用户名: 密码: 验证码:
介质阻挡放电降解甲基紫废水及尾气中NO_x的光谱分析及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济和社会的快速发展,环境污染问题也日益严重,各种污染物对人类的生存环境及人身健康带来严重影响,因此各国都在制定越来越严格的排放标准。目前我国印染废水处理中普遍存在废水脱色困难的问题;在柴油发动机尾气的富氧条件下NOx的净化,依旧是研究者们面临的难题。
     介质阻挡放电(DBD)等离子体作为一种富含高能活性粒子的物质,它的效率较高且无二次污染,是一种绿色环保处理技术。本论文中,作者研制了介质阻挡放电装置及配套电源,利用该装置对不同气体的放电特性及发射光谱进行了研究,并在甲基紫废水处理及柴油机尾气处理方面进行了相关研究。概括起来,在本论文的工作中,主要取得以下研究结果:
     (1)自制介质阻挡放电装置及配套的电源,搭建了稳定的介质阻挡放电实验平台。
     (2)分别对Ar、Ar+O2、He、He+O2、N2、N2+O2、O2及空气体系的放电特性及发射光谱进行了研究。结果表明,除了He气放电通常为准辉光放电外,其余气体放电均为丝状放电。在Ar及Ar+02气放电中,测到很强的N原子(寿命很短)谱线,在Ar气放电中测到很强的高反应活性的OH自由基的谱线,而在其它气体放电中未测到OH自由基的谱线,意味着Ar气放电可能更有利用价值。另外在N2、N2+02及空气放电中观察到了NO (A—X)的谱线,但在N2+02及空气放电中该谱线强度要弱很多,而且在O2气放电中未测到NO (A—X),因为氧气含量较高时NO与02、O3或O原子继续反应生成NO2而被减少,且随氧气含量的增加而迅速减少。
     (3)对甲基紫脱色处理结果表明,甲基紫溶液脱色率由高到低依次为O2>He+O2>He,且He+O2混合气和单纯02气放电下的脱色率相差不大。He气放电消耗的能量密度低,但脱色率小于50%;O2气放电处理甲基紫溶液脱色率达99.5%,但是消耗的能量密度高达32.5kJ/L; He+O2混合气放电处理甲基紫溶液体现了很好的脱色效果同时能量消耗较低,处理180s时脱色率达96%而能量消耗却只有7.7kJ/L。因此提出He+02混合气为最佳用于甲基紫溶液脱色的放电气体组合,既能取得高脱色率又能降低能耗。
     对甲基紫的降解机理分析得出,OH基和02对甲基紫的降解起着关键作用,而OH基主要通过与氧有关的反应获得,因此与活性氧的含量有关。因此认为活性氧(如O2-·、H2O2、OH、O等)是甲基紫脱色的关键粒子。
     (4)利用自制的DBD装置结合选择催化还原(SCR)装置建立了多功能的DBD协同SCR脱除NOx研究平台。分别以C2H5OH和C3H6为还原剂、以Ag/Al2O3为催化剂,研究了高NOx浓度(800ppm左右)及高空速(50000h-1)下,DBD等离子体协同SCR脱除NOx的特性及反应机理,同时考察了尾气温度对NOx脱除的影响,并重点研究了150℃低温时的NOx脱除特性,及利用]FTIR光谱分析了反应产物。
     DBD等离子体协同SCR作用在低温时取得了很好的脱除效果。C2H5OH为还原剂,在含8%H2O且温度150℃的模拟柴油机尾气中NOx脱除率高达80%,其中NO脱除率高达90%。C3H6为还原剂,尾气中不含水时NOx脱除率最高达88%,NO脱除率高达94%,但加入8%H2O后NOx脱除率降低至60%。对FTIR吸收光谱的分析进一步确认了SCR单独作用在低温时对NOx脱除无效,而DBD协同SCR却能有效脱除NOx,同时也脱除了碳氢,NOx及碳氢脱除后的最终产物主要为N2、C02和H2O。
     通过对比研究DBD和SCR分别作用及协同作用时的NOx脱除特性,提出NOx脱除机理为:放电形成时等离子体中的强氧化性粒子与碳氢作用生成的有机活性基团(主要为CH3O2)在催化剂促进下迅速将NO氧化成NO2;随着电压升高,NO2在催化剂表面与碳氢作用生成活性中间产物CxHyNzO,NO2含量越高则生成的活性中间产物越多;放电在活化气体的同时也提高了催化床的温度,从而间接提高了催化剂的活性,最终NOx在催化剂促进下被CxHyNzO脱除,同时CxHyNzO被转化为CO2和H2O而脱除。实验证明了低温时等离子体中强氧化性粒子O3、HO2等对NO的作用很弱,而被DBD活化的碳氢才是NO有效氧化的关键粒子。
With the rapid development of economy and society in the world, the environmental pollution is increasingly serious and harmful to the human living environment and health, so various countries are formulating increasingly strict emission rule. Now, in our country it is commonly difficult for the decoloration of waste water and for the removal of NOx in diesel engine exhaust gases.
