用户名: 密码: 验证码:
用于二氧化碳气氛中丙烷脱氢的新型镓及铟基氧化物催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用于二氧化碳气氛中丙烷脱氢的新型镓及铟基氧化物催化剂研究
     丙烯作为重要的化工中间体,目前工业上主要来自炼油厂流化床裂解和乙烯裂解,其收率均比较低,难以满足其快速增长的需求。因此,由资源丰富的烷烃转化成需求量日益增长的烯烃有望成为解决这一矛盾的可行途径之一。目前已经工业化的丙烷直接脱氢工艺由于受热力学条件的限制,需要高温的反应条件,能耗大,同时往往导致烃类高温裂解、催化剂积碳失活等缺点,使其在工业化生产中受到很大限制。为寻求在较低温度下获得丙烷高转化率的新工艺,人们开始研究临氧气氛下丙烷脱氢的方法,使原本的吸热反应转变为热力学上有利的放热反应,这种工艺称为丙烷的氧化脱氢。但由于氧气的介入带来了深度氧化和氧分子插入反应等副反应,众多副产物的生成使得产物丙烯的选择性很难被提高。如果改用CO2作为温和氧化剂,将丙烷脱氢与逆水煤气变换(RWGS)耦合,可以通过CO2除去H2提高丙烷反应活性,使得丙烷脱氢反应的平衡转化率相比直接脱氢大为提高。而相比临氧脱氢,CO2的深度氧化副反应明显减少,丙烯选择性大为提高。并且二氧化碳可以消除表面积炭,提高催化剂的稳定性。由于该工艺充分利用了CO2这种温室气体,是一条“绿色化学”的途径。
     在低链烷烃二氧化碳氧化脱氢研究领域中,Ga2O3作为一类新型催化剂为人们所关注。尽管目前所报道的Ga2O3催化剂的活性结果都较为突出,但是积炭现象仍然严重,一般在几小时内就会全部失活,必须寻求新的途径解决这一问题。近年来报道的一种Ga2O3-Al2O3固溶体具有表面独特的酸性和结构性质,被广泛应用于氮氧化物的选择催化还原(SCR)。该固溶体相比Al2O3,随着Ga含量的增加而表面酸性位总量增加,但强酸位数量减少。而且在高温下依然能保持良好的结构稳定性。如果充分利用这种性质,将它应用于丙烷的CO2气氛下脱氢很有可能会对催化体系的活性和稳定性起到很好的改良作用。
     Ga基催化剂在脱氢反应和氮氧化物SCR反应中都具有良好活性,两者活性均与Ga基催化剂对烃类分子中C-H键独特的活化作用有关。与此同时另一种In2O3-Al2O3复合氧化物体系用于氮氧化物的SCR也具有非常优异的活性,但其在低碳烷烃脱氢反应中的应用却从未有人系统研究过。相比In2O3, In2O3-Al2O3复合氧化物具有更多的表面酸性位,高得多的比表面,更强的烃类活化作用,这些性质对提高In基催化剂的脱氢活性都是非常有利的。如果基于In2O3-Al2O3与Ga2O3-Al2O3的氮氧化物SCR反应活性的类似性,将In2O3-Al2O3复合氧化物体系应用于丙烷的CO2气氛下脱氢,可以为ⅢA族元素复合氧化物体系在丙烷C02脱氢中的应用做一更深入而全面的探索。
     本论文分三部分,全部围绕丙烷CO2气氛下脱氢反应展开,分别以Ga2O3-Al2O3固溶体、In2O3-Al2O3复合氧化物体系和负载型In2O3材料为催化剂体系,研究了它们的活性、稳定性、再生能力,并通过详细的表征研究了其构效关系,对反应的活性中心和催化本质进行了不同程度的探讨。
     本论文主要内容如下:一、Ga2O3-Al2O3固溶体用于丙烷CO2气氛下脱氢研究
     用乙醇溶剂氨水共沉淀法制备了Ga/Al摩尔比的为4:1、1:1和1:4三个Ga2O3-Al2O3样品,分别标记为Ga8Al2O15, Ga5Al5O15,和Ga2Al8O15,并用同样方法合成γ-Ga2O3和γ-Al2O3作为参比。通过XRD表征可知三个样品中Ga2O3与Al2O3都形成了固溶体,并且71Ga MAS NMR揭示,Ga在固溶体和γ-Ga2O3都存在四配位(GaⅣ)和六配位(GaⅥ)两种化学环境,随着样品中Al含量的增加,虽然Ga的总量在减少,其中四配位Ga原子的比例在一直在上升。吡啶吸附红外光谱表征显示固溶体表面基本都只有Lewis酸位,而进一步的NH3-TPD实验表明Al203含量的增加能使样品表面的总Lewis酸性位密度持续增加,然而其中的弱酸性位密度则呈先增后减的趋势,在Ga8Al2O15样品上达到最大值。可以发现,GaⅣ的绝对量变化趋势与弱酸位密度变化趋势呈顺变关系,说明固溶体催化剂中GaⅣ主要为催化剂贡献弱酸位。
     在常压及773K条件下用连续微反应装置考察Ga2O3-Al2O3固溶体的催化活性,分别测试了有CO2气氛和无CO2气氛下丙烷的脱氢活性,发现组分的不同对催化剂活性产生了很大的影响。在两种气氛下,丙烷初始转化率都为Ga8Al2O15 >γ-Ga2O3> Ga5Al5O15> Ga2Al8O15,而且γ-Ga2O3在8小时内失活比固溶体样品都更快,Ga含量越低,失活越慢。有无C02气氛的活性比较发现,CO2气氛下虽然初始活性较无CO2气氛下更低,但整体稳定性都比无CO2气氛下更高。通过催化剂活性与酸性位密度的关联发现,弱酸位密度与活性呈正关联,说明GaⅣ引入的特定Lewis酸位可能是反应的活性中心。
     考虑到Ga2O3-Al2O3固溶体体系的应用潜力,评价了其CO2气氛下50h的在线活性和两轮失活-再生循环活性,发现Ga5Al5O15在50h仍然表现出22.5%的丙烷转化率,而γ-Ga2O3样品在16h就已经完全失活。而再生后,Ga5Al5O15相对于首轮反应,初始活性基本没有下降,而γ-Ga2O3样品却有9%左右的活性下降,这与固溶体样品的热稳定性密切相关。XRD表征了再生后的催化剂发现,Ga5Al5O15仍然保持了原先的晶形结构,而γ-Ga203则已转变成p晶形。
     二、In2O3-Al2O3复合氧化物用于丙烷CO2气氛下脱氢研究
     用乙醇/水混合体系氨水胶态共沉淀法制备了In/(In+Al)摩尔百分比为40%、20%和10%的三个In2O3-Al2O3样品,分别标记为In-Al-40,In-Al-20,和In-Al-10,并用同样方法合成In2O3和Al2O3作为参比。XRD表征研究发现,复合氧化物中In2O3以立方晶型存在,In2O3和Al2O3并没有形成固溶体,只是增加了各自组分的分散度。TPR实验证明了复合氧化物中高分散In2O3物种的存在,其容易在低温区(473-773K)被还原,而且高分散In2O3物种的百分比随In2O3含量的降低而增加。进一步的XPS实验证明,该种高分散In2O3还原后的金属Im物种在873K的CO2气氛下不能被重新氧化成为In2O3。
     873K常压下的活性测试中,无论在有CO2气氛还是无CO2气氛下,所有In2O3-Al2O3复合氧化物的活性都远远高于单组份的In2O3和Al2O3,而CO2气氛下整体活性高于无CO2气氛下的活性。其中最佳样品In-Al-20在CO2气氛下反应3h时的丙烷转化率为35.7%,丙烯选择性为76.5%。在连续30h的反应后,In-Al-20依然具有>25%的丙烷转化率。值得注意的是,所有In2O3-Al2O3复合氧化物样品都经历一个明显的诱导期,即随着反应时间的增加,丙烯产率经历先增后减的趋势,CO2气氛下在3h达到活性的峰值。而773 K H2-Ar混合气处理过的样品则没有经历诱导期,这说明由高分散In2O3物种还原得到的金属态In可能是脱氢的活性物种。同时金属态In的数量与脱氢的转化率之间存在很好的关联,更证实了这一观点。
     用CO2-H2程序升温实验测试了In2O3-Al2O3催化剂对于逆水煤气变换反应(RWGS)的活性,发现体相In2O3是RWGS的活性中心。所以In2O3-Al2O3复合氧化物实质上是一个双活性中心催化剂,高分散In2O3和体相In2O3的合适比例能促成良好的脱氢活性。
     三、负载型In2O3催化剂在丙烷脱氢反应中的载体效应研究
     选取SiO2、ZrO2和Al2O3三类氧化物为载体,用传统浸渍法合成负载型In2O3催化剂,并每种载体制备3wt%与10wt%两个负载量的样品,分别以In(3)/M,和In(10)/M表示。XRD研究表明,In203在SiO2载体上分散最差,而ZrO2与Al2O3对In2O3的分散能力都较好。H2-TPR实验结果符合这一结论,即在Si02上In203大部分以体相物种存在,而在ZrO2和Al2O3上高分散In2O3物种的比例有明显提高。NH3-TPD和CO2-TPD实验评价了三组样品的酸碱性质,发现其中ZrO2负载的样品单位比表面酸性位与碱性位密度都为最高。
     873K常压下的活性测试中,CO2气氛下,SiO2负载样品的活性最差,In(10)/Si的丙烷初始转化率为10%,而且在8h内完全失活。ZrO2负载样品的丙烷转化率最高(In(10)/Zr在3h时的峰值为27.5%),相比之下,ZrO2负载样品的丙烷转化率略低。而丙烯选择性方面,Al2O3负载样品的稳态选择性高于80%,而ZrO2负载样品的选择性在60-70%之间。CO2转化率的比较中可发现,ZrO2负载样品的CO2转化率远远高于其他两组样品。而在没有CO2气氛下,相比CO2存在时丙烷的转化率整体下降,而ZrO2负载样品的转化率下降最为明显,从而丙烷转化率大小顺序变为:Al2O3负载>ZrO2负载>SiO2负载。
     前期工作已经发现高分散In2O3原位生成的金属In物种是脱氢活性中心,所以催化剂的脱氢能力很大程度上取决于In2O3在载体上的分散情况。通过将无CO2气氛下的活性结果和高分散In2O3的含量予以对比发现,两者存在很好的内在关联。所以ZrO2和Al2O3负载样品是由于对In2O3的良好分散而活性较高。而ZrO2负载样品在有无CO2气氛下活性的巨大反差以及CO2的高转化率说明,在CO2气氛下,ZrO2样品的高转化率有很大一部分来自RWGS的贡献。而ZrO2表面的高碱性位密度恰恰促进了RWGS的发生。同时其高酸性位密度不利于烃类的脱附,可以解释其丙烯的选择性低于Al2O3负载样品的原因。
Dehydrogenation of propane to propylene in the presence of carbon dioxide over novel gallium and indium oxide based catalysts
     Propylene is currently an important building block of the chemical industry, which is mainly produced from steam cracking and FCC. The steam cracking maximizes ethylene yield and in the FCC plant propylene is produced as a by-product, so propylene production from these sources barely matches with its rapidly increased consumption. Therefore, transformation of the relatively cheap and abundant propane into propylene seems to be an alternative in solving this problem. Thermal dehydrogenation of propane to propylene (DHP), although industrialized, requires high reaction temperature due to the thermodynamics limits. This drawback not only makes the process extremely energy intensive, but also brings about drawbacks in terms of thermal cracking, severe coking and consequent deactivation which restrict the further application of this technique. In order to explore new alternatives that permit high conversion of propane at lower temperature, people resort to oxidative dehydrogenation of propane by molecular oxygen (ODHP), which allows the endothermic reaction to be exothermic. However, introduction of oxygen leads to side-reaction such as over-oxidation and insertion of molecular oxygen, significantly decreasing its selectivity to propylene. Employment of CO2 as weak oxidant instead of O2 would couple the DHP with reverse water-gas shift (RWGS), which consumes H2 by CO2, leading to enhanced DHP equilibrium conversion. In contrast to ODH, by-products are remarkably suppressed, and selectivity to propylene is greatly promoted in the CO2-DHP. Besides, CO2 can stabilize the catalysts via elimination of coke. Since CO2 as green house gas has been effectively utilized in this process, CO2-DHP is recognized as a "green chemistry" route.
