Journal, 1997, 35(2): 362-368.
    [89] Denoyer K. K., Peterson LD. Model update using modal contribution to static flexibility error. AIAA Journal, 1997, 35: 1739-1745
    [90] 綦宝晖等.基于柔度阵的悬臂弯剪型建筑结构损伤识别方法[J].工业建筑,2000,30(4):64-66.
    [91] 李国强,郝坤超,陆烨.弯剪型悬臂结构损伤识别的柔度法[J].地震工程与工程振动.1999,19(1):31-36.
    [92] 赵媛,陆秋海.简支梁桥多位置损伤的检测方法[J].清华大学学报(自然科学版).2002,42(4):434-438.
    [93] 唐小兵,沈成武,陈定方.结构损伤识别的柔度曲率法[J].武汉理工大学学报.200123(8):18-20.
    [94] 冯新.土木工程中结构识别方法的研究[D].大连理工大学博士学位论文.2002.
    [95] 孙国,顾元宪,连续梁结构损伤识别的改进柔度阵法,工程力学,20(4):50-54 2003.
    [96] Chen, J. C. et al. Direct structural parameter identification by modal test results. AIAA Paper, 1983, 83-0812.
    [97] Berman A. and Flannelly, W. G. Theory of incomplete models of dynamic structures. AIAA Journal, 9, 1971, 1481-1487.
    [98] Braunch M. Optimization procedure to correct stiffness and flexibility matrices using vibration data. AIAA, 1978, 16(11): 1208-1210.
    [99] Rodden, W. P. A method for deriving structural influence coefficients from ground vibration tests. 1967, AIM Journal, 5, 99 1-1 000.
    [100] Hall, B. M. Linear estimation of structural parameters from dynamic test data. Proceedings of AIAA/ASME 11th Structures, Structural Dynamics, and Materials Conference, 1970, 193-197.
    [101] Ross, R. G. Jr. Synthesis of stiffness and mass matrices from experimental vibration modes. SAE Conference paper 1971, 7 10787, 2627-2635.
    [102] Zak, M. Discrete model improvement by eigenvector updating. Journal of Engineering Mechanics, 1983, ASCE, 109(6), 1437-1444.
    [103] Kammer D. C. Optimum approximation for residual stiffness in linear system identification. AIAA Journal, 1988, 26(9)104-112.
    [104] Smith S. W., Heattie C. A. Secant-method matrix adjustment for structural models. AIAA Journal, 1991, 29(1):119-126.
    [105]Lim T. V. W. Submatrix approach to stiffness matrix correction using test data AIAA Journal, 1990, 28(6):1123-1130.
    [106] Kim, H. M. and T. J. Bartkowicz. Damage Detection and Health Monitoring of Large Space Structures. Tournal of Sound and Vibration. 27(6): 12-17. 1993.
    [107] 张向东,王志华,马宏伟,基于残余力向量法的悬臂梁损伤识别研究,太原理工大学学报,34(5):529—531,2003.
    [108] Zimmerman, D. C. and M. Kaouk, Eigenstructure Assignment Approach for Structural Damage Detection, AIAA Journal, 1992, 30(7): 1848-1855.
    [109] Zimmerman, D. C. and M. Kaouk, Structural Damage Detection Using a Minimum Rank Update Theory, Journal of Vibration and Acoustics, 116: 222-230, 1994
    [110] Zimmerman, D. C., M. Kaouk, and T. Simmermacher, Structural Damage Detection Using Frequency Response Functions, in Proc. of the 13th International Modal Analysis Conference, 179-184, 1995.
    [111] Zimmerman, D. C., M. Kaouk, and T. Simmermacher, On the Role of Engineering Insight and Judgement Structural Damage Detection, in Proc. of the 13th International Modal Analysis Conf., 414-420, 1995
    [112] Kaouk, M., Finite Element Model Adjustment and Damage Detection Using MeasuredTest Data, Ph. D. Dissertation, Dept. of Aerospace Engineering Mechanics and Engineering Science, Univ. of Florida, Gainesville, FL., 1993.
    [113] Kaouk, M. and D. C. Zimmennan, Evaluation of the Minimum Rank Update in Damage Detection: An Experimental Study, in Proc, of the 11th International Modal Analysis Conference, 1061-1067, 1993
    [114] Kaouk, M. and D. C. Zimmerman, Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory, AIAA Journal, 32(4), 836-842, 1994
    [115]Kaouk, M. and D. C. Zimmerman, Assessment of Damage Affecting All Structural Properties, in Proc, of the 9th VPI&SU Symposium on Dynamics and Control of Large Structures, 1994, 445-455.
    [116] Kaouk, M. and D. C. Zimmerman, Structural Damage Detection Using Measured ModalData and No Original Analytical Model, in Proc, of the 12th International Modal Analysis Conference, 1994, 731-737.