     Dielectric Barrier Discharges (DBD) plasma which includes energetic electrons and active particles is effective and environmental techniques of handling. In this paper, the author developed DBD device and matched power supply source, whereby the characteristics and emission spectrums of various gases discharge were studied, and the related investigations were taken for the decoloration of waste water and the removal of NOx in diesel engine exhaust gases. In general, the achieved achievements were mainly as follows:
     (1) The DBD device and its matched power supply source was developed, and by the device the research platform of DBD was build.
     (2) The characteristics and emission spectrums of discharge in Ar, Ar+O2, He, He+02, N2, N2+O2, O2, and air were studied. Results show discharge is similar glow in He gas and filar in the others. The intense spectral line of N atom whose lifetime is short was observed in Ar and Ar+O2 discharge, and the reactive OH radical was observed in Ar discharge but not in the others, so it might be more value in application. Additionally, the spectral line of NO(A—X) was observed in N2, N2+O2, and air discharge, and the intensity of spectral line rapidly decreased with the increasing scale of O2 gas.
     (3) The results of decoloration for methyl violet show that the decoloration ratio from high to low was O2, He+02 and He, and the effect was similar in He+O2 and O2 gas discharge. For He gas discharge, consumed energy density is low, but the decoloration ratio is also lower than 50%; for O2 gas discharge, the decoloration ratio of 99.5% was achieved, but the high energy density of 32.5kJ/L was required; for He+02 discharge, the decoloration ratio of 96% was achieved, but the consumed energy density was only 7.7kJ/L. So we propose that the mixed gases of He+02 are optimal for the decoloration of methyl violet, because the high decoloration ratio can be achieved and low energy density will be cost in the system.
     By analyzing the decoloration mechanism of methyl violet, it is considered that OH radical and O2 gas play a key role in the decoloration, and OH radical is mainly got by the reactions related with O. So we consider the reactive oxygen (such as O2-·,H2O2, OH, O) as the key particles for the decoloration of methyl violet.
     (4) Using the self-developed DBD device combined with selective catalytic reduction (SCR) device, we build a research platform of DBD cooperating with SCR for NOx removal. The characteristics of NOx removal and reaction mechanisms by DBD cooperated with SCR were investigated under the conditions of high NOx concentration (800 ppm) and high space velocity (50000 h-1). Meanwhile, the effect of temperature on NOx removal was also studied, especially the NOx removal at the low temperature of 150℃was investigated and the reaction products were analyzed by FTIR spectra.
     By DBD cooperated with SCR the high NOx removal rate was achieved at low temperature. With C2H5OH as reductant, the NOx removal rate of 80% and the NO removal rate of 90% were achieved at 150℃when 8% H2O was fed into the exhaust gases. With C3H6 as reductant, the NOx removal rate of 88% and the NO removal rate of 94% were achieved at 150℃in dry gases, but the NOx removal rate decreased to 60% when 8% H2O was fed into the exhaust gases. The FTIR spectra confirm the NOx can effectively be removed by DBD cooperated with SCR, and the reaction products are mainly N2, CO2 and H2O.
     By contrast research on DBD and SCR individually and together impacting on NOx removal, the reaction mechanism of NOx removal were proposed as follows:when discharge came into being, strong oxidative particles in plasma reacted with hydrocarbons to get organic reactive particles which rapidly oxidized NO to NO2 at the acceleration of catalyst; NO2 reacted with hydrocarbons to get CxHyNzO compound over catalysts, and the more NO2 the more CxHyNzO compound were produced; discharge resulted in the activation of hydrocarbons and the rise of catalyst bed temperature, so finally the NOx was removed by reaction with CxHyNzO over catalyst, and simultaneously the hydrocarbons were removed by the generation of CO2 and H2O.Experiments show the role of O3, HO2, and so on in plasma is weak in reaction with NO, and the hydrocarbons are just the key particles for the effective oxidation of NO to NO2.