     In the field of CO2-DH of light alkanes, Ga2O3 receives considerable attentions as a new class of catalysts. Although Ga2O3-based catalysts are reported to be active in some cases, they suffer heavily from coke, which renders the catalysts to deactivate rapidly in a few hours commonly. Thus, new approach in circumvent this problem is desirable. Recently, a new class of Ga2O3-Al2O3 solid solution reported, with unique acidic and structural properties, has been frequently applied to the selective catalytic reduction (SCR) of NOx. In contrast to those of Al2O3, the total acid site amount of the Ga2O3-Al2O3 solid solution increases with the enhancement of Ga concentration, but the amount for strong acid site decreases accordingly. The solid solution is also fairly stable in crystalline structure against heat treatment. By utilizing these extraordinary merits and submitting the Ga2O3-Al2O3 solid solution into CO2-DHP, marked improvement in DH activity as well as stability can be anticipated.
     From the viewpoint of mechanism, the activities of Ga-based catalysts for both DHP and SCR derive from their unique activation abilities toward C-H bonds in hydrocarbons. Beside Ga-based materials, another important type of NOx SCR catalysts is In2O3-Al2O3 mixed oxide materials. Nevertheless, In2O3-Al2O3 mixed oxide has never been systematically studied in the dehydrogenation reaction of short chain alkenes. Comparing with In2O3, In2O3-Al2O3 mixed oxide is with greater surface acidity, remarkably larger surface area, and superior properties in activation of alkanes. All of these are extremely favorable for promotion of DHP performance over indium-based catalysts. Based on the similarity of In2O3-Al2O3 and Ga2O3-Al2O3 solid solution in NOx SCR reactions, application of In2O3-Al2O3 mixed oxide into the DHP would allow in-depth and comprehensive study of the mixed oxide fromⅢA family elements in the dehydrogenation field.
     This dissertation is divided into three parts according to the three catalyst systems studied in the current CO2-DHP process:Ga2O3-Al2O3 solid solutions, In2O3-Al2O3 mixed oxides and supported In2O3 catalysts. The activity, stability and regeneration behavior for the three catalyst systems have been systematically studied, and the structural-activity relationships have been carefully analyzed via detailed characterizations. The activity centers as well as the origin of the catalytic performance have been discussed with depth.
     The main content of this dissertation is as follows:
     1) Studies on Ga2O3-Al2O3 solid solution for CO2-DHP
     Prepare Ga2O3-Al2O3 solid solution with Ga/Al ratio at 4:1,1:1 and 1:4 respectively via alcoholic ammonia coprecipitation, denoted as Ga8Al2O15, Ga5Al5O15 and Ga2Al8O15 respectively.γ-Ga2O3 andγ-Al2O3 have been synthesized accordingly and were used as references. XRD reveals the three mixed oxide samples all formed Ga2O3-Al2O3 solid solutions.71Ga MAS NMR suggests the Ga has two locations in the Ga2O3-Al2O3 solid solution, namely four coordinated sites (GaⅣ) and six coordinated sites (GaⅥ). By increasing the Al content, the percent of GaⅣkeeps increasing while the total Ga2O3 content decreases. Pyridine-IR indicates that there are exclusively Lewis acid sites other than Bronst acid sites exist on the surface of Ga2O3-Al2O3 solid solution. NH3-TPD experiment further suggests that increment in Al2O3 content results in enhancement of total Lewis acid site density, but the weak acid site density increased initially and then decreased, and the maximum value was achieved over sample Ga8Al2O15. It was discovered that the amount of GaⅣshowed linear relationship with the weak acid site density, suggesting GaⅣprovides mainly weak Lewis acid sites for the solid solution.
     The catalytic activities of the Ga2O3-Al2O3 solid solutions were monitored on a continuous micro-reactor at 773 K and 1 atm. Activities both in the presence/absence of CO2 were analyzed, showing composition effect has a great impact on the DHP activity. In both conditions, the initial propane conversions follow the sequence: Ga8AlO15>γ-Ga2O3> Ga5Al5O15> Ga2Al8O15.γ-Ga2O3 deactivates the most rapidly during 8 h on stream. It was discovered that sample with lower Ga2O3 content deactivates more slowly. Activities in the presence of CO2 are generally more stable than those in the absence of CO2, though higher initial propane conversions were achieved in the absence of CO2. Perfect correlation of the weak acid site density and the initial activities suggests the GaⅣto be the possible active center for dehydrogenation.
     Taking into account the application potential, the Ga2O3-Al2O3 solid solution was accessed by 50 h on-stream activity test and 2 round deactivation-regeneration tests. Ga5Al5O15 showed conversion of propane as high as 22.5% at 50 h, while y-Ga2O3 totally deactivated. After regeneration, the Ga5Al5O15 showed no loss in the initial conversion of propane, whereasγ-Ga2O3 decreased by c.a.9%. This is closely related to the thermal stability of the Ga2O3-Al2O3 solid solution against heat treatment. XRD characterization for the regenerated samples reveals that Ga5Al5O15 maintained the originalγphase whileγ-Ga2O3 was converted to theβpolymorph.
     2) Studies on In2O3-Al2O3 mixed oxide for CO2-DHP
     In2O3-Al2O3 mixed oxide samples with molar percent of In at 40%,20% and 10 % were synthesized via ammonia coprecipitation in a mixed alcoholic/aqueous solution, and were symbolized as In-Al-40, In-Al-20 and In-Al-10 respectively. Simple oxide In2O3 and Al2O3 were prepared through the same route as references. Characterization of XRD reveals that In2O3 in mixed oxides all exists in a cubic crystalline form. In2O3 and Al2O3 did not form solid solutions but render better dispersions for each other. TPR confirmed the existence of highly dispersed In2O3 species, which was reduced in the low-temperature range (473-773 K). The proportion of the highly dispersed In2O3 species increased with the enhancement of the alumina content. Further experiment by XPS evidenced that metallic In0 derived from highly dispersed In2O3 can not be re-oxidized by CO2 at 873 K.
     In the activity tests at 873 K and 1 atm, all In2O3-Al2O3 mixed oxide samples far exceed simple oxide In2O3 and Al2O3 in terms of propane conversion both in the presence/absence of CO2. Activities in the presence of CO2 are generally superior to those in the absence of CO2. In-Al-20 shown to be the best sample exhibits maximum propane conversion of 35.7% and selectivity to propylene of 76.5% in the presence of CO2 at 3 h on stream. After continuous reaction lasting 30 h, conversion> 25% was still maintained for In-Al-20. It was noteworthy that an obvious induction period has been experienced for all mixed oxide samples. Namely, in the induction period, yield of propylene increased initially and then gradually decreased, and maximums were achieved at 3 h for in the presence of CO2. However, In-Al-20 pre-reduced by H2-Ar at 773 K has not undergone such induction period. This implies the metallic In0 species derived from highly dispersed In2O3 should be the intrinsic active site for dehydrogenation, as was further confirmed by the positive correlation between its amount and the corresponding dehydrogenation activity data.
     CO2-H2 temperature-programmed tests were employed to measure the RWGS performance for the In2O3-Al2O3 mixed oxide samples, suggesting the bulk In2O3 as the essential active species for RWGS. Therefore, In2O3-Al2O3 mixed oxide samples actually comprises double active centers, and ideal dehydrogenation activity is prompted by balanced composition of bulk as well as highly dispersed In2O3 in the alumina matrix.
     3) Support effect in CO2-DHP over supported In2O3 catalysts
     SiO2, Al2O3 and ZrO2 were employed as three oxide supports for impregnating In2O3, and samples with two loadings (3 and 10%) were prepared on each support, marked as In(3)/M and In(10)/M respectively. Studies by XRD reveal SiO2 supported samples are with the poorest dispersion of In2O3, while much better dispersion of In2O3 is obtained over Al2O3 and ZrO2. As was further evidenced by H2-TPR, the majority of In2O3 exists in a bulk form, while the proportion of highly dispersed In2O3 is much higher over Al2O3 and ZrO2.Acid-base properties of the In2O3-Al2O3 mixed oxide samples were evaluated by NH3-TPD和CO2-TPD tests, which shows the zirconia supported samples are with the highest acid as well as basic site density.
     Activity tests at 873 K and 1 atm reveals, in the presence of CO2, SiO2 supported samples are with the poorest dehydrogenation performance. In(10)/Si has a initial propane conversion of c.α.10% and totally deactivated in 8 h. ZrO2 supported samples have the optimal propane conversion (maximum of 27.5% for In(10)/Zr at 3 h, in contrast, those for Al2O3 supported samples are slightly lower. On the other hand, the stabilized selectivities to propylene all exceed 80% for In/Al comparing to 60-70 % for In/Zr. The conversions of CO2 are highest for In/Zr, apparently superior to those over In/Si and In/Al. Conversion of propane dropped obviously as atmospheric condition was switched to that in the absence of CO2 for all samples, particularly dramatic for In/Zr, and the order of propane conversion ranked:In/Al> In/Zr> In/Si.
