用户名: 密码: 验证码:
木材结构分级多孔氧化物制备、表征及其功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分级多孔材料在分离提纯、选择性吸附、催化剂装载、光电器件、及传感器研制等多个领域具有重要的研究和应用价值。为了获得多孔结构,材料工作者设计出了多种人工造孔的方法,这些方法一般都需要利用特定的设备,工艺比较复杂,合成的材料孔径分布单一,因而所实现的功能也较单一。遗态转化工艺是一种加工过程简单却能实现精细分级多孔材料制备的方法。自然界的生物结构通过亿万年的进化及优胜劣汰的自然法则,已经形成了高度精细的分级多孔结构与复杂功能的完美统一体,为遗态转化工艺准备了大量结构模板。本研究以木材为模板,遗传其形态和结构,合成制备木材结构分级多孔Fe_2O_3、ZnO和NiO材料。本文通过对制备机理的研究、优化了遗态转化工艺,成功制备了具有不同木材精细结构的分级多孔氧化物,研究了氧化物的多尺度孔结构,探索了分级多孔氧化物的光学及气敏功能特性,并着重研究了功能特性与木材分级多孔结构的关系。主要研究结果如下:
     首先,采用典型针叶材和阔叶材这两大类天然木材为模板,通过遗态转化工艺,制备得到了具有不同木材精细结构的分级多孔Fe_2O_3、ZnO和NiO,实现了对木材微观孔结构从微米到纳米尺度的复制。详细研究了遗态转化工艺的各个过程及制备机理,并优化了各项工艺参数。木材不仅为氧化物提供了分级多孔的结构模板,而且具有抑制氧化物晶粒生长的作用,使分级多孔氧化物的晶粒尺寸远小于相同温度焙烧常规氧化物。
     在成功制备分级多孔氧化物的基础上,利用压汞仪-电镜-氮吸附联用的分析方法,对分级多孔氧化物多尺度的孔结构进行了研究,并利用分形的概念,通过计算压汞仪曲线获得了分级多孔结构的分形维数,用以研究多孔结构的网络连通性。分级多孔氧化物通过复制木材径向细胞、纹孔和木材横向细胞等,获得了20~100μm和0.1~1μm的分级大孔分布。遗态转化工艺参数对氧化物孔结构产生显著影响:首先,木材种类决定了氧化物大孔结构的基本分布特征,并且各种600oC焙烧分级多孔氧化物都形成了10~50nm左右的介孔分布;其次,使用不同的金属前驱体溶液浸渍,可以获得具有不同孔壁形貌的氧化物;最后,浸渍率和焙烧温度的提高均会改变孔壁形貌、增大孔壁厚度,并大幅度减少介孔含量。通过分形研究发现,600oC焙烧杉木结构ZnO具有最高的分形维数,并且孔隙率最高,因而具有最佳的网络连通性。
     对氧化物的光学性能研究发现,分级多孔氧化物的紫外-红外光吸收及紫外发光性能均优于常规氧化物。由于分级多孔结构的各尺度孔对各波长光波的驻波共振消耗作用,使分级多孔氧化物具有比常规氧化物更强的紫外-红外光吸收性能:600°C焙烧杉木结构氧化物的紫外光吸收性能分别比常规氧化物提高了5.6%~20%;600°C焙烧杉木结构氧化物的红外光吸收性能分别是常规氧化物的2.0~3.9倍。由于具有较强的紫外激发波长吸收能力、较小的晶粒度以及较好的表面结晶质量等,分级多孔氧化物的光致紫外发光强度比常规氧化物提高了2.4~2.7倍。
     杉木结构ZnO的阴极射线发光光谱同时存在390nm处的紫外波段和480~490nm左右的蓝光可见波段,并且通过调节焙烧温度,可以控制紫外-蓝光发光强度比例,获得紫外、蓝光单色发光或紫外-蓝光双色发光ZnO。随着ZnO焙烧温度的升高,一方面,ZnO晶粒尺寸增大并且表面结晶质量变差,因此阴极射线紫外发光强度明显减弱;另一方面,ZnO的氧空位和锌空位增多、孔体积大大减少,提高了缺陷跃迁的几率,因此阴极射线蓝光发光强度明显增强。
     对氧化物的气敏性能研究发现,分级多孔Fe_2O_3具有优于常规Fe_2O_3的气敏性能,并且由于强烈的氧吸附能力使分级多孔α- Fe_2O_3的多子由电子变为空穴,表面产生反型层,表现为p型半导体,不同于常规α- Fe_2O_3的n型半导体。
     分级多孔ZnO对H2S气体具有非常优异的气体选择性,在332oC的元件工作温度下,600oC焙烧杉木结构ZnO对H2S的敏感度高达200,对H2S的选择性系数达到8.5~198.0,H2S的响应和恢复时间分别仅为4s和12s。而常规ZnO对H2S的敏感度最高只有35左右,响应和恢复时间也更长(6s和15s)。
Hierarchical porous materials have displayed important researching and application values at the fields of separation and purification, selective adsorption, optical function, and sensor design etc. Some preparation methods have been designed to fabricate porous materials. But these traditional methods have to use specific equipments and complicated techniques, and obtained porous materials have single pore size distributions with single functions. The morph-genetic transformation technology is a simple processing technology to fabricate refined hierarchical porous materials using organisms as template. The organisms in nature are the perfect unities of highly delicate structures and effectively complex functions through millions of years of evolution and natural survival law, which prepare plentiful structural templates for morph-genetic hierarchical porous materials. In the present work, wood was used as template to fabricate hierarchical porous Fe_2O_3, ZnO and NiO to inherit wood’s morphology and structure. The synthetic mechanism was studied to optimize the parameters of morph-genetic technology, and the hierarchical porous oxides with wood structure were fabricated successfully. The porous structures in multi-scales, the optical properties and the gas sensing properties of hierarchical porous oxides were researched in detail. The contents and results are summarized as follows:
     1. The hierarchical porous Fe_2O_3, NiO, and ZnO have been synthesized successfully using wood templates to retain the wood’s porous structures fromμm scale to nm scale. The parameters of morph-genetic technology have been optimized on the basis of synthetic mechanism research. Wood template not only provided the structural template for oxides, but also restrained the grain growth of oxides to cause much smaller grains of hierarchical porous oxides than ordinary oxides.
     2. The combination of mercury intrusion / electron microscopy / nitrogen adsorption measurement has been used in the present work to characterize hierarchical porous structures in multi-scales. The fractal dimensions of oxides were calculated from mercury intrusion data to research the network connectivity of porous structures. Oxides obtained hierarchical macroporous structures with pore size distributions of 20~100μm and 0.1~1μm through duplicating wood’s radial cells, pits and cell walls etc. It’s proved that the parameters of morph-genetic technology have obvious influences on porous structures of oxides. Firstly, wood template type decided the basic characteristics of oxides’structures. But all of hierarchical porous oxides calcined at 600oC have mesopores distributed at 10~50nm. Secondly, oxides with different morphologies of pore walls can be obtained through infiltrating different precursor solutions. Thirdly, increases of infiltration rate and calcination temperature could change the morphologies of pore walls, increase pore wall thickness and decrease the quantities of mesopores. Fractal research discovered that Fir-templated ZnO calcined at 600oC had both the highest fractal dimension and porosity to prove its best network connectivity.
     3. Hierarchical porous oxides have much better UV-IR absorption and luminescence abilities than ordinary oxides. Due to the standing wave resonance absorption ability of pores in various scales, hierarchical porous oxides have much better UV-IR absorption properties. UV absorption abilities of Fir-templated oxides calcined at 600oC have been improved about 5.6%~20% compared with ordinary oxides. IR absorption abilities of Fir-templated oxides calcined at 600oC were 2.0~3.9 times higher than ordinary oxides. Photoluminescence abilities of hierarchical porous oxides were 2.4~2.7 times higher than ordinary oxides due to higher UV excitation wave absorption ability, smaller grains and better surface crystal quality.