引文
参考文献
    [1]Krall N A, Trivelpiece A W. Principles of plasma physics. New York:McGraw-Hill Book Company, 1973:10~50
    [2]赵化侨.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993.40-50
    [3]Tonks L, Langmuir I. Oscillation in ionized gases. Phys. Rev.,1929,195:33~34
    [4]Mott-Smith N M, Langmuir I. The Theory of Collectors in Gaseous Discharges, Phys. Rev.,1926, 28:727-763
    [5]Rose J R工业等离子体工程,第一卷:基本原理.中文版.科学出版社,1998:12-16
    [6]Feng J L, Chen H, Yu X H. Studies on Plasma Polymerization of Hexamethyldisiloxane in the Presence of Different Carrier Gases, Journal of Applied Polymer Science,2001,80:1434~1438
    [7]Watanabe S, Shinohara M, Kodama H, et al. Amorphous carbon layer deposition on plastic film by PSII, Thin Solid Films,2002,420-421:253~258
    [8]Oehr C. Plasma surface modification of polymers for biomedical use, Nuclear Instruments and Methods in Physics Research B,2003,208:40~47
    [9]Walter K C. Nitrogen plasma source ion implantation of Aluminum. J. Vac. Sci. Tech. B,1994, 12 (2):945~950
    [10]Baba K, Hatada R. Deposition and characterization of Ti- and W-containing diamond-like carbon films by plasma source ion implantation. Surf. Coat. Tech.,2003,169:287~290
    [11]Zhang G L, Wang J L, Liu Y F, et al. Shadow effect and its revisal in grid-enhanced plasma source ion implantation method. Chin. Phys. Lett.,2004,21 (6):1114~1116
    [12]Teare D O H, Spanos C G, Ridley P, et al. Pulsed Plasma Deposition of Super-Hydrophobic Nanospheres, Chem. Mater.2002,14:4566-4571
    [13]Chen G L, Zhao W J, Chen S H, et al. Preparation of nanocones for immobilizing DNA probe by a low-temperature plasma plume, Applied Physics Letters,2006,89:121501~3
    [14]Rudolph R, Francke K -P, Miessner H. Concentration Dependence of VOC Decomposition by Dielectric Barrier Discharges, Plasma Chemistry and Plasma Processing,2002,22 (3):401~411
    [15]Kuraica M M, Obradovi B M, Manojlovi D, et al. Ozonized water generator based on coaxial dielectric-barrier-discharge in air, Vacuum 2004,73:705~708
    [16]Dors M, Mizeraczyk J. NOx removal from a flue gas in a corona discharge-catalyst hybrid system, Catalysis Today,2004,89:127~133
    [17]Odaa T, Kumada A, Tanaka K, et al. Low temperature atmospheric pressure discharge plasma processingfor volatile organic compounds, Joumal of Electrostatics 1995,35:93~101
    [18]Jani M A, Takaki K, Fujiwara T. Low-voltage operation of a plasma reactor for exhaust gas treatment-by dielectric barrier discharge, Review of Scientific Instruments,1998,69:1847~1849
    [19]Kwak J H, Szanyi J, Peden C H F. Non-thermal plasma-assisted NOx reduction over alkali and alkaline earth ion exchanged Y, FAU zeolites, Catalysis Today,2004,89:135~141
    [20]Chen G L, Chen S H, Zhou M Y, et al. The preliminary discharging characterization of a novel APGD plume and its application in organic contaminant degradation, Plasma Sources Sci. Technol., 2006,15:603-608
    [21]Zhang R B, Wu Y, Li G F. Enhancement of the plasma chemistry process in a three-phase discharge reactor, Plasma Sources Sci. Technol.,2005 14:308~313
    [22]Orlandini I, Riedel U. Oxidation of propene and the formation of methyl nitrate in non-thermal plasma discharges, Catalysis Today,2004,89:83~88.
    [23]Buss L. Die electodenlosse entladung nach messung mit deam kathodenoszillograpen, Arch elektrotechnol,1932,26:261~265
    [24]Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing. New York:Wiley,1994:40-50.
    [25]Fauchais P, Vardelle A, Dussoubs B. Quo vadis thermal spraying, J. Therm. Spray Technol.,2001, 10 (1):44~66
    [26]Hemawan K W, Romel C L, Zuo S, et al. Microwave plasma-assisted premixed flame combustion, Applied Physics Letters,2006,89:141501-3
    [27]闫颖.脉冲等离子体中的N2光谱实验研究:[硕士学位论文].大连:大连理工大学,2004.