     Works in part II already reveals that the metallic In0 species derived in-situ from highly dispersed In2O3 acts as the intrinsic active center for dehydrogenation, namely the dehydrogenation performance depends largely on distribution of In2O3 on supports. Excellent correlation has been obtained between propane conversions in both presence/absence of CO2 and their corresponding amount of the highly dispersed In2O3, suggesting outstanding dehydrogenation results over In/Al and In/Zr could be attributed to the superior ability in dispersing In2O3 of Al2O3 and ZrO2. Activity contrast for In/Zr between two atmospheric conditions in conjunction with its dramatically high conversion of CO2 indicates that its dehydrogenation performance was facilitated by RWGS to a large extent. The RWGS over In/Zr was promoted by its extraordinarily high surface basic site density. High acidic site density is negative for the desorption of hydrocarbons, which explains the lower selectivities for In/Zr in contrast to those for In/Al.
引文
[1]Blasco T., Nieto J. Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts [J]. Applied Catalysis A, General,1997, 157(1-2):117-142.
    [2]Bettahar M. M., Costentin G., Savary L., Lavalley J. C. On the partial oxidation of propane and propylene on mixed metal oxide catalysts [J]. Applied Catalysis A:General,1996,145 (1-2):1-48.
    [3]Bhasin M. M., McCain J. H., Vora B. V., Imai T., Pujado P. R. Dehydrogenation and oxydehydrogenation of paraffins to olefins [J]. Applied Catalysis A:General,2001,221 (1-2):397-419.
    [4]雷燕湘.世界丙烯及其衍生物发展现状与趋势[J].当代石油石化,2005,15(4):38-44.
    [5]许养贤.丙烯生产工艺技术进展[J].石油化工应用,2006,25(004):1-3.
    [6]饶兴鹤.丙烯供需现状及增产技术[J].中国石油和化工,2005,(002):24-28.
    [7]陈乐怡.世界丙烯工业进展与展望[J].中外能源,2009,14(003):66-70.
    [8]崔智强.催化裂化多产丙烯技术研究进展[J].内蒙古石油化工,2009,(003):15-17.
    [9]吴铭.世界丙烯市场供求趋紧[J].中国石油和化工,2008,(004):27-28.
    [10]戴伟,罗晴,王定博.烯烃转化生产丙烯的研究进展[J].石油化工,2008,37(005):425-433.
    [11]耿福生.丙烷脱氢制丙烯技术进展[J].河南石油,2005,19(005):70-72.
    [12]郭洪辉,陈继华.丙烷脱氢制丙烯技术研究[J].浙江化工,2007,38(004):9-14.
    [13]余长林,葛庆杰,徐恒泳,李文钊.丙烷脱氢制丙烯研究新进展[J].化工进展,2006,25(009):977-982.
    [14]张伟德,李基涛,傅锦坤,陈兆远,古萍英,万惠霖.丙烷在Ni-Mg-Mo-O催化剂上的氧化脱氢[J].天然气化工,2000,25(4):
    [15]苏建伟,牛海宁.丙烷脱氢制丙烯技术进展[J].化工科技,2006,14(004):62-66.
    [16]Saito M., Watanabe S., Takahara I., Inaba M., Murata K. Dehydrogenation of propane over a silica-supported gallium oxide catalyst [J]. Catalysis Letters, 2003,89 (3-4):213-217.
    [18]陈建九,史海英.丙烷脱氢制丙烯工艺技术[J].精细石油化工进展,2000,1(012):23-28.
    [19]张一卫,周钰明,许艺,吴沛成.丙烷临氢脱氢催化剂的研究进展[J].化工进展,2005,24(007):729-732.
    [20]董文生,王心葵.丙烷脱氢制丙烯研究进展[J].合成化学,1997,5(003):246-250.
    [21]Watson B. S. R. B. The Physical,Chemical,and Structural characteristics of molybdenum oxide catalysts supported over the binary oxide of silica/titania and relationships to their behavior in the oxidative dehydrogenation of propane and ethane [D]. School of the Ohio State University,2001.
    [22]王海南,王虹.丙烷氧化脱氢制丙烯催化剂研究进展[J].天然气化工:C1化学与化工,2003,28(006):25-31.
    [23]Gascon J., Tellez C., Herguido J., Menendez M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation [J]. Applied Catalysis A:General,2003,248 (1-2):105-116.
    [24]Wang S. B., Zhu Z. H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation - A review [J]. Energy & Fuels,2004,18 (4):1126-1139.
    [25]张法智,徐柏庆.CO2选择氧化低碳烷烃的研究进展[J].化学进展,2002,14(001):56-60.
    [26]上官荣昌,葛欣.二氧化碳氧化丙烷制丙烯的热力学分析[J].石油与天然气化工,2002,31(001):5-7.
    [27]葛欣,沈俭一.丙烷脱氢与逆水煤气变换耦合制丙烯反应的研究进展[J].天然气化工:C1化学与化工,2001,26(003):37-41.
    [28]章治平.低碳烷烃催化脱氢与逆水煤气变换偶合转化的研究进展[J].化学工程师,2005,(003):27-29.
    [29]葛欣,沈俭一.二氧化碳氧化剂在烷烃催化转化反应中的应用研究进展[J].化学研究与应用,2003,15(002):165-170.
    [30]史雪君,季生福,李成岳.低碳烷烃催化转化制取低碳烯烃反应工艺的研究进展[J].工业催化,2006,14(009):1-6.
    [31]Michorczyk P., Ogonowski J. Dehydrogenation of propane in the presence of carbon dioxide over oxide-based catalysts [J]. Reaction Kinetics and Catalysis Letters,2003,78 (1):41-47.
    [32]Nakagawa K., Kajita C., Okumura K., Ikenaga N.-o., Nishitani-Gamo M., Ando T., Kobayashi T., Suzuki T. Role of Carbon Dioxide in the Dehydrogenation of Ethane over Gallium-Loaded Catalysts [J]. Journal of Catalysis,2001,203 (1):87-93.
    [33]Longya X., Liwu L., Qingxia W., Li Y., Debao W., Weichen L. A new route for C2H4 production by reacting C2H6 with CO2 over a catalyst of chromium oxide supported on silicalite-2 type zeolite [M]. Elsevier,1998:605-610.
    [34]Michorczyk P., Gora-Marek K., Ogonowski J. Dehydrogenation of propane in the presence and absence of CO2 over beta-Ga2O3 supported chromium oxide catalysts [J]. Catalysis Letters,2006,109 (3-4):195-198.
    [35]Wang Y., Ohishi Y., Shishido T., Zhang Q. H., Yang W., Guo Q., Wan H. L. Takehira K. Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange [J]. Journal of Catalysis,2003,220 (2):347-357.
    [36]Takehira K., Ohishi Y., Shishido T., Kawabata T., Takaki K., Zhang Q. H., Wang Y Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2 [J]. Journal of Catalysis,2004,224 (2): 404-416.
    [37]Wang S. B., Murata K., Hayakawa T., Hamakawa S., Suzuki K. Dehydrogenation of ethane into ethylene by carbon dioxide over chromium supported on sulfated silica [J]. Chemistry Letters,1999, (7):569-570.
    [38]Kocon M., Michorczyk P., Ogonowski J. Effect of supports on catalytic activity of chromium oxide-based catalysts in the dehydrogenation of propane with CO2 [J]. Catalysis Letters,2005,101 (1-2):53-57.
    [39]Takahara I., Chang W. C., Mimura N., Saito M. Promoting effects of CO2 on dehydrogenation of propane over a SiO2-supported Cr2O3 catalyst [J]. Catalysis Today,1998,45 (1-4):55-59.
    [40]Liu Y M., Cao Y., Yi N., Feng W. L., Dai W. L., Yan S. R., He H. Y., Fan K. N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane [J]. Journal of Catalysis, 2004,224 (2):417-428.
    [41]Liu Y M., Feng W. L., Li T. C., He H. Y., Dai W. L., Huang W., Cao Y., Fan K. N. Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene [J]. Journal of Catalysis,2006,239 (1):125-136.
    [42]Chang J. S., Hong D. Y., Vislovskiy V. P., Park S. E. An overview on the dehydrogenation of alkylbenzenes with carbon dioxide over supported vanadium-antimony oxide catalysts [J]. Catalysis Surveys from Asia,2007,11 (1-2):59-69.
    [43]Hong D.-Y., Chang J.-S., Lee J.-H., Vislovskiy V. P., Jhung S. H., Park S.-E., Park Y.-H. Effect of carbon dioxide as oxidant in dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst [J]. Catalysis Today,2006,112 (1-4):86-88.
    [44]Liu B. S., Rui G., Chang R. Z., Au C. T. Dehydrogenation of ethylbenzene to styrene over LaVOx/SBA-15 catalysts in the presence of carbon dioxide [J]. Applied Catalysis A:General,2008,335 (1):88-94.
    [45]Ogonowski J., Skrzynska E. Activity of vanadium magnesium oxide supported catalysts in the dehydrogenation of isobutane [J]. Catalysis Letters,2006,111 (1):79-85.
    [46]Qiao Y., Miao C., Yue Y., Xie Z., Yang W., Hua W., Gao Z. Vanadium oxide supported on mesoporous MCM-41 as new catalysts for dehydrogenation of ethylbenzene with CO2 [J]. Microporous and Mesoporous Materials,2009, 119 (1-3):150-157.
    [47]Sakurai Y., Suzaki T., Ikenaga N.-o., Suzuki T. Dehydrogenation of ethylbenzene with an activated carbon-supported vanadium catalyst [J]. Applied Catalysis A:General,2000,192 (2):281-288.
    [48]Sakurai Y., Suzaki T., Nakagawa K., Ikenaga N.-o., Aota H., Suzuki T. Dehydrogenation of Ethylbenzene over Vanadium Oxide-Loaded MgO Catalyst:Promoting Effect of Carbon Dioxide [J]. Journal of Catalysis,2002, 209(1):16-24.
    [50]Mimura N., Takahara I., Saito M., Hattori T., Ohkuma K., Ando M. Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide [J]. Catalysis Today,1998,45 (1-4):61-64.
    [51]Shimada H., Akazawa T., Ikenaga N.-o., Suzuki T. Dehydrogenation of isobutane to isobutene with iron-loaded activated carbon catalyst [J]. Applied Catalysis A:General,1998,168 (2):243-250.
    [52]Sugino M.-o., Shimada H., Turuda T., Miura H., Ikenaga N., Suzuki T. Oxidative dehydrogenation of ethylbenzene with carbon dioxide [J]. Applied Catalysis A:General,1995,121 (1):125-137.
    [53]Longya X., Jinxiang L., Yide X., Hong Y., Qingxia W., Liwu L. The suppression of coke deposition by the modification of Mn on Fe/silicalite-2 catalyst in dehydrogenation of C2H6 with CO2 [J]. Applied Catalysis A: General,2000,193 (1-2):95-101.