     4. Hierarchical porous ZnO measured with cathodoluminescence was detected both UV emission at 390nm and blue visible emission at 480~490nm. Both emissions strongly depended on the calcination temperature of ZnO. On one hand, with the increase of calcination temperature, larger grains and worse crystal quality of ZnO decreased UV emission intensity. On the other hand, with the increase of calcination temperature, more defects including oxygen vacancies and zinc vacancies and smaller pore volume increased the defect transition probability and enhanced the blue emission intensity as the result.
     5. Hierarchical porous Fe_2O_3 has better gas sensing ability than ordinary Fe_2O_3. Strong oxygen absorption ability made hierarchical porous Fe_2O_3 produce surface inversion layer and display p-type semiconductor, different from n-type of ordinaryα-Fe_2O_3. Moreover, the higher free carrier concentration of hierarchical porous p-type Fe_2O_3 led to better gas sensing properties than ordinary n-type Fe_2O_3.
     6. Hierarchical porous ZnO showed excellent gas selectivity to H2S. At working temperature of 332oC, Fir-templated ZnO calcined at 600oC has high H2S sensitivity of about 200, high selectivity coefficient of H2S over other gases of 8.5~198.0, and short response and recovery time of 4s and 12s. In contrast, ordinary ZnO has H2S sensitivity of only 35 with longer response and recovery time (6s and 15s).
引文
[1] S. Weiner and W. Traub, Macromolecules in mollusc shells and their functions in biomineralization, Philos. Trans. Roy. Soc. London 1984, b304: 425–434.
    [2] S. Kamat, X. Su, R. Ballarini, A.H. Heuer, Structural basis for the fracture toughness of the shell of the conch Strombus gigas, Nature 2000, 405(6790): 1036-1040.
    [3] R.A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J.R. Cournoyer, E. Olson, Morpho butterfly wing scales demonstrate highly selective vapour response, Nature Photonics 2007, 1: 123-128.
    [4] P. Vukusic, J.R. Sambles, C.R. Lawrence, Structural colour: Colour mixing in wing scales of a butterfly, Nature 2000, 404: 457-457.
    [5] A.R. Parker, R.C. McPhedran, D.R. McKenzie, et al. Photonic engineering-Aphrodite's iridescence, Nature 2001, 409: 36~37.
    [6] M. Srinivasarao, Nano-optics in the biological world: Beetles, butterflies, birds and moths, Chem. Rev. 1999, 99: 1935-1961.
    [7]A. Argyros, S. Manos, M.C.J. Large, D.R. McKenzie, G.C. Cox and D.M. Dwarte, Electron tomography and computer visualisation of a 3-dimensional "photonic" crystal in a butterfly wing-scale, Micron 2002, 33: 483-487.
    [8] M.E. Calvo, S. Colodrero, T.C. Rojas, J.A. Anta, M. Ocana, H. Miguez, Photoconducting Bragg Mirrors based on TiO2 Nanoparticle Multilayers, Adv. Func.Mater. 2008, 18: 2708-2715.
    [9] Z. Wu, D. Lee, M.F. Rubner, R.E. Cohen, Structural Color in Porous, Superhydrophilic, and Self-Cleaning SiO2/TiO2 Bragg Stacks, Small 2007, 8: 1445-1451.
    [10] K.H. Jeong, J. Kim, and L.P. Lee, Biologically Inspired Artificial Compound Eyes, Science 2006, 312: 557-561.
    [11] J.Y. Kim, K.H. Jeong, L.P. Lee, Artificial ommatidia by self-aligned microlenses and waveguides, Opt. Lett. 2005, 30: 5-7.
    [12] S.Jeffrey, Design and analysis of apposition compound eye optical sensors, Opt. Eng. 1995, 34(1): 222-235.