    [28]Moon S Y, Choe W, Kang B K. A uniform glow discharge plasma source at atmospheric pressure, Applied Physics Letters,2004,84 (2):188~190
    [29]Wang S, Gathen V S, Dobele H F. Discharge comparison of nonequilibrium atmospheric pressure Ar/02 and He/O2 plasma jets, Applied Physics Letters,2003,83 (16):3272~3274
    [30]Park J, Henins I, Herrmann H W, et al. Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source, J. Appl. Phys,2001,89:15~19
    [31]Park J, Henins I, Herrmann H W, et al. An atmospheric pressure plasma source, Appl. Phys. Lett. 2000,76:288~290
    [32]Jeong J Y, Park J, Henins I, et al. Reaction Chemistry in the Afterglow of an Oxygen-Helium, Atmospheric-Pressure Plasma, J. Phys. Chem. A,2000,104 (34):8027~8032
    [33]Park J, Henins I, Herrmann H W, et al. Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source, J. Appl. Phys.,2001,89:20~28
    [34]PVA-TEPLA [on line]. Available on:
    [35]SURFX Technologies [on line]. Available on
    [36]Yokoyama T, Kogoma M, Moriwaki T, et al. The mechanism of the stabilisation of glow plasma at atmospheric pressure, J. Phys. D:Appl. Phys.1990,23:1125~1128
    [37]Goossens O, Dekempeneer E, Vangeneugden D, et al. Application of atmospheric pressure dielectric barrier discharge in deposition, cleaning and activation, Surf. Coat. Technol.2001,142~144: 474~481
    [38]Massines f, Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure, J. Phys. D:Appl. Phys.,1998,31:3411 ~ 3420
    [39]Simor M, Rahel'J, Vojtek P, Cernak M. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, Applied Physics Letters,2002,81 (15):2716~2718
    [40]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996:217-222
    [41]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996:323-326
    [42]Braun D, Kiichler U, Pietsch G. Microdischarges in air-fed ozonizers, J. phys. D:Appl. Phys. 1991,24:564~572
    [43]Braun D, Gibalov V, Pietsch G, Two-dimensional modeling of the dielectric barrier discharge in air, Plasma Sources Sci. Technol.,1992,1:166~172
    [44]Dong L F, Mao Z G, Yin Z Q, et al. Generation of high-power-density atmospheric pressure plasma with liquid electrodes, Applied Physics Letters,2004,84 (25):5142~5143
    [45]Tanaka M, Yagi S, Tabata N. Observation of silent discharge in air, oxygen and nitrogen by super high sensitivity camera, Trans. IEE Jpn. A,1982,102:533~540
    [46]Falkenstein Z, Coogan J J. Micro'discharge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. J. Phys. D:Appl. Phys.,1997,30:817~825
    [47]Dcrimal J, Gibalov V I, Samoilovich V G. The magnitude of the transferred charge in the silent discharge in oxygen, Czech. J. Phys.,1987, B37:1248~1255
    [48]Steinle G, Neundorf D, Hiller W, et al. Two-dimensional simulation of filaments in barrier discharges. J. Phys. D:Appl. Phys,1999,32:1350~1356
    [49]Xu X P, Kushner M J. Multiple microdischarge dynamics in dielectric Barrier discharges, J. Appl. Phys,1998,83:4153~4160
    [50]Li J, Dhali S K. Simulation of microdischarges in a dieletric barrier discharge, J. Appl. Phys. 1997,82:4205-4210
    [51]Boeuf J P, Pitchford L C. Calculated characteristics of an ac plasma Display panel cell, IEEE Trans. Pl asma Sci.1996,24:95~96
    [52]Gentile A C, Kushner M J. Mi crostreamer dynamics during plasma Remediation of NO using atmospheric pressure dielectric barrierd ischarges, J. Appl. Phys.,1996,79:3877~3885