    [54]Xu L. Y., Liu J. X., Yang H., Xu Y., Wang Q. X., Lin L. W. Regeneration behaviors of Fe/Si-2 and Fe-Mn/Si-2 catalysts for C2H6 dehydrogenation with CO2 to C2H4 [J]. Catalysis Letters,1999,62 (2-4):185-189.
    [55]Matyshak V., Krylov O. In situ IR spectroscopy of intermediates in heterogeneous oxidative catalysis [J]. Catalysis Today,1995,25 (1):1-87.
    [56]Dury F., Gaigneaux E. M., Ruiz P. The active role of CO2 at low temperature in oxidation processes:the case of the oxidative dehydrogenation of propane on NiMoO4 catalysts [J]. Applied Catalysis A:General,2003,242 (1): 187-203.
    [57]Burri D. R., Choi K.-M., Lee J.-H., Han D.-S., Park S.-E. Influence of SBA-15 support on CeO2-ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO2 [J]. Catalysis Communications,2007,8 (1):43-48.
    [58]Solymosi F., Tolmacsov P. Decomposition of propane and its reactions with CO2 over alumina-supported Pt metals [J]. Catalysis Letters,2002,83 (3-4): 183-186.
    [59]Gnep N. S., Doyement J. Y, Guisnet M. Role of gallium species on the dehydrocyclodimerization of propane on ZSM5 catalysts [J]. Journal of Molecular Catalysis,1988,45 (3):281-284.
    [60]Gnep N. S., Doyemet J. Y., Seco A. M., Ribeiro F. R., Guisnet M. Conversion of light alkanes to aromatic hydrocarbons:Ⅱ. Role of gallium species in propane transformation on GaZSM5 catalysts [J]. Applied Catalysis,1988,43 (1):155-166.
    [61]Guisnet M., Gnep N. S., Alario F. Aromatization of short chain alkanes on zeolite catalysts [J]. Applied Catalysis A:General,1992,89 (1):1-30.
    [62]Kazansky V. B., Subbotina I. R., van Santen R. A., Hensen E. J. M. DRIFTS study of the chemical state of modifying gallium ions in reduced Ga/ZSM-5 prepared by impregnation: I. Observation of gallium hydrides and application of CO adsorption as a molecular probe for reduced gallium ions [J]. Journal of Catalysis,2004,227 (2):263-269.
    [63]Kolyagin Y G., Ordomsky V. V., Khimyak Y Z., Rebrov A. I., Fajula F., Ivanova I. I. Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques [J]. Journal of Catalysis, 2006,238(1):122-133.
    [64]Lukyanov D. B., Vazhnova T. Aromatization activity of gallium containing MFI and TON zeolite catalysts in n-butane conversion:Effects of gallium and reaction conditions [J]. Applied Catalysis A:General,2007,316 (1):61-67.
    [65]Meitzner G. D., Iglesia E., Baumgartner J. E., Huang E. S. The Chemical State of Gallium in Working Alkane Dehydrocyclodimerization Catalysts. In situ Gallium K-Edge X-Ray Absorption Spectroscopy [J]. Journal of Catalysis, 1993,140(1):209-225.
    [66]Buckles G. J., Hutchings G. J. Conversion of Propane Using H-ZSM-5 and Ga H-ZSM-5 in the Presence of Ga-H-ZSM-5 in the Presence of Co-fed Nitric Oxide, Oxygen, and Hydrogen [J]. Journal of Catalysis,1995,151 (1):33-43.
    [67]Nakagawa K., Okamura M., Ikenaga N., Suzuki T., Kobayashi T. Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide [J]. Chemical Communications,1998, (9):1025-1026.
    [68]Shen Z. H., Liu J., Xu H. L., Yue Y. H., Hua W. M., Shen W. Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2 [J]. Applied Catalysis a-General,2009,356 (2):148-153.
    [69]Li H. Y, Yue Y. H., Miao C. X., Xie Z. K., Hua W. M., Gao Z. Dehydrogenation of ethylbenzene and propane over Ga2O3-ZrO2 catalysts in the presence of CO2 [J]. Catalysis Communications,2007,8 (9):1317-1322.
    [70]Michorczyk P., Ogonowski J. Dehydrogenation of propane to propene over gallium oxide in the presence of CO2 [J]. Applied Catalysis A:General,2003, 251 (2):425-433.
    [71]Nakagawa K., Kajita C., Ide Y., Okamura M., Kato S., Kasuya H., Ikenaga N., Kobayashi T., Suzuki T. Promoting effect of carbon dioxide on the dehydrogenation and aromatization of ethane over gallium-loaded catalysts [J]. Catalysis Letters,2000,64 (2-4):215-221.
    [72]Xu B. J., Li T., Zheng B., Hua W. M., Yue Y. H., Gao Z. Enhanced stability of HZSM-5 supported Ga2O3 catalyst in propane dehydrogenation by dealumination [J]. Catalysis Letters,2007,119 (3-4):283-288.
    [73]Xu B. J., Zheng B., Hua W. M., Yue Y. H., Gao Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts [J]. Journal of Catalysis,2006,239 (2):470-477.
    [74]Zheng B., Hua W. M., Yue Y. H., Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide [J]. Journal of Catalysis, 2005,232(1):143-151.
    [75]Collins S. E., Baltanas M. A., Bonivardi A. L. An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/beta-Ga2O3 [J]. Journal of Catalysis,2004,226 (2):410-421.
    [76]Collins S. E., Baltanas M. A., Bonivardi A. L. Hydrogen chemisorption on gallium oxide polymorphs [J]. Langmuir,2005,21 (3):962-970.
    [77]Collins S. E., Baltanas M. A., Bonivardi A. L. Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2CO3 polymorphs [J]. Journal of Physical Chemistry B,2006,110 (11):5498-5507.
    [78]Collins S. E., Baltanas M. A., Garcia Fierro J. L., Bonivardi A. L. Gallium-Hydrogen Bond Formation on Gallium and Gallium-Palladium Silica-Supported Catalysts [J]. Journal of Catalysis,2002,211 (1):252-264.
    [79]Gonzalez E. A., Jasen P. V., Juan A., Collins S. E., Baltanas M. A., Bonivardi A. L. Hydrogen adsorption on [beta]-Ga2O3(100) surface containing oxygen vacancies [J]. Surface Science,2005,575 (1-2):171-180.
    [80]Collins S. E., Chiavassa D. L., Bonivardi A. L., Baltanas M. A. Hydrogen spillover in Ga2O3-Pd/SiO2 catalysts for methanol synthesis from CO2/H2 [J]. Catalysis Letters,2005,103 (1-2):83-88.
    [81]Lavalley J. C., Daturi M., Montouillout V., Clet G., Arean C. O., Delgado M. R., Sahibed-dine A. Unexpected similarities between the surface chemistry of cubic and hexagonal gallia polymorphs [J]. Physical Chemistry Chemical Physics,2003,5 (6):1301-1305.
    [82]Kazansky V. B., Subbotina I. R., Pronin A. A., Schlogl R., Jentoft F. C. Unusual infrared spectrum of ethane adsorbed by gallium oxide [J]. Journal of Physical Chemistry B,2006,110 (15):7975-7978.
    [83]Jochum W., Penner S., Fottinger K., Kramer R., Rupprechter U., Klotzer B. Hydrogen on polycrystalline beta-Ga2O3:Surface chemisorption, defect formation, and reactivity [J]. Journal of Catalysis,2008,256 (2):268-277.
    [84]Vimont A., Lavalley J. C., Sahibed-Dine A., Arean C. O., Delgado M. R., Daturi M. Infrared spectroscopic study on the surface properties of gamma-gallium oxide as compared to those of gamma-alumina [J]. Journal of Physical Chemistry B,2005,109 (19):9656-9664.
    [85]Kikuchi E., Ogura M., Terasaki I., Goto Y. Selective Reduction of Nitric Oxide with Methane on Gallium and Indium Containing H-ZSM-5 Catalysts: Formation of Active Sites by Solid-State Ion Exchange [J]. Journal of Catalysis,1996,161 (1):465-470.
    [86]Kikuchi E., Yogo K. Selective catalytic reduction of nitrogen monoxide by methane on zeolite catalysts in an oxygen-rich atmosphere [J]. Catalysis Today, 1994,22 (1):73-86.
    [87]Li Y. J., Armor J. N. Selective Catalytic Reduction of NO with Methane on Gallium Catalysts [J]. Journal of Catalysis,1994,145 (1):1-9.
    [88]Tabata T., Kokitsu M., Okada O. Adsorption Properties of Oxygen and Methane on Ga-Zsm-5-the Origin of the Selectivity of Nox Reduction Using Methane [J]. Catal. Lett.,1994,25 (3-4):393-400.
    [89]Tabata T., Kokitsu M., Okada O. Relationship between methane adsorption and selective catalytic reduction of nitrogen oxide by methane on gallium and indium ion-exchanged ZSM-5 [J]. Applied Catalysis B:Environmental,1995, 6 (3):225-236.
    [90]Miyahara Y, Takahashi M., Masuda T., Imamura S., Kanai H., Iwamoto S., Watanabe T., Inoue M. Selective catalytic reduction of NO with C1-C3 reductants over solvothermally prepared Ga2O3-Al2O3 catalysts:Effects of water vapor and hydrocarbon uptake [J]. Appl. Catal. B-Environ.,2008,84 (1-2):289-296.
    [91]Nakatani T., Watanabe T., Takahashi M., Miyahara Y., Deguchi H., Iwamoto S., Kanai H., Inoue M. Characterization of gamma-Ga2O3-Al2O3 Prepared by Solvothermal Method and Its Performance for Methane-SCR of NO [J]. Journal of Physical Chemistry A,2009,113 (25):7021-7029.
    [92]Takahashi M., Inoue N., Nakatani T., Takeguchi T., Iwamoto S., Watanabe T., Inoue M. Selective catalytic reduction of NO with methane on gamma-Ga2O3-Al2O3 solid solutions prepared by the glycothermal method [J]. Appl. Catal. B-Environ.,2006,65 (1-2):142-149.
    [93]Takahashi M., Nakatani T., Iwamoto S., Watanabe T., Inoue M. Effect of the composition of spinel-type Ga2O3-Al2O3-ZnO catalysts on activity for the CH4-SCR of NO and optimization of catalyst composition [J]. Industrial & Engineering Chemistry Research,2006,45 (10):3678-3683.
    [94]Takahashi M., Nakatani T., Iwamoto S., Watanabe T., Inoue M. Performance of solvothermally prepared Ga2O3-Al2O3 catalysts for SCR of NO with methane [J]. Applied Catalysis B:Environmental,2007,70 (1-4):73-79.