    [13] F. Noll, M. Sumper, and N. Hampp, Nanostructure of Diatom Silica Surfaces and of Biomimetic Analogues, Nano. Lett. 2002, 2: 91-95.
    [14] S. Sotriopoulou, Y.S. Sastre, S.S. Mark, C.A. Batt, Biotemplated Nanostructured Materials, Chem. Mater. 2008, 20: 821-834.
    [15]何基保,温树林,生物矿化作用,自然杂志, 1997, 19: 272-276.
    [16]崔福斋,生物材料学,清华大学出版社, 2004, P141.
    [17] M. Numata, K. Sugiyasu, T. Hasegawa, and S. Shinkai, Sol-Gel Reaction Using DNA as a Template: An Attempt Toward Transcription of DNA into Inorganic Materials, Angew. Chem. Int. Ed. 2004, 43: 3279-3283.
    [18] W. Shenton, T. Douglas, M. Young, G. Stubbs, and S. Mann, Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus, Adv. Mater. 1999, 11: 253.
    [19] D. Losic, J.G. Mitchell, N.H. Voelcker, Fabrication of gold nanostructures by templating from porous diatom frustules, New J. Chem. 2006, 30: 908-914.
    [20] B. Sun, T. Fan, J. Xu, D. Zhang, Biomorphic synthesis of SnO2 microtubules on cotton fibers, Mater. Lett. 2005, 59(18): 2325-2328. [ 21 ] J. Huang, X. Wang, Z.L. Wang, Bio-inspired Fabrication of Antireflection Nanostructures by Replicating Fly Eyes, Nanotech. 2008, 19: 025602.
    [22] J. Huang, X. Wang, and Z.L. Wang, Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties, Nano Lett. 2006, 6(10): 2325-2331.
    [23] T.L.Y.. Cheung, D.H.L. Ng, Conversion of Bamboo to Biomorphic Composites Containing Silica and Silicon Carbide Nanowires, J. Amt. Ceram. Soc. 2007, 90(2): 559-564.
    [24] H. Liang, T.E. Angelini, P.V. Braun, and G.C.L. Wong, Roles of Anionic and CationicTemplate Components in Biomineralization of CdS Nanorods Using Self-Assembled DNA-Membrane Complexes, J. Am. Chem. Soc. 2004, 126: 14157-14165.
    [25] D. Nyamjava, A. Ivanisevic, Templates for DNA-templated Fe3O4 nanoparticles, Biomaterials 2005, 26: 2749–2757.
    [26] D. Rautaray, A. Kunar, S. Reddy, S.R. Sainkar, M. Sastry, Morphology of BaSO4 Crystal Grown on Templates of Varying Dimensionality: the Case of Cryteine-capped Gold Nanoparticles (0-D), DNA (1D), and Lipid Bilayer Stacks (2-D), Cryst.Growth 2002, 2(3): 197-203. [ 27] A. Wu, Z. Li, H.L. Zhou, E.K. Wang, Nanoscale Structure of Circle-MgCl2 Constructed by Plasmid DNA Templates,.Superlatt.Microstr. 2005, 37: 151-161.
    [28] C.A. Mirkin, J.J. Storhoff, A.A. Lazarides, R.C. Macic, R.L Letsinger, G.C. Schatz, What Controls Optical Properties of DNA-linked Gold NanoparticleAssemblies?, J.Am.Chem.Soc. 2000, 122: 4640-4650.
    [29] E. Dujardin, C. Peet, G. Stubbs, J.N. Culver, and S. Mann, Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates, Nano Lett. 2003, 3(3): 413-417.
    [30] S. Dudley, T. Kalem, and M. Akincw, Conversion of SiO2 Diatom Frustules to BaTiO3 and SrTiO3, J. Am. Ceram. Soc. 2006, 89(8): 2434–2439.