    [53]Gentile A C, Kushner M J. Reaction chemistry and optimization of plasma remediation of NO from gas streams, "J. Appl. Phys.,1995,78:2074~2085
    [54]Meunier J, Belenguer P, Boeuf J P. Numerical model of an ac plasma Display panel cell in neon-xenon mixtures, J. Appl. Phys.,1995,78:731~745
    [55]Braun D, Gibalov V, Pietsch G, Two-dimensional modeling of the dielectric barrier discharge in air, Plasma Sources Sci. Technol.,1992,1:166~172
    [56]Braun D, Kiichler U, Pietsch G. Microdischarges in air-fed ozonizers, J. phys. D:Appl. Phys. 1991,24:564~572
    [57]Eliasson B, Egli W, Kogelschatz U. Modeling of dielectric barrier discharge chemistry, Pure Appl. Chem,1994,66:1275-1286
    [58]Eliasson B, Kogelschatz U. Modeling and applications of silent discharge plasmas, IEEE Trans. Pl asma Sci.,1991,19:309~322
    [59]Kogoma M, Okazaki S. Raising of ozone formation eficiency in a homogeneous glow discharge plasma at atmospheric pressure, J. Phys. D:Appl. Phys.,1994,27:1985~1987
    [60]Okazaki S, Kogoma M, Uehara M, et al. Appearance of a st able glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source, J. Phys. D:Appl. Phys., 1993,26:.889-892
    [61]Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controled by a dielectric barrier, J. Appl. Phys.,1998,83:2950~ 2957
    [62]Massines F, Messaoudi R, Mayoux C. Comparison between air filamentary and helium glow dielectric barrier discharges for the polypropylene surface treatment, Plasmas Polymers,1998,3:43~ 59
    [63]Massines F, Gouda G. A comparison of polropylen-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure, J. Phys. D:Appl. Phys.,1998,31: 3411-3420
    [64]Herardi N G, Gouda G, Gat E, et al. Transition from glow silent discharge to micro-discharges in nitrogen gas, Plasma Sources Sci. Technol.2000,9:340~346
    [65]Roth J R. Industrial Plasma Engineering. Bristol, U. K.:Inst. Phys,2001,2:58
    [66]Montie T C, Wintenberg K K, Roth J R. An overview of research using the one atmosphere uniform glow discharge plasma (PAUGDP) for sterilization of surfaces and materials, IEEE Tran. on Plasma Science,2000,28 (1):41~50
    [67]Wintenberg K K, Hodge A, Montie T C, et al. Use of a one atmosphere uniform glow discharge plasma (OAUGDP) to kill a broad spectrum of mcroorganisms, J. Vac. Sci. Technol.,1999,17:1539~ 1544
    [68]Wintenberg K K, Sherman D M, Tsai P P Y, et al. Air filter sterilization using a one atmosphere uniform glow discharge plasma, IEEE Trans. Plasma Sci.,2000,28:64~71
    [69]Laroussi M. Sterilization of contaminated mater with an atmospheric pressure plasma, IEEE Trans. Plasma Sci.,1996,24:1188~1191
    [70]Jin Y, Ren C S, Xiu Z L, et al. Comparison of yeast inactivation treated in He, Air and N2 DBD plasma, PLASMA SCIENCE & TECHNOLOGY,2006,8 (6):720~723
    [71]Xu L, Liu P, Zhan R J, et al. Experimental study and sterilizing application of atmospheric pressure plasmas, THIN SOLID FILMS,2006,506:400~403
    [72]Vangeneugden D, Paulussen S, Goossens O, et al. Aerosol-assisted plasma deposition of barrier coatings using organic-inorganic sol-gel precursor systems, CHEMICAL VAPOR DEPOSITION 2005, 11 (11~12):491~496
    [73]Tepper J, Lindmayer M, Salge J. Pulsed uniform barrier discharges at Atmospheric pressure, in: Proc.6th Int. Symp. High Pressure, Low Temperature Plasma Chemistry, Cork, Ireland:1998: 123~126