    [95]Haneda M., Kintaichi Y., Hamada H. Promotional effect of H2O on the activity of In2O3-doped Ga2O3-Al2O3 for the selective reduction of nitrogen monoxide [J]. Catalysis Letters,1998,55 (1):47-55.
    [96]Haneda M., Kintaichi Y., Hamada H. Enhanced activity of metal oxide-doped Ga2O3-Al2O3 for NO reduction by propene [J]. Catalysis Today,1999,54 (4): 391-400.
    [97]Haneda M., Kintaichi Y., Hamada H. Activity enhancement of SnO2-doped Ga2O3-Al2O3 catalysts by coexisting H2O for the selective reduction of NO with propene [J]. Applied Catalysis B:Environmental,1999,20 (4):289-300.
    [98]Haneda M., Kintaichi Y., Hamada H. Effect of SO2 on the catalytic activity of Ga2O3-Al2O3 for the selective reduction of NO with propene in the presence of oxygen [J]. Applied Catalysis B:Environmental,2001,31 (4):251-261.
    [99]Haneda M., Kintaichi Y., Shimada H., Hamada H. Ga2O3/Al2O3 prepared by sol-gel method as a highly active metal oxide-based catalyst for NO reduction by propene in the presence of oxygen, H2O and SO2 [J]. Chemistry Letters, 1998,(2):181-182.
    [100]Arean C. O., Delgado M. R., Montouillout V., Massiot D. Synthesis and characterization of spinel-type gallia-alumina solid solutions [J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie,2005,631 (11):2121-2126.
    [101]Escribano V. S., Amores J. M. G., Lopez E. F., Panizza M., Resini C., Busca G. Solid state characterization of coprecipitated alumina-gallia mixed oxide powders [J]. Journal of Materials Science,2005,40 (8):2013-2021.
    [102]Haneda M., Joubert E., Menezo J. C., Duprez D., Barbier J., Bion N., Daturi M., Saussey J., Lavalley J. C., Hamada H. Surface characterization of alumina-supported catalysts prepared by sol-gel method. Part Ⅰ. Acid-base properties [J]. Physical Chemistry Chemical Physics,2001,3 (7):1366-1370.
    [103]Prewitt C. T., Shannon R. D., Rogers D. B., Sleight A. W. C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure [J]. Inorganic Chemistry,1969,8 (9):1985-1993.
    [104]Takahashi M., Inoue N., Takeguchi T., Iwamoto S., Inoue M., Watanabe T. Synthesis of gamma-Ga2O3-Al2O3 solid solutions by the glycothermal method [J]. Journal of the American Ceramic Society,2006,89 (7):2158-2166.
    [105]Roy R., Hill V. G., Osborn E. F. Polymorphism of Ga2O3 and the system Ga2O3-H2O [J]. Journal of the American Chemical Society,1952,74 (3): 719-722.
    [106]Horiuchi T., Chen L. Y., Osaki T., Mori T. Thermally stable alumina-gallia aerogel as a catalyst for NO reduction with C3H6 in the presence of excess oxygen [J]. Catalysis Letters,2001,72 (1-2):77-81.
    [107]Aguilar-Rios G., Valenzuela M., Salas P., Armendariz H., Bosch P., Del Toro G., Silva R., Bertin V., Castillo S., Ramirez-Solis A., Schifter I. Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate [J]. Applied Catalysis A:General,1995,127 (1-2):65-75.
    [108]Armendariz H., Guzman A., Toledo J. A., Llanos M. E., Vazquez A., Aguilar-Rios G. Isopentane dehydrogenation on Pt-Sn catalysts supported on Al-Mg-0 mixed oxides:effect of Al/Mg atomic ratio [J]. Applied Catalysis A: General,2001,211(1):69-80.
    [109]Barias O. A., Holmen A., Blekkan E. A. Propane Dehydrogenation over Supported Pt and Pt-Sn Catalysts:Catalyst Preparation, Characterization, and Activity Measurements [J]. Journal of Catalysis,1996,158 (1):1-12.
    [110]Meriaudeau P., Naccache C., Thangaraj A., Bianchi C. L., Carli R., Vishvanathan V., Narayanan S. Studies on PtxSny Bimetallics in NaY:I. Preparation and Characterization [J]. Journal of Catalysis,1995,154 (2): 345-354.
    [111]Meriaudeau P., Thangaraj A., Dutel J. F., Naccache C. Studies on PtxSnyBimetallics in NaY. II. Further Characterization and Catalytic Properties in the Dehydrogenation and Hydrogenolysis of Propane [J]. Journal of Catalysis,1997,167 (1):180-186.
    [112]Yang J., Lin C. K., Wang Z. L., Lin J. In(OH)(3) and In2O3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties [J]. Inorganic Chemistry,2006,45 (22):8973-8979.
    [113]Shi M. R., Xu F., Yu K., Zhu Z. Q., Fang J. H. Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods [J]. Journal of Physical Chemistry C,2007,111 (44):16267-16271.
    [114]Wang G. X., Park J., Wexler D., Park M. S., Ahn J. H. Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires [J]. Inorganic Chemistry,2007,46 (12):4778-4780.
    [115]Epifani M., Siciliano P., Gurlo A., Barsan N., Weimar U. Ambient pressure synthesis of corundum-type Im2O3 [J]. Journal of the American Chemical Society,2004,126 (13):4078-4079.
    [116]Park P. W., Ragle C. S., Boyer C. L., Balmer M. L., Engelhard M., McCready D. In2O3/Al2O3 catalysts for NOx reduction in lean condition [J]. Journal of Catalysis,2002,210(1):97-105.
    [117]Perdigon-Melon J. A., Gervasini A., Auroux A. Study of the influence of the In2O3 loading on gamma-alumina for the development of de-NOx catalysts [J]. Journal of Catalysis,2005,234 (2):421-430.
    [118]Petre A. L., Perdigon-Melon J. A., Gervasini A., Auroux A. Acid-base properties of alumina-supported M2O3 (M=B, Ga, In) catalysts [J]. Topics in Catalysis,2002,19 (3-4):271-281.
    [119]Liess M. Electric-field-induced migration of chemisorbed gas molecules on a sensitive film - a new chemical sensor [J]. Thin Solid Films,2002,410 (1-2): 183-187.
    [120]Yu D., Wang D., Lu J., Qian Y. Preparation of corundum structure Sn-doped In2O3 nanoparticles via controlled co-precipitating and postannealing route [J]. Inorganic Chemistry Communications,2002,5 (7):475-477.
    [121]段学臣,胡林轩.超细氧化铟-氧化锡(ITO)复合粉末的研制与结构特性[J].稀有金属,1998,22(005):24-28.
    [122]周合兵,李伟善.氧化铟的制备及制备条件对其结构与性质的影响[J].广东化工,2003,30(002):15-18.
    [123]Pan Z. W., Dai Z. R., Wang Z. L. Nanobelts of semiconducting oxides [J]. Science,2001,291 (5510):1947-1949.
    [124]Liu Q. S., Lu W. G, Ma A. H., Tang J. K., Lin J., Fang J. Y. Study of quasi-monodispers In2O3 nanocrystals:Synthesis and optical determination [J]. Journal of the American Chemical Society,2005,127 (15):5276-5277.
    [125]Haneda M., Kintaichi Y, Bion N., Hamada H. Mechanistic study of the effect of coexisting H2O on the selective reduction of NO with propene over sol-gel prepared In2O3-Al2O3 catalyst [J]. Applied Catalysis B:Environmental,2003, 42 (1):57-68.
    [126]Luo C., Li J., Zhu Y, Hao J. The mechanism of SO2 effect on NO reduction with propene over In203/Al203 catalyst [J]. Catalysis Today,2007,119 (1-4): 48-51.
    [127]Maunula T., Ahola J., Hamada H. Reaction mechanism and kinetics of NOx reduction by methane on In/ZSM-5 under lean conditions [J]. Applied Catalysis B:Environmental,2006,64 (1-2):13-24.
    [128]Maunula T., Kintaichi Y., Haneda M., Hamada H. Preparation and reaction mechanistic characterization of sol-gel indium/alumina catalysts developed for NOx reduction by propene in lean conditions [J]. Catalysis Letters,1999,61 (3-4):121-130.
    [129]Miro E. E., Gutierrez L., Ramallo Lopez J. M., Requejo F. G. Perturbed Angular Correlation Characterization of Indium Species on In/H-ZSM5 Catalysts [J]. Journal of Catalysis,1999,188 (2):375-384.
    [130]Ogura M., Ohsaki T., Kikuchi E. The effect of zeolite structures on the creation of InO+ active sites for NOxreduction with methane [J]. Microporous and Mesoporous Materials,1998,21 (4-6):533-540.
    [131]Ramallo-Lopez J. M., Gutierrez L. B., Bibiloni A. G., Requejo F. G., Miro E. E. Perturbed angular correlation characterization of indium species on In/H-ZSM5 in the presence of water and catalytic deactivation studies during the SCR and NOx with methane [J]. Catalysis Letters,2002,82 (1-2): 131-139.
    [132]Ren L. L., Zhang T., Xu C. H., Lin L. W. The remarkable effect of In2O3 on the catalytic activity of In/HZSM-5 for the reduction of NO with CH4 [J]. Topics in Catalysis,2004,30-1 (1-4):55-57.
    [133]Requejo F. G., Ramallo-Lopez J. M., Lede E. J., Mir E. E., Pierella L. B., Anunziata O. A. In-containing H-ZSM5 zeolites with various Si/Al ratios for the NO SCR in the presence of CH4 and O2. PAC, TPAD and FTIR studies [J]. Catalysis Today,1999,54 (4):553-558.
    [134]Zhou X. J., Zhang T., Xu Z. S., Lin L. W. Selective catalytic reduction of nitrogen monoxide with methane over impregnated In/HZSM-5 in the presence of excess oxygen [J]. Catalysis Letters,1996,40 (1-2):35-38.
    [135]Gervasini A., Perdigon-Melon J. A., Guimon C., Auroux A. An in-depth study of supported In2O3 catalysts for the selective catalytic reduction of NOx:The influence of the oxide support [J]. Journal of Physical Chemistry B,2006,110 (1):240-249.
    [136]Grasselli R. K., Stern D. L., Tsikoyiannis J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC):II. DH+SHC catalysts physically mixed (redox process mode) [J]. Applied Catalysis A:General,1999,189 (1):9-14.
    [137]Grasselli R. K., Stern D. L., Tsikoyiannis J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC):I. DH-> SHC-> DH catalysts in series (co-fed process mode) [J]. Applied Catalysis A:General,1999,189(1):1-8.
    [138]Late L., Rundereim J. I., Blekkan E. A. Selective combustion of hydrogen in the presence of hydrocarbons:1. Pt-based catalysts [J]. Applied Catalysis A: General,2004,262(1):53-61.