    [31] M. Pérez-Cabero, V. Puchol, D. Beltrán, P. Amorós, Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material, Carbon. 2008, 469(2): 297–304.
    [32] M.W. Anderson, S.M. Holmes, N. Hanif, and C.S. Cundy, Hierarchical Pore Structures through Diatom Zeolitization, Angew. Chem.Int. Ed. 2000, 39: 2707-2710.
    [33] H. Zhou, T. Fan, D. Zhang, Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates, Micropor. Mesopor. Mater. 2007, 100: 322–327.
    [34]H. Zhou, T. Fan, D Zhang, Q. Guo, and H. Ogawa, Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures, Chem. Mater. 2007, 19: 2144-2146.
    [35] J. Huang, X. Wang, Z.L. Wang, Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties, Nano. Lett. 2006, 6: 2325-2331.
    [36] B. Li, J. Zhou, R. Zong, M. Fu, Y. Bai, L. Li, Q. Li, Ordered ceramic microstructures from butterfly bio-template, J. Am. Cer. Soc. 2006, 89(7): 2298-2300.
    [37]J. Silver, R. Withnall, T.G. Ireland, G.R. Fern, Novel nano-structured phosphor materials cast from natural Morpho butterfly scales, J. Modern Optics 2005, 52(7):999-1007.
    [38] P.K. Ajikumar, R. Lakshminarayana, S. Valiyaveettil, Controlled deposition of thin films of calcium carbonate on natural and synthetic templates, Crys. Growth 2004, 4(2): 331-335.
    [39] Q. Dong, H.L. Su, D. Zhang, et al., Biotemplate-directed assembly of porous SnO2 nanoparticles into tubular hierarchical structures, Scripta Mater. 2006, 55(9): 799-802.
    [40]H.L. Su, N. Wang, Q. Dong, et al., Incubating lead selenide nanoclusters and nanocubes on the eggshell membrane at room temperature, J. Membrane Sci. 2006, 283(1-2): 7-12. [ 41]Q. Dong, H.L. Su, D. Zhang, et al., Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol-gel technique, Nanotech. 2006, 17(15): 3968-3972.
    [42] J.K. Liu, Q.S. Wu, Y.P. Ding, et al., Assembling synthesis of BaSO4 biomimetic nano- superstructures through eggshell membrane template, Chem. Res. Chin. Univ. 2005, 21(2): 243-245.
    [43] J.K. Liu, Q.S. Wu, Y.P. Ding, et al., Assembling synthesis of barium chromate nano- superstructures using eggshell membrane as template, Bull. Kor. Chem. Soc. 2004, 25(12): 1775-1778.
    [44] D. Yang, L.M. Qi, J.M. Ma, Hierarchically ordered networks comprising crystalline ZrO2 tubes through sol-gel mineralization of eggshell membranes, J. Mater. Chem. 2003, 13(5): 1119-1123.
    [45] D. Yang, L.M. Qi, J.M. Ma, Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes, Adv. Mater. 2002, 14(21): 1543-1546. [ 46 ]W. Ogasawara, W. Shenton, S.A. Davis, Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-devied organic matrix, Chem. Mater. 2000, 12: 2835..
    [47] T. Fan, B. Sun, J. Gu, D. Zhang, L. Lau, Biomorphic Al2O3 fibers synthesized using cotton as bio-templates, Scripta Mater. 2005, 53(8): 893-897.
    [48] I.A. Rahman, F.L. Riley, The control of morphology in silicon nitride powder prepared from rice husk, J. Euro. Ceram. Soc. 1989, 5: 11-22.
    [49] R.V. Krishnarao, Effect of cobalt chloride treatment on the formation of SiC from burnt rice husks, J. Euro. Ceram. Soc. 1993, 12: 395-401. [ 50]S. Chiarakorn, T. Areerob, N. Grisdanurak, Influence of functional silanes onhydrophobicity of MCM-41 synthesized from rice husk, Sci. Tech. Adv. Mater. 2007, 8: 110–115. [ 51]H. Katsuki, S. Furuta, T. Watari, S. Komarneni, ZSM-5 zeolite/porous carbon composite: Conventional- and microwave-hydrothermal synthesis from carbonized rice husk, Micropor. Mesopor. Mater. 2005, 86: 145–151.
    [52] Q.L. Liu, T.X. Fan, D. Zhang, Electromagnetic shielding capacity of carbon matrix composites made from nickel-loaded black rice husk, J. Mater. Sci. 2004, 39: 6209– 6214.
    [53] H.Sieber, Biomimetic synthesis of ceramics and ceramic composites, Mater. Sci. Eng. A 2005, 412: 43-47.
    [54] P.Greil, Advanced Engineering Ceramics, Adv. Mater. 2002, 14: 709-716.
    [55] E. Vogli, H. Sieber, P. Greil, Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood, J. Eur. Ceram. Soc. 2002, 22: 2663-2668.
    [56] E. Vogli, J. Mukerji, C. Hoffmann, R. Kladny, H. Sieber, P. Greil, Conversion of Oak to Cellular Silicon Carbide Ceramic by Gas-Phase Reaction with Silicon Monoxide, J. Am. Ceram. Soc. 2001, 84: 1236.
    [57] Y. Ohzawa, H. Hshino, K. Nakane, K. Sugiyama, Preparation of gas-permeable SiC shape by pressure-pulsed chemical vapour infiltration into carbonized cotton-cloth preforms, J. Mater. Sci. 1998, 33(3): 1211-1216.
    [58] O. Rusina, R. Kirmeier, A. Molinero, C.R. Rambo, H. Sieber, Manufacturing of Highly Porous SiC-Ceramics from Si-Filled Cellulose Fiber Papers, Ceram. Transact. 2005, 166: 171-176.
    [59] C. Zollfrank, R. Kladny, H. Sieber, P. Greil, Biomorphous SiOC/C-ceramic composites from chemically modified wood templates, J. Eur. Ceram. Soc. 2004, 24: 479-487.
    [60] O. Rusina, R. Kirmeier, A. Molinero, C.R. Rambo, H. Sieber, Manufacturing of Highly Porous SiC-Ceramics from Si-Filled Cellulose Fiber Papers, Ceram. Transact. 2005, 166: 171-176.
    [61] H. Sieber, C.R. Rambo, J. Benes, Processing of biomorphous TiC-based ceramics, Ceram. Eng. Sci. Proc. 2003, 24 (3): 135-140. [ 62 ] B. Sun, T. Fan, D. Zhang, T. Okabe, the Synthesis and Microstructure of Morph-Genetic TiC/C Ceramics, Carbon 2004, 42(1): 177-182.
    [63] H. Sieber, C. Zollfrank, D. Almeida, H. Gerhard, N. Popovska, Gas Phase Processing of Porous, Biomorphous TiC-Ceramics, Key Eng. Mater. 2004, 246-268: 2227-2230.
    [64] P. González, J. Serra, S. Liste, S. Chiussi, B. León, M. Pérez-Amor, J. Martínez-Fernμndez, AR de Arella- no-López, FM Varela-Feria, New biomorphic SiC ceramics coated with bioactive glass for biomedical applications, Biomater. 2003, 24: 4827-4832.
    [65] P. Greil, Biomorphous Ceramics from Lignocellulosics, J. Eur. Ceram. Soc. 2001, 21: 105-118.
    [66] K.H. Thiermann, W. Sch?fer, Ceramic Components for Environmentally Friendly Internal Combustion Engines, Ceram. Forum Int. 2000, 80(8): 15-20.
    [67] B.H. Sun, T.X. Fan, D. Zhang, Production of Morph-Genetic TiC/C Ceramic, Mater. Lett. 2004, 58(5): 798-801.
    [68] T. Ota, M. Imaeda, H. Takase, M. Kobayashi, N. Kinoshita, T. Hirashita, H. Miyazaki, Y. Hikichi, Porous Titania Ceramic Prepared by Mimicking Silicified Wood, J. Am. Ceram. Soc. 2000, 83(6): 1521-1523.
    [69] S. Yongsoon, J. Liu, J.H. Chang, Z. Nie, J.G. Exarhos, Hierarchically Ordered Ceramics Through Surfactant-Templated Sol-Gel Mineralization of Biological Cellular Structures, Adv. Mater. 2001, 13(10): 728-732.
    [70] M. Singh, B.M. Yee, Reactive processing of environmentally conscious,biomorphic ceramics from natural wood precursors, J. Eur. Ceram. Soc. 2004, 24: 209.
    [71] M. Patel and B.K. Padhi, Titania fibres through jute fibre substrates, J. Mater. Sci. Lett. 1993, 12: 1234.
    [72] J. Cao, C.R. Rambo, H. Sieber, Manufacturing of Microcellular, Biomorphous Oxide, Ceram. Inter. 2004, 30: 1967-1970. [ 73] J. Cao, C.R. Rambo, D.H. Sieber, Preparation of Porous Al2O3-Ceramics by Biotemplating of Wood, J. Porous Mater. 2004, 11: 163-172.
    [74] J. Cao, O. Rusina, H. Sieber, Processing of porous TiO2-Ceramics from Biological Performs, Ceram. Inter. 2004, 30: 1971-1974.
    [75] P. Greil, T. Lifka, A. Kaindl, Biomorphic Cellular Silicon Carbide Ceramics from Wood: I. Processing and Microstructure, J. Eur. Ceram. Soc. 1998, 18(14): 1961-1974.
    [76] P. Greil, T. Lifka, A. Kaindl, Biomorphic Cellular Silicon Carbide Ceramics from Wood: II. Mechanical Properties, J. Eur. Ceram. Soc. 1998, 18(14): 1975-1984. [ 77 ] T.C. Wang, The Fabrication and Properties Evaluation of Aluminum/Ecoceramic Composites Based on Wood Templates, doctoral dissertation, 2006, P24.
    [78] Structure of Wood, Society of Wood Science and Technology, Teaching Unit Number 1.
    [1] D. Zhang, X. Xie, T. Fan, Morphology and Damping Characteristics of Woodceramics, J. Mater. Sci. 2002, 37: 4457-4463.
    [2] C.E. Byrne, D.E. Nagle, Cellulose Derived Composites a New Method For Materials Processing, Mater. Res. Innovat. 1997, 1: 137-144.
    [3] T.C. Wang, T.X. Fan, D. Zhang, G.D. Zhang,Fabrication and Wear Behaviors of Carbon/Aluminum Composites Based on Wood Templates, Carbon 2006, 44 (5): 900-906.
    [4] Y.X. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic Iron Oxide Contrast Agents: Physicochemical Characteristics and Applications In Mr Imaging, Eur. Radiol. 2001, 11: 2319-2331.
    [5] N.G. Condon, F.M. Leibsle, A.R. Lennie, P.W. Murray, D. J. Vaughan, G. Thornton, Biphase Ordering of Iron Oxide Surfaces, Phys. Rev. Lett. 1995, 75: 1961-1964.
    [6] Y. Sato, M. Ando, K. Murai, Electrochromic Properties of Spin-Coated Nickel Oxide Films, Solid State Ionics 1998, 113-115: 443- 447.
    [7] G. Ozkan, E. Ozcelik, CO2 Adsorption on Porous NiO as a Cathode Material For Molten Carbonate Fuel Cells, J. Pow. Sour. 2005, 140: 28-33.
    [8] V. Biju, M.A. Khadar, DC Conductivity of Consolidated Nanoparticles of NiO, Mater. Res. Bulletin 2001, 36: 21-33.
    [9] Y.B. Li, Y. Bando, T. Sato, K. Kurashima, ZnO Nanobelts Grown on Si Substrate, Appl. Phys. Lett. 2002, 81: 144-146.
    [10] X.Q. Meng, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, Growth Temperature Controlled Shape Variety of ZnO Nanowires , Chem. Phys. Lett. 2005, 407: 91-94.
    [11]H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures For Polycrystalline and Amorphous Materiasl 2nd Ed[M], New York, Usa: John Wiley & Sons Press, 1974.
    [12]鲍甫成,落叶松木材流体渗透性及其控制途径的研究,林业科学1965, 10(1): 1-17.
    [13]鲍甫成,吕建雄,长白鱼鳞云杉木材渗透性及苯-乙醇浸提对其影响的研究,木材工业1991, 5(6): 28-34.
    [14]鲍甫成,吕建雄,微生物对长白鱼鳞云杉木材渗透性的影响,林业科学1991, 27(6):
    [15]陈玉和,黄文豪,常德龙,胡伟华,氢氧化钠预处理对木材漂白促进作用的研究,林产化学与工业2000, 20(1): 52.
    [16]马荣,乔冠军,金志浩,木材渗透性改良与木材陶瓷化,材料导报2000, 14: 271.
    [17]郑真真,彭万喜,李凯夫,钱师旅,李年存,抽提物和抽提工艺对木材横界面性质的影响,林业科技开发2005, 1: 13-16.
    [18]鲍甫成,胡荣,泡桐木材流体渗透性与扩散性的研究,林业科学1990, 26(3): 239-246.
    [19] Structure of Wood, Society of Wood Science and Technology, Teaching Unit Number 1.
    [20]鲍甫成,吕建雄,木材渗透性可控制原理研究,林业科学1992,28(4): 336-342.
    [21] S. Kobayashi, K. Hanabusa, N. Hamasaki, Et Al, Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies, Chem. Mater. 2000, 12 (6): 1523-1525.
    [22] D.M. Antonelli, J.Y. Ying, Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves, Chem. Mater. 1996, 8: 874-881.
    [23] B.T. Holland, C.F. Blanford, T. Do, A. Stein, Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides,Phosphates, and Hybrid Composite, Chem. Mater. 1999, 11: 795-805.
    [24] K. Ruel, V.C. Billosta, F. Guillemin, J.B. Sierra, J.P. Joseleau, The Wood Cell Wall at the Ultrastructural Scale– Formation and Topochemical Organization, Maderas, Cienc. tecnol. 2006, 8(2):107-116.
    [1]刘培生著,多孔材料引论,清华大学出版社, 2004.
    [2] IUPAC,manual of symbols and terminology,Puer Appl. Chem. 1972, 31: 578-638.
    [3] J. Popovicova, M.L. Brusseau, Dispersion and transport of gas-phase contaminants in dry porous media: effect of heterogeneity and gas velocity, J. Contam. Hydro. 1997, 28: 157-169.
    [4] J. Sorz, P. Hietz, Gas diffusion through wood: implications for oxygen supply, Trees 2006, 20: 34-41.
    [5] A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev. 1997, 97: 2373-2419.
    [6] B.D. Reid, F.A.R. Trevino, I.H. Musselman, K.J. Balkus, J.J.P. Ferrais, Gas Permeability Properties of Polysulfone Membranes Containing the Mesoporous Molecular Sieve MCM-41, Chem. Mater. 2001, 13: 2366-2373.
    [7] S. Karoor, K.K. Sirkar, Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules, Ind. Eng. Chem. Res. 1993, 32: 674-684.
    [8] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M.Whitesides, G.D. Stucky, Hierarchically Ordered Oxides, Science1998, 282: 2244-2246.
    [9] X. Cai, G. Zhu, W. Zhang, H. Zhao, C. Wang, S. Qiu, Y. We, Diatom-Templated Synthesis of Ordered Meso/Macroporous Hierarchical Materials, Eur. J. Inorg. Chem. 2006, 3641