    [74]Tepper J, Lindmayer M. Investigations on two diferent kinds of homogeneous barrier discharges at atmospheric pressure. in:Proc.7th Int. Symp. High Pressure, Low Temperature Plasma Chemistry, Greifswald, Germany:2000,1:38~43
    [75]Segur P, Massines F. The role of numerical modeling to understand the behavior and to predict the existence of an atmospheric pressure glow discharge controlled by a dielectric barrier. In: Proc.13 th Ind. Conf. Gas Discharges and Their Applications, Glasgow, U. K.,2000,1:15~ 24
    [76]Levater J I, Lin S C, Necessary conditions for the homogeneous formation of pulsed avalanche discharge sathigh pressures. J. Appl. Phys.1980,51:210~222
    [77]Brenning N, Axnas I, Nilsson J O, et al. High-pressure pulsed avalanche discharges:Formulas for required preionization density and rate of homogeneity. IEEE Trans. Plasma Sci.1997,25: 83-88
    [78]Guo Y B, Hong F C-N. Radio-frequency microdisarge arrays for large-area cold atmospheric plasma generation. Applied Phyics Letters.2003,82 (3):337~339
    [79]Chen Q, Zhang Y F, Han E L, et al. Atmospheric pressure DBD gun and its application in ink printability. Plasma Sources Sci. Technol,2005,14:670~675
    [80]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996:3-4
    [81]徐家鸾,金尚宪.等离子体物理学.北京:原子能出版社,1981:41~50
    [82]徐家鸾,金尚宪.等离子体物理学.北京:原子能出版社,1981:50-54
    [83]Torr D G. Neutral and Ion Composition of the Thermosphere. Review of Geophysics and Space Physics, 1983,21:245-262
    [84]McEwan M J, Phillips L F. Chemistry of the Atmosphere. London:Edward Arnold,1975:92~97
    [85]唐雄民.介质阻挡放电电路供电电源的研究:[硕士学位论文].长沙:湖南大学电气与信息工程学院,2004
    [86]戴建国.综述:无声放电臭氧发生器的研究进展.电子器件,1997,20(3):40-45
    [87]姚奎之.高漏抗变压器设计探讨.变压器,1999,36(6):13~15
    [88]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996:309-322
    [89]刘胜利.现代高频开关电源实用技术.北京:电子工业出版社,2001:491~495
    [90]冯欣荣.多功能微弧氧化电源的设计:[硕士学位论文].长春:吉林大学,2004
    [91]赵文智,于艳红,陈治,等.PWM控制芯片SG3524的特殊应用研究.中国民航学院学报,2002:7(20)19-20
    [92]Workman J M, Brown P G, Miller D C, et al. Spectroscopic temperature determinations for a microwave induced Helium plasma formed in a laminar flow torch. Applied Spectroscopy.1986,40 (6): 857-863
    [93]Brown P G, Workman J M, Haas D L, et al. Spectroscopic temperature of a moderate-power Argon microwave-induced plasma. Appl Spectros.1986,40 (4):477~483
    [94]Okazaki S, Kogoma M, Uehara M, et al. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. J. Phys. D:Appl. Phys.1993,26: 889~892
    [95]肖重发.大气压下介质阻挡放电的发射光谱诊断:[硕士学位论文].大连:大连理工大学,2003
    [96]高航,徐宏勇,刘勇弟.白腐菌附着式生物膜反应器处理垃圾渗沥液技术研究.环境科学学报,2004,24(2):309-314
    [97]王宗平,陶涛,金儒霖.垃圾填埋场渗沥液处理研究进展.环境科学进展,1999,7(3):32~39
    [98]金鹏康,王晓昌,王洪波,等.水中腐殖酸的臭氧特性研究.西安建筑科技大学学报,2000,32(4)334-337
    [99]高甲友.超声技术降解水溶液中甲基紫.水处理技术,2003,29(6):352-353
    [100]全志英,隋儒楠,陈军,等.反渗透法处理城市生活垃圾渗沥液探讨.环境科学与管理,2006,31(2)104~105
    [101]徐德志,相波,邵建颖,等.膜技术在工业废水处理中的应用研究进展.工业水处理,2006,26(4):1-4
    [102]薛建军,何娉婷,狄挺.膜技术在处理造纸黑液污染中的应用.膜科学与技术,2005,25(8):74-78
    [103]许振良,徐惠敏.翟晓东.胶束强化超滤处理含镉和铅离子废水的研究.膜科学与技术,2002,22(3):15-20
    [104]Sano N, Kawashima T, Fujikawa J, et al. Decomposition of organic compounds in water by direct contact of gas corona discharge:Influence of discharge conditions. lnd. Eng. Chem. Res.,2002, 41:5906~5911
    [105]Sano N, Yamamoto D, Kanki T. Decomposition of phenol in water by a cylindrical watted-wall reater using direct contact of gas corona discharge. lnd. Eng. Chem. Res.,2003,42:5423-5428