    [139]Late L., Thelin W., Blekkan E. A. Selective combustion of hydrogen in the presence of hydrocarbons:Part 2. Metal oxide based catalysts [J]. Applied Catalysis A:General,2004,262 (1):63-68.
    [140]Lin C.-H., Lee K.-C., Wan B.-Z. Development of catalyst system for selective combustion of hydrogen [J]. Applied Catalysis A:General,1997,164 (1-2): 59-67.
    [141]Tsikoyiannis J. G., Stern D. L., Grasselli R. K. Metal Oxides As Selective Hydrogen Combustion (SHC) Catalysts and Their Potential in Light Paraffin Dehydrogenation [J]. Journal of Catalysis,1999,184 (1):77-86.
    [142]Choudhary V. R., Jana S. K., Kiran B. P. Highly active Si-MCM-41-supported Ga2O3 and InO3 catalysts for friedel-crafts-type benzylation and acylation reactions in the presence or absence of moisture [J]. Journal of Catalysis,2000, 192 (2):257-261.
    [143]Freeman D., Wells R. P. K., Hutchings G. J. Methanol to hydrocarbons: enhanced aromatic formation using composite group 13 oxide/H-ZSM-5 catalysts [J]. Catalysis Letters,2002,82 (3-4):217-225.
    [144]Kubacka A., Wloch E., Sulikowski B., Valenzuela R. X., Cortes Corberan V. Oxidative dehydrogenation of propane on zeolite catalysts [J]. Catalysis Today, 2000,61 (1-4):343-352.
    [145]Lorenz H., Jochum W, Klotzer B., Stoger-Pollach M., Schwarz S., Pfaller K., Penner S. Novel methanol steam reforming activity and selectivity of pure In2O3 [J]. Applied Catalysis A:General,2008,347 (1):34-42.
    [146]Poznyak S. K., Talapin D. V., Kulak A. I. Structural, optical, and photoelectrochemical properties of nanocrystalline TiO2-In2O3 composite solids and films prepared by sol-gel method [J]. Journal of Physical Chemistry B,2001,105 (21):4816-4823.
    [147]Wang D. F., Zou Z. G., Ye J. H. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors [J]. Chemistry of Materials,2005,17 (12):3255-3261.
    [1]Haneda M., Kintaichi Y., Hamada H. Promotional effect of H2O on the activity of In2O3-doped Ga2O3-Al2O3 for the selective reduction of nitrogen monoxide [J]. Catalysis Letters,1998,55 (1):47-55.
    [2]Maunula T., Kintaichi Y., Haneda M., Hamada H. Preparation and reaction mechanistic characterization of sol-gel indium/alumina catalysts developed for NOx reduction by propene in lean conditions [J]. Catalysis Letters,1999,61 (3-4):121-130.
    [3]Haneda M., Kintaichi Y., Hamada H. Activity enhancement of SnO2-doped Ga2O3-Al2O3 catalysts by coexisting H2O for the selective reduction of NO with propene [J]. Applied Catalysis B:Environmental,1999,20 (4):289-300.
    [4]Haneda M., Kintaichi Y, Hamada H. Effect of SO2 on the catalytic activity of Ga2O3-Al2O3 for the selective reduction of NO with propene in the presence of oxygen [J]. Applied Catalysis B:Environmental,2001,31 (4):251-261.
    [5]Haneda M., Kintaichi Y, Shimada H., Hamada H. Ga2O3/Al2O3 prepared by sol-gel method as a highly active metal oxide-based catalyst for NO reduction by propene in the presence of oxygen, H2O and SO2 [J]. Chemistry Letters,1998, (2):181-182.
    [6]Arean C. O., Delgado M. R., Montouillout V., Massiot D. Synthesis and characterization of spinel-type gallia-alumina solid solutions [J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie,2005,631 (11):2121-2126.
    [7]Miyahara Y., Takahashi M., Masuda T., Imamura S., Kanai H., Iwamoto S., Watanabe T., Inoue M. Selective catalytic reduction of NO with C1-C3 reductants over solvothermally prepared Ga2O3-Al2O3 catalysts:Effects of water vapor and hydrocarbon uptake [J]. Appl. Catal. B-Environ.,2008,84 (1-2): 289-296.
    [8]Nakatani T., Watanabe T., Takahashi M., Miyahara Y., Deguchi H., Iwamoto S., Kanai H., Inoue M. Characterization of gamma-Ga2O3-Al2O3 Prepared by Solvothermal Method and Its Performance for Methane-SCR of NO [J]. Journal of Physical Chemistry A,2009,113 (25):7021-7029.
    [9]Takahashi M., Inoue N., Nakatani T., Takeguchi T., Iwamoto S., Watanabe T., Inoue M. Selective catalytic reduction of NO with methane on gamma-Ga2O3-Al2O3 solid solutions prepared by the glycothermal method [J]. Appl. Catal. B-Environ.,2006,65 (1-2):142-149.
    [10]Takahashi M., Nakatani T., Iwamoto S., Watanabe T., Inoue M. Effect of the composition of spinel-type Ga2O3-Al2O3-ZnO catalysts on activity for the CH4-SCR of NO and optimization of catalyst composition [J]. Industrial & Engineering Chemistry Research,2006,45 (10):3678-3683.
    [11]Takahashi M., Nakatani T., Iwamoto S., Watanabe T., Inoue M. Performance of solvothermally prepared Ga2O3-Al2O3 catalysts for SCR of NO with methane [J]. Applied Catalysis B:Environmental,2007,70 (1-4):73-79.
    [12]Takahashi M., Inoue N., Takeguchi T., Iwamoto S., Inoue M., Watanabe T. Synthesis of gamma-Ga2O3-Al2O3 solid solutions by the glycothermal method [J]. Journal of the American Ceramic Society,2006,89 (7):2158-2166.
    [13]Takahashi M., Nakatani T., Iwamoto S., Watanabe T., Inoue M. Effect of modification by alkali on the gamma-Ga203-Al203 mixed oxides prepared by the solvothermal method [J]. Journal of Physics-Condensed Matter,2006,18 (24):5745-5757.
    [14]Arean C. O., Bellan A. L., Mentruit M. P., Delgado M. R., Palomino G. T. Preparation and characterization of mesoporous [gamma]-Ga2O3 [J]. Microporous and Mesoporous Materials,2000,40 (1-3):35-42.
    [15]Roy R., Hill V. G, Osborn E. F. Polymorphism of Ga2O3 and the system Ga2O3-H2O [J]. Journal of the American Chemical Society,1952,74 (3): 719-722.
    [16]Prewitt C. T., Shannon R. D., Rogers D. B., Sleight A. W. C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure [J]. Inorganic Chemistry,1969,8 (9):1985-1993.
    [17]Kasper E., Schuh A., Bauer G., Hollander B., Kibbel H. Test of Vegard's law in thin epitaxial SiGe layers [J]. Journal of Crystal Growth,1995,157 (1-4):68-72.
    [18]Lavalley J. C., Daturi M., Montouillout V., Clet G., Arean C. O., Delgado M. R., Sahibed-dine A. Unexpected similarities between the surface chemistry of cubic and hexagonal gallia polymorphs [J]. Physical Chemistry Chemical Physics, 2003,5 (6):1301-1305.
    [19]Zheng B., Hua W. M., Yue Y. H., Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide [J]. Journal of Catalysis, 2005,232(1):143-151.
    [20]Massiot D., Vosegaard T., Magneron N., Trumeau D., Montouillout V., Berthet P., Loiseau T., Bujoli B.71Ga NMR of reference GaⅣ, GaⅤ, and GaVI compounds by MAS and QPASS, extension of gallium/aluminum NMR parameter correlation [J]. Solid State Nuclear Magnetic Resonance,1999,15 (3): 159-169.
    [21]Timken H. K. C., Oldfield E. Solid-state gallium-69 and gallium-71 nuclear magnetic resonance spectroscopic studies of gallium analog zeolites and related systems [J]. Journal of the American Chemical Society,1987,109 (25): 7669-7673.
    [22]Occelli M. L., Eckert H., Wolker A., Auroux A. Crystalline galliosilicate molecular sieves with the beta structure [J]. Microporous and Mesoporous Materials,1999,30 (2-3):219-232.
    [23]Shimizu K., Takamatsu M., Nishi K., Yoshida H., Satsuma A., Tanaka T., Yoshida S., Hattori T. Alumina-supported gallium oxide catalysts for NO selective reduction:Influence of the local structure of surface gallium oxide species on the catalytic activity [J]. Journal of Physical Chemistry B,1999,103 (9):1542-1549.
    [24]Xu B. J., Zheng B., Hua W. M., Yue Y. H., Gao Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts [J]. Journal of Catalysis,2006,239 (2):470-477.
    [25]Gonzalez E. A., Jasen P. V., Juan A., Collins S. E., Baltanas M. A., Bonivardi A. L. Hydrogen adsorption on [beta]-Ga2O3(100) surface containing oxygen vacancies [J]. Surface Science,2005,575 (1-2):171-180.
    [26]Vimont A., Lavalley J. C., Sahibed-Dine A., Arean C. O., Delgado M. R., Daturi M. Infrared spectroscopic study on the surface properties of gamma-gallium oxide as compared to those of gamma-alumina [J]. Journal of Physical Chemistry B,2005,109 (19):9656-9664.
    [27]Haneda M., Joubert E., Menezo J. C., Duprez D., Barbier J., Bion N., Daturi M., Saussey J., Lavalley J. C., Hamada H. Surface characterization of alumina-supported catalysts prepared by sol-gel method. Part I. Acid-base properties [J]. Physical Chemistry Chemical Physics,2001,3 (7):1366-1370.
    [28]Montes A., Giannetto G. A new way to obtain acid or bifunctional catalysts:V. Considerations on bifunctionality of the propane aromatization reaction over [Ga,Al]-ZSM-5 catalysts [J]. Applied Catalysis A:General,2000,197 (1): 31-39.
    [29]Nakagawa K., Kajita C., Ide Y., Okamura M., Kato S., Kasuya H., Ikenaga N., Kobayashi T., Suzuki T. Promoting effect of carbon dioxide on the dehydrogenation and aromatization of ethane over gallium-loaded catalysts [J]. Catalysis Letters,2000,64 (2-4):215-221.
    [30]Nakagawa K., Kajita C., Okumura K., Ikenaga N.-o., Nishitani-Gamo M., Ando T., Kobayashi T., Suzuki T. Role of Carbon Dioxide in the Dehydrogenation of Ethane over Gallium-Loaded Catalysts [J]. Journal of Catalysis,2001,203 (1): 87-93.
    [31]Xu B. J., Li T., Zheng B., Hua W. M., Yue Y. H., Gao Z. Enhanced stability of HZSM-5 supported Ga2O3 catalyst in propane dehydrogenation by dealumination [J]. Catalysis Letters,2007,119 (3-4):283-288.