    [117] Kaouk, M. and D. C. Zimmerman, Structural Health Assessment Using a PartitionModel Update Technique, in Proc. of the 13th International Modal Analysis Conf., 1673-1679, 1995.
    [118] Kaouk, M. and D. C. Zimmerman, Reducing the Required Number of Modes for Structural Damage Assessment, in Proc, of 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 2802-2812, AIA.A-95 — 1094-CP., 1995.
    [119] Srinathkumar, S. Eigenvalue/eigenvector assignment using output feedback. IEEE Transactions on Automatic Control. 1978, AC-23, 79-81.
    [120]Andry, A. N., Shapiro, E. Y. and Chung, J. C. (1983). Eigenstructure assignment for linear system. IEEE Transactions on Aerospace and Electronic Systems, AES 19(5), 711-729.
    [121]Minas, C. and Inman, D. J. (1988). Correcting finite element models with measured modal results using eigenstructure assignment methods. Proceedings of the 6th International Modal Analysis Conference 583-587.
    [122]Minas, C. and Inman, D. J. (1990). Matching finite element models to modal data. Transactions of the ASME, Journal of Vibration and Acoustics, 112(1), 84-92.
    [123] Fox R. L. , Kapoor M. P. Rates of Change of Eigenvalues and Eigenvectors. AIAA Journal, 1968, 6(12): 2426-2429.
    [124] Nelson R. B. Simplified Calculation of Eigenvector Derivatives. AIAA Journal, 1976, 14(9): 1201-1205.
    [125] Sutter T. R. , Camarda C. J. , Walsh J. L. etal. Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives. AIAA Journal, 1998, 26(12):1506-1511.
    [126] Tan S. C. E. , Chu Y. Numerical Methods for Evaluating the Derivatives of Eigenvalues and Eigenvectors. AIAA Journal, 1975, 13(6):834-837.
    [127] Tan S. C. E. , Andrew A. L. Computing Derivatives of Eigenvalues and Eigenvectors. Institute of Mathematics and Its Applications. Journal of Numerical Analysis, 1989, 9(1):111-122.
    [128] Dailey R. L. Eigenvector Derivatives with Repeated Eigenvalues. AIAA Journal, 1989, 27(4): 486-491.
    [129] Lim K. B., Juang J., Ghaemmaghami P. Eigenvector Derivatives of Repeated Eigenvalues Using Singular Value Decomposition. Journal of Guidance, Control and Dynamics, 1989, 12(2): 282-283.
    [130] 袁旭东.基于不完备信息土木工程结构损伤识别方法研究.2005,大连理工大学博士论文.
    [131] 编写组,地震工程概论(第二版),北京:地震工程出版社,1985.
    [132] 孤家扬,宗美珍.地面附近随机激振下大型建筑物系统识别和参数识别.振动与冲击,1989年2期.
    [133] 吕学贤.拟合圆法识别模态参数的BASIC程序,振动与动态测试,1985年5期.
    [134] D. F. Mazurek and John T. DeWolf. Experimental study of bridge monitoring technique. ASCE Journal, ST9, 1990.
    [135] T. Kumarasena, R. H. Scanian and G. R. Morries. Dear Isle Bridge: Field and computed vibration, ASCE Journal, ST9, 1989.
    [136] T. Kumarasena, R. H. Scanian and G. R. Morries. Dear Isle Bridge: Field and computed vibration, ASCE Journal, ST9, 1989.
    [137] J.-T. Kim, N. Stubbs Improved Damage Identification Method Based on Modal Information. Journal of Sound and Vibration, 252(2), 223-238.
    [138] J. V. Araúji dos Santos, C. M. Mota Soares, C. A. Mota Soares, n. L. G. Pina. (2000), "A damage identification numerial model based on the sensitivity of orthogonality conditions and least aquares techniques", Cmputers and Structures; 78:283-291
    [139] Berman, A. (1979). "Comment on Optimal weighted orthogonalization of measured modes." AIAA Journal, 17, 927-928.
    [140] Berman A. and Flannely, W. G. (1971). "Theory of incomplete models of dynamic structures." AIAA Journal, 9, 148 1-1487.
    [141] Wei F S. Stiffness Matrix Correction Forom Incomplete Test Data, AIAA J. 1980, 18(10): 1274.
    [142] A. Berman. Mass matrix correction using an incomplete set of measured models, AIAA journal, Vol. 17, 1999, pp1147-1173.
    [143] J.-T. Ndambi, J. Yantomme, K. Harri. Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives. Engineering Structures, 2002, 24: 501-515.
    [144] Gudmunson P Eigenfrequency changes of structures due to cracks, Notches or other geometric changes. J. Mech. Phys. Solids 1982, 30(5): 339-353.
    [145] T. L. Anderson 1995 Fracture Mechanics. London: CRC Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700