    [106]Grymonpre D R, Finney W C, Locke B R, et al. Aqueous-phase pulsed streamer corona reator using suspended activated carbon particles for phenol oxidation:model-data comparison. Chemical Engineering Science,1999,54:3095~310
    [107]Sugiarto A T, Ohshima T, Sato M. Advanced oxida tion processes using pulsed streamer corona discharge in water. Thin solid films,2002,407:174~178
    [108]Wen Y Z, Liu H J, Liu W P, et al. Degradation of organic contaminants in water by pulsed corona discharge. Plasma chemistry and plasma processing,2005,5 (2):137~146
    [109]周爱姣,陶涛.高压脉冲放电等离子体处理垃圾渗滤液.武汉城市建设学院学报,2001,18(3-4):44-47
    [110]叶齐政,万辉,雷燕,等.放电等离子体水处理技术中的若干问题.高电压技术,2003,29(4):32-35
    [111]朱承驻,董文博,潘循皙,等.等离子体降解水相中有机污染物的机理研究.环境科学学报,2002,22:428-433
    [112]朱承驻,董文博,侯惠奇,等.等离子体技术降解茜素红水溶液的机理研究.上海环境科学,2003,22:760-764
    [113]陈银生,张新胜,戴迎春,等.脉冲电晕放电等离子体降解苯酚废水的研究.化学反应工程与工艺,2002,18(4):353~357
    [114]沈拥军,储金宇.高压脉冲电晕放电等离子体降解水中苯酚.水处理技术,2005,31(3):53-55
    [115]莫玉琴,蒲陆梅,粱慧光,等.接触辉光放电等离子体降解水体中的邻氯苯酚.甘肃农业大学学报,2005,40(1):97~99
    [116]江白茹,张瑜.脉冲放电等离子体处理焦化废水技术研究.工业安全与环保,2005,31(1):16-19
    [117]李胜利,李劲,王泽文,等.脉冲电晕放电对印染废水脱色效果的实验研究.环境科学,1996,17(1)13-15
    [118]夏庆余,林智虹,郑曦,等.高铁酸盐对偶氮类染料的降解脱色研究.福建师范大学学报(自然科学版)2004,20(3):13~1
    [119]马东平,盖轲,赵芸芳.活性炭存在下辉光放电等离子体降解甲基紫.陇东学院学报,2008,19(5)20-23
    [120]陈光良.大气压DBD等离子体在几个方面的应用研究:[博士学位论文].北京:中国科学院研究生院,2006
    [121]詹咏,席智新,范海雁.碳氢化合物对大气环境的影响及控制研究.上海环境科学,2008,27(2):65-67
    [122]关强,姚佳岩.汽车尾气中NOx选择催化还原技术的研究.交通标准化,2007, (11):182-185
    [123]吴国正,马丽萍,贺克雕.汽车尾气的污染与防治.广东化工,2007,34(5):67-68
    [124]石玉光,杨亚平,褚航.汽车尾气净化催化剂的研究与发展.江苏冶金,2007,35(2):13-16
    [125]刘圣华,肖福明,周龙保,等.低温等离子技术在柴油机颗粒排放控制中的应用.内燃机学报,2001,19(4):301-304
    [126]Broer S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalyst. Applied Catalysis B:Environmental,2000,28:101~111
    [127]He H, Yu Y B. Selective catalytic reduction of NO, over Ag/Al2O3 catalyst:from reaction mechanism to diesel engine test. Catalysis Today,2005,100:37~47
    [128]赵如金,储金宇,王瑞静,等.低温等离子体催化处理汽车尾气.高电压技术,2007,33(2):174~177
    [129]扬冬霞,贺小昆,黄荣光,等.三效催化剂匹配技术试验.高电压技术,2001,22(3):39~43
    [130]高玲,尚福亮,杨海涛,等.汽车尾气净化三效催化剂的合成与性能.无机盐工业,2007,39(2):30-32
    [131]谭镜明等.汽车尾气三效催化剂简介.广州环境科学,2007,22(1):20-21
    [132]江冰.三元催化反应器的特性及应用.科技情报开发与经济,2002,12(2):159-160
    [133]邵宇,李国祥,艾萍.汽车尾气污染治理技术新进展.云南化工,2005,32(6):68~70
    [134]石传龙.现代汽车三元催化转化器的匹配.科技信息(科学教研),2008, (17):154-155
    [135]Miessner H, Francke K P, Rudolph R, et al. NO, removal in excess oxygen by plasma-enhanced selective catalytic reduction. Catalysis Today,2002,75:325~330
    [136]He H, Zhang X L, Wu Q, et al. Review of Ag/Al2O3-Reductant System in the Selective Catalytic Reduction of NO,. Catal. Surv. Asia,2008,12:38~55
    [137]He H, Zhang C B, Yu Y B. A comparative study of Ag/Al2O3 and Cu/Al2O3 catalysts for the selective catalytic reduction of NO by C3H6 Catalysis Today,2004,90:191-197
    [138]Bethke K A, Li C, Kung M C, et al. The role of NO2 in the reduction of NO by hydrocarbon over Cu-Zr02 and Cu-ZSM-5. catalysts. Catalysis Letters,1995,31:287~299
    [139]Alzueta M U, Hernaandez J M. Ethanol Oxidation and Its Interaction with Nitric Oxide. Energy & Fuels,2002,12:166-171
    [140]Yukimura K, Kawamura K, Kambara S, et al. Correlation of Energy Efficiency of NO Removal by Intermittent DBD Radical Injection Method. IEEE Transactions on Plasma Science,2005,33 (2) 763-770
    [141]Mok Y S, Lee H J, Dors M, et al. Improvement in selective catalytic reduction of nitrogen oxides by using dielectric barrier discharge. Chemical Engineering Journal,2005,110:79~85