    [32]Bhasin M. M., McCain J. H., Vora B. V., Imai T., Pujado P. R. Dehydrogenation and oxydehydrogenation of paraffins to olefins [J]. Applied Catalysis A: General, 2001,221 (1-2):397-419.
    [33]Michorczyk P., Ogonowski J. Dehydrogenation of propane to propene over gallium oxide in the presence of CO2 [J]. Applied Catalysis A: General,2003, 251 (2):425-433.
    [34]Nesterenko N. S., Ponomoreva O. A., Yuschenko V. V., Ivanova I.I., Testa F., Di Renzo F., Fajula F. Dehydrogenation of ethylbenzene and isobutane over Ga-and Fe-containing mesoporous silicas [J]. Applied Catalysis A: General,2003, 254 (2):261-272.
    [35]Buckles G. J., Hutchings G. J. Conversion of Propane Using H-ZSM-5 and Ga H-ZSM-5 in the Presence of Ga-H-ZSM-5 in the Presence of Co-fed Nitric Oxide, Oxygen, and Hydrogen [J]. Journal of Catalysis,1995,151 (1):33-43.
    [36]Gnep N. S., Doyement J. Y., Guisnet M. Role of gallium species on the dehydrocyclodimerization of propane on ZSM5 catalysts [J]. Journal of Molecular Catalysis,1988,45 (3):281-284.
    [37]Gnep N. S., Doyemet J. Y., Seco A. M., Ribeiro F. R., Guisnet M. Conversion of light alkanes to aromatic hydrocarbons:II. Role of gallium species in propane transformation on GaZSM5 catalysts [J]. Applied Catalysis,1988,43 (1): 155-166.
    [38]Guisnet M., Gnep N. S., Alario F. Aromatization of short chain alkanes on zeolite catalysts [J]. Applied Catalysis A:General,1992,89 (1):1-30.
    [39]Meitzner G. D., Iglesia E., Baumgartner J. E., Huang E. S. The Chemical State of Gallium in Working Alkane Dehydrocyclodimerization Catalysts. In situ Gallium K-Edge X-Ray Absorption Spectroscopy [J]. Journal of Catalysis,1993, 140(1):209-225.
    [40]Collins S. E., Baltanas M. A., Bonivardi A. L. Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2O3 polymorphs [J]. Journal of Physical Chemistry B,2006,110 (11):5498-5507.
    [41]Horiuchi T., Chen L. Y., Osaki T., Mori T. Thermally stable alumina-gallia aerogel as a catalyst for NO reduction with C3H6 in the presence of excess oxygen [J]. Catalysis Letters,2001,72 (1-2):77-81.
    [42]Collins S. E., Baltanas M. A., Bonivardi A. L. Hydrogen chemisorption on gallium oxide polymorphs [J]. Langmuir,2005,21 (3):962-970.
    [1]Kikuchi E., Ogura M., Terasaki I., Goto Y. Selective Reduction of Nitric Oxide with Methane on Gallium and Indium Containing H-ZSM-5 Catalysts: Formation of Active Sites by Solid-State Ion Exchange [J]. Journal of Catalysis, 1996,161 (1):465-470.
    [2]Kikuchi E., Yogo K. Selective catalytic reduction of nitrogen monoxide by methane on zeolite catalysts in an oxygen-rich atmosphere [J]. Catalysis Today, 1994,22(1):73-86.
    [3]Li Y. J., Armor J. N. Selective Catalytic Reduction of NO with Methane on Gallium Catalysts [J]. Journal of Catalysis,1994,145 (1):1-9.
    [4]Tabata T., Kokitsu M., Okada O. Adsorption Properties of Oxygen and Methane on Ga-Zsm-5 - the Origin of the Selectivity of Nox Reduction Using Methane [J]. Catal. Lett.,1994,25 (3-4):393-400.
    [5]Tabata T., Kokitsu M., Okada O. Relationship between methane adsorption and selective catalytic reduction of nitrogen oxide by methane on gallium and indium ion-exchanged ZSM-5 [J]. Applied Catalysis B:Environmental,1995,6 (3):225-236.
    [6]Haneda M., Kintaichi Y., Hamada H. Promotional effect of H2O on the activity of In2O3-doped Ga2O3-Al2O3 for the selective reduction of nitrogen monoxide [J]. Catalysis Letters,1998,55 (1):47-55.
    [7]Maunula T., Kintaichi Y., Haneda M., Hamada H. Preparation and reaction mechanistic characterization of sol-gel indium/alumina catalysts developed for NOx reduction by propene in lean conditions [J]. Catalysis Letters,1999,61 (3-4):121-130.
    [8]Haneda M., Kintaichi Y., Hamada H. Activity enhancement of SnO2-doped Ga2O3-Al2O3 catalysts by coexisting H2O for the selective reduction of NO with propene [J]. Applied Catalysis B:Environmental,1999,20 (4):289-300.
    [9]Haneda M., Kintaichi Y., Hamada H. Effect of SO2 on the catalytic activity of Ga2O3-Al2O3 for the selective reduction of NO with propene in the presence of oxygen [J]. Applied Catalysis B:Environmental,2001,31 (4):251-261.
    [10]Haneda M., Kintaichi Y., Shimada H., Hamada H. Ga2O3/Al2O3 prepared by sol-gel method as a highly active metal oxide-based catalyst for NO reduction by propene in the presence of oxygen, H2O and SO2 [J]. Chemistry Letters,1998, (2):181-182.
    [11]Collins S. E., Baltanas M. A., Bonivardi A. L. Hydrogen chemisorption on gallium oxide polymorphs [J]. Langmuir,2005,21 (3):962-970.
    [12]Collins S. E., Baltanas M. A., Garcia Fierro J. L., Bonivardi A. L. Gallium-Hydrogen Bond Formation on Gallium and Gallium-Palladium Silica-Supported Catalysts [J]. Journal of Catalysis,2002,211 (1):252-264.
    [13]Gonzalez E. A., Jasen P. V., Juan A., Collins S. E., Baltanas M. A., Bonivardi A. L. Hydrogen adsorption on [beta]-Ga2O3(100) surface containing oxygen vacancies [J]. Surface Science,2005,575 (1-2):171-180.
    [14]Sowade T., Schmidt C., Schutze F. W., Berndt H., Grunert W. Relations between structure and catalytic activity of Ce-In-ZSM-5 catalysts for the selective reduction of NO by methane:I. The In-ZSM-5 system [J]. Journal of Catalysis,2003,214 (1):100-112.
    [15]Nakagawa K., Okamura M., Ikenaga N., Suzuki T., Kobayashi T. Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide [J]. Chemical Communications,1998, (9):1025-1026.
    [16]Buckles G. J., Hutchings G. J. Conversion of Propane Using H-ZSM-5 and Ga H-ZSM-5 in the Presence of Ga-H-ZSM-5 in the Presence of Co-fed Nitric Oxide, Oxygen, and Hydrogen [J]. Journal of Catalysis,1995,151 (1):33-43.
    [17]Gnep N. S., Doyement J. Y., Guisnet M. Role of gallium species on the dehydrocyclodimerization of propane on ZSM5 catalysts [J]. Journal of Molecular Catalysis,1988,45 (3):281-284.
    [18]Gnep N. S., Doyemet J. Y., Seco A. M., Ribeiro F. R., Guisnet M. Conversion of light alkanes to aromatic hydrocarbons: Ⅱ. Role of gallium species in propane transformation on GaZSM5 catalysts [J]. Applied Catalysis,1988,43 (1): 155-166.
    [19]Guisnet M., Gnep N. S., Alario F. Aromatization of short chain alkanes on zeolite catalysts [J]. Applied Catalysis A:General,1992,89 (1):1-30.
    [20]Meitzner G. D., Iglesia E., Baumgartner J. E., Huang E. S. The Chemical State of Gallium in Working Alkane Dehydrocyclodimerization Catalysts. In situ Gallium K-Edge X-Ray Absorption Spectroscopy [J]. Journal of Catalysis,1993, 140 (1):209-225.
    [21]Saito M., Watanabe S., Takahara I., Inaba M., Murata K. Dehydrogenation of propane over a silica-supported gallium oxide catalyst [J]. Catalysis Letters, 2003,89 (3-4):213-217.
    [22]Takehira K., Ohishi Y., Shishido T., Kawabata T., Takaki K., Zhang Q. H., Wang Y. Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2 [J]. Journal of Catalysis,2004,224 (2): 404-416.
    [23]Li H. Y., Yue Y. H., Miao C. X., Xie Z. K., Hua W. M., Gao Z. Dehydrogenation of ethylbenzene and propane over Ga2O3-ZrO2 catalysts in the presence of CO2 [J]. Catalysis Communications,2007,8 (9):1317-1322.
    [24]Michorczyk P., Gora-Marek K., Ogonowski J. Dehydrogenation of propane in the presence and absence of CO2 over beta-Ga2O3 supported chromium oxide catalysts [J]. Catalysis Letters,2006,109 (3-4):195-198.
    [25]Michorczyk P., Ogonowski J. Dehydrogenation of propane in the presence of carbon dioxide over oxide-based catalysts [J]. Reaction Kinetics and Catalysis Letters,2003,78(1):41-47.
    [26]Michorczyk P., Ogonowski J. Dehydrogenation of propane to propene over gallium oxide in the presence of CO2 [J]. Applied Catalysis A:General,2003, 251 (2):425-433.
    [27]Ohishi Y., Kawabata T., Shishido T., Takaki K., Zhang Q. H., Wang Y., Takehira K. Dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 catalyst [J]. Journal of Molecular Catalysis a-Chemical,2005,230 (1-2):49-58.
    [28]Nakagawa K., Kajita C., Okumura K., Ikenaga N.-o., Nishitani-Gamo M., Ando T., Kobayashi T., Suzuki T. Role of Carbon Dioxide in the Dehydrogenation of Ethane over Gallium-Loaded Catalysts [J]. Journal of Catalysis,2001,203 (1): 87-93.
    [29]Haneda M., Joubert E., Menezo J. C., Duprez D., Barbier J., Bion N., Daturi M., Saussey J., Lavalley J. C., Hamada H. Surface characterization of alumina-supported catalysts prepared by sol-gel method. Part I. Acid-base properties [J]. Physical Chemistry Chemical Physics,2001,3 (7):1366-1370.
    [30]Petre A. L., Perdigon-Melon J. A., Gervasini A., Auroux A. Acid-base properties of alumina-supported M2O3 (M=B, Ga, In) catalysts [J]. Topics in Catalysis,2002,19 (3-4):271-281.
    [31]Prewitt C. T., Shannon R. D., Rogers D. B., Sleight A. W. C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure [J]. Inorganic Chemistry,1969,8 (9):1985-1993.
    [32]Jung W.-S., Han O. H., Chae S.-A. Characterization of wurtzite indium nitride synthesized from indium oxide by In-115 MAS NMR spectroscopy [J]. Materials Letters,2007,61 (16):3413-3415.
    [33]Arean C. O., Delgado M. R., Montouillout V., Massiot D. Synthesis and characterization of spinel-type gallia-alumina solid solutions [J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie,2005,631 (11):2121-2126.
    [34]Wang J. A., Bokhimi X., Morales A., Novaro O., Lopez T., Gomez R. Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst [J]. Journal of Physical Chemistry B,1999,103 (2):299-303.
    [35]Tanabe K. Catalysis Science and Technology [M]. Berlin:Springer,1981:231.
    [36]Kung H. Formation of new acid sites in dilute oxide solid solutions:A predictive model [J]. Journal of Solid State Chemistry,1984,52 (2):191-196.
    [37]Perdigon-Melon J. A., Gervasini A., Auroux A. Study of the influence of the In2O3 loading on gamma-alumina for the development of de-NOx catalysts [J]. Journal of Catalysis,2005,234 (2):421-430.
    [38]Xu B. J., Zheng B., Hua W. M., Yue Y. H., Gao Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts [J]. Journal of Catalysis,2006,239 (2):470-477.
    [39]Zheng B., Hua W. M., Yue Y. H., Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide [J]. Journal of Catalysis, 2005,232(1):143-151.
    [40]Park P. W., Ragle C. S., Boyer C. L., Balmer M. L., Engelhard M., McCready D. InO3/Al2O3 catalysts for NOX reduction in lean condition [J]. Journal of Catalysis,2002,210 (1):97-105.
    [41]Gervasini A., Perdigon-Melon J. A., Guimon C., Auroux A. An in-depth study of supported In2O3 catalysts for the selective catalytic reduction of NOx:The influence of the oxide support [J]. Journal of Physical Chemistry B,2006,110 (1):240-249.
    [42]Lin A., Armstrong N., Kuwana T. X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides [J]. Analytical Chemistry,1977,49 (8):1228-1235.
    [43]Wang S. B., Zhu Z. H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation - A review [J]. Energy & Fuels,2004,18 (4): 1126-1139.
    [44]Wang Y., Ohishi Y., Shishido T., Zhang Q. H., Yang W., Guo Q., Wan H. L., Takehira K. Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange [J]. Journal of Catalysis,2003,220 (2):347-357.
    [45]Grasselli R. K., Stern D. L., Tsikoyiannis J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC):II. DH+SHC catalysts physically mixed (redox process mode) [J]. Applied Catalysis A:General,1999,189 (1):9-14.
    [46]Grasselli R. K., Stern D. L., Tsikoyiannis J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC):I. DH-> SHC-> DH catalysts in series (co-fed process mode) [J]. Applied Catalysis A: General,1999,189(1):1-8.
    [47]Marchesini F., Irusta S., Querini C., Miro E. Nitrate hydrogenation over Pt, In/Al2O3 and Pt, In/SiO2. Effect of aqueous media and catalyst surface properties upon the catalytic activity [J]. Catalysis Communications,2008,9 (6): 1021-1026.
    [48]Passos F., Schmal M., Vannice M. Effect of In and Sn on the Adsorption Behavior and Hydrogenolysis Activity of Pt/Al2O3 Catalysts [J]. Journal of Catalysis,1996,160(1):106-117.
    [1]Bhasin M. M., McCain J. H., Vora B. V., Imai T., Pujado P. R. Dehydrogenation and oxydehydrogenation of paraffins to olefins [J]. Applied Catalysis A: General, 2001,221 (1-2):397-419.
    [2]Wang S. B., Zhu Z. H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation - A review [J]. Energy & Fuels,2004,18 (4): 1126-1139.
    [3]Liu L., Li H., Zhang Y. Mesoporous silica-supported chromium catalyst: Characterization and excellent performance in dehydrogenation of propane to propylene with carbon dioxide [J]. Catalysis Communications,2007,8 (3): 565-570.
    [4]Ogonowski J., Skrzynska E. Activity of vanadium magnesium oxide supported catalysts in the dehydrogenation of isobutane [J]. Catalysis Letters,2006,111 (1):79-85.
    [5]Nakagawa K., Kajita C., Okumura K., Ikenaga N.-o., Nishitani-Gamo M., Ando T., Kobayashi T., Suzuki T. Role of Carbon Dioxide in the Dehydrogenation of Ethane over Gallium-Loaded Catalysts [J]. Journal of Catalysis,2001,203 (1): 87-93.
    [6]Nakagawa K., Kajita C., Ide Y., Okamura M., Kato S., Kasuya H., Ikenaga N., Kobayashi T., Suzuki T. Promoting effect of carbon dioxide on the dehydrogenation and aromatization of ethane over gallium-loaded catalysts [J]. Catalysis Letters,2000,64 (2-4):215-221.
    [7]Xu B. J., Zheng B., Hua W. M., Yue Y. H., Gao Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts [J]. Journal of Catalysis,2006,239 (2):470-477.
    [8]Maunula T., Ahola J., Hamada H. Reaction mechanism and kinetics of NOx reduction by methane on In/ZSM-5 under lean conditions [J]. Applied Catalysis B:Environmental,2006,64 (1-2):13-24.
    [9]Maunula T., Kintaichi Y., Haneda M., Hamada H. Preparation and reaction mechanistic characterization of sol-gel indium/alumina catalysts developed for NOx reduction by propene in lean conditions [J]. Catalysis Letters,1999,61 (3-4):121-130.
    [10]Ramallo-Lopez J. M., Gutierrez L. B., Bibiloni A. G., Requejo F. G., Miro E. E. Perturbed angular correlation characterization of indium species on In/H-ZSM5 in the presence of water and catalytic deactivation studies during the SCR and NOx with methane [J]. Catalysis Letters,2002,82 (1-2):131-139.
    [11]Zhou X. J., Zhang T., Xu Z. S., Lin L. W. Selective catalytic reduction of nitrogen monoxide with methane over impregnated In/HZSM-5 in the presence of excess oxygen [J]. Catalysis Letters,1996,40 (1-2):35-38.
    [12]Luo C., Li J., Zhu Y., Hao J. The mechanism of SO2 effect on NO reduction with propene over In203/Al203 catalyst [J]. Catalysis Today,2007,119 (1-4):48-51.
    [13]Requejo F. G, Ramallo-Lopez J. M., Lede E. J., Mir E. E., Pierella L. B., Anunziata O. A. In-containing H-ZSM5 zeolites with various Si/Al ratios for the NO SCR in the presence of CH4 and O2. PAC, TPAD and FTIR studies [J]. Catalysis Today,1999,54 (4):553-558.
    [14]Gervasini A., Perdigon-Melon J. A., Guimon C., Auroux A. An in-depth study of supported In2O3 catalysts for the selective catalytic reduction of NOx:The influence of the oxide support [J]. Journal of Physical Chemistry B,2006,110 (1):240-249.
    [15]Park P. W., Ragle C. S., Boyer C. L., Balmer M. L., Engelhard M., McCready D. In2O3/Al2O3 catalysts for NOX reduction in lean condition [J]. Journal of Catalysis,2002,210 (1):97-105.
    [16]Perdigon-Melon J. A., Gervasini A., Auroux A. Study of the influence of the In2O3 loading on gamma-alumina for the development of de-NOx catalysts [J]. Journal of Catalysis,2005,234 (2):421-430.
    [17]Ogura M., Ohsaki T., Kikuchi E. The effect of zeolite structures on the creation of InO+ active sites for NOxreduction with methane [J]. Microporous and Mesoporous Materials,1998,21 (4-6):533-540.
    [18]Ren L. L., Zhang T., Xu C. H., Lin L. W. The remarkable effect of In2O3 on the catalytic activity of In/HZSM-5 for the reduction of NO with CH4 [J]. Topics in Catalysis,2004,30-1 (1-4):55-57.
    [19]Grasselli R. K., Stern D. L., Tsikoyiannis J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC):II. DH+SHC catalysts physically mixed (redox process mode) [J]. Applied Catalysis A:General,1999,189 (1):9-14.
    [20]Grasselli R. K., Stern D. L., Tsikoyiannis J. G Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC):I. DH -> SHC-> DH catalysts in series (co-fed process mode) [J]. Applied Catalysis A: General,1999,189(1):1-8.
    [21]Late L., Rundereim J. I., Blekkan E. A. Selective combustion of hydrogen in the presence of hydrocarbons: 1. Pt-based catalysts [J]. Applied Catalysis A: General,2004,262 (1):53-61.
    [22]Late L., Thelin W., Blekkan E. A. Selective combustion of hydrogen in the presence of hydrocarbons:Part 2. Metal oxide based catalysts [J]. Applied Catalysis A:General,2004,262 (1):63-68.
    [23]Lin C.-H., Lee K.-C., Wan B.-Z. Development of catalyst system for selective combustion of hydrogen [J]. Applied Catalysis A: General,1997,164 (1-2): 59-67.
    [24]Tsikoyiannis J. G., Stern D. L., Grasselli R. K. Metal Oxides As Selective Hydrogen Combustion (SHC) Catalysts and Their Potential in Light Paraffin Dehydrogenation [J]. Journal of Catalysis,1999,184 (1):77-86.
    [25]Arean C. O., Delgado M. R., Montouillout V., Massiot D. Synthesis and characterization of spinel-type gallia-alumina solid solutions [J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie,2005,631 (11):2121-2126.
    [26]Lin A., Armstrong N., Kuwana T. X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides [J]. Analytical Chemistry,1977,49 (8):1228-1235.
    [27]Kataoka T., Dumesic J. A. Acidity of unsupported and silica-supported vanadia, molybdena, and titania as studied by pyridine adsorption [J]. Journal of Catalysis,1988,112(1):66-79.
    [28]Connell G., Dumesic J. A. The generation of Bronsted and Lewis acid sites on the surface of silica by addition of dopant cations [J]. Journal of Catalysis,1987, 105 (2):285-298.
    [29]Nakagawa K., Okamura M., Ikenaga N., Suzuki T., Kobayashi T. Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide [J]. Chemical Communications,1998, (9):1025-1026.
    [30]Xu B. J., Li T., Zheng B., Hua W. M., Yue Y. H., Gao Z. Enhanced stability of HZSM-5 supported Ga2O3 catalyst in propane dehydrogenation by dealumination [J]. Catalysis Letters,2007,119 (3-4):283-288.
    [31]Zheng B., Hua W. M., Yue Y. H., Gao Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide [J]. Journal of Catalysis, 2005,232(1):143-151.
    [32]余长林,葛庆杰,徐恒泳,李文钊.丙烷脱氢制丙烯研究新进展[J].化工进展,2006,25(009):977-982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700