    [142]Kwak J H, Peden C H F, Szanyi J. Non-thermal Plasma-assisted NO, Reduction over Na-Y Zeolites: The Promotional Effect of Acid Sites. Catalysis Letters,2006,109 (1~2):1~6
    [143]Chae J 0. Non-thermal plasma for diesel exhaust treatment. J. Electrostatics,2003,57:251
    [144]Penetrante B M, Brusasco R M, Merritt B T, et al. Vogtlin, Feasibility of plasma aftertreatment for simultaneous control of NOx and particulates, SAE paper 1999-01-3637,1999
    [145]Penetrante B M, Brusasco R M, Merritt B T, et al. Sulfur tolerance of selective partial oxidation of NO to NO2 in a plasma, SAE paper 1999-01-3687,1999
    [146]马利,吕保和,蔡忆昔,等.脉冲放电等离子体净化汽车尾气中NOx的影响因素.车用发动机,2005(1)35-40
    [147]刘勇,何湘宁,马飞.介质阻挡放电和大气压辉光放电的分析和仿真.高电压技术,2005,31(6):55-58
    [148]Aritoshi K, Fujiwara M, Ishida M. Decline of NOx Reducing Removal Ability with the Effect of CO2 on NOx Treatment Using Streamer Discharge. Jpn. J. Appl. Phys.,2002,41 (12):7522~7528
    [149]Baeva M, Pott A, Uhlenbusch J. Modelling of NOx removal by a pulsed microwave discharge. Plasma Source Sci. Technol.,2002, 11:135~141
    [150]Xia J F, Gao X X, Kong J Y, By-Products NOx Control and Performance Improvement of a Packed-Bed Nonthermal Plasma Reactor. Plasma Chemistry and Plasma Processing,2000,20 (2):225~233
    [151]Moon J D, Lee G T, Geum S T. Discharge and NOx removal characteristics of nonthermal plasma reactor with a heated corona wire. J. Electrostatics,2000,50:1~15
    [152]Tsai C H, Yang H H, Jou C J G, et al. Reducing nitric oxide into nitrogen via a radio-frequency discharge. Journal of Hazardous Materials,2007,143:409-414
    [153]Itoh Y, Ueda M, Shinjoh H, et al. NOx reduction behavior on alumina with discharging nonthermal plasma in simulated oxidizing exhaust gas. J. Chem. Technol. Biotechnol,2006,81:544-552
    [154]Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes:gas discharge initiation and plasma activation of catalytic processes. Catalysis Today,2004,89:5~14
    [155]Miessner H, Francke K P, Rudolph R. Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen. Applied Catalysis B:Environmental,2002,36:53~62
    [156]Niu J H, Yang X F, Zhu A M, et al. Plasma-assisted selective catalytic reduction of NOx by C2H2 over Co-HZSM-5 catalyst. Catalysis Communications,2006,7:297~301
    [157]Nishida M, Yukimura K, Kambara S, et al. NOx Removal Using Ammonia Radicals Prepared by Intermittent Dielectric Barrier Discharge at Atmospheric Pressure. Jpn. J. Appl. Phys.,2001,40 (2) 1114~ 1117
    [158]Mok Y S, Kang H C, Lee H W, et al. Effect of Plasma Discharge on Selective Catalytic Reduction of Nitrogen Oxides. HWAHAK KONGHAK,2003,41 (2):256-263
    [159]Li J H, Ke R, Li W, et al. Mechanism of selective catalytic reduction of NO over Ag/Al2O3 with the aid of non-thermal plasma. Catalysis Today,2008,139:49-58
    [160]Marques R, Costa S D, Costa P D. Plasma-assisted catalytic oxidation of methane on the influence of plasma energy deposition and feed composition. Applied Catalysis B:Environmental,2008, 82:50-57
    [161]Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Processing Technology,2006,87:591~597
    [162]Wang X Q, Chen W, Guo Q P, et al. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH. J. Appl. Phys.,2009,106 (1): 013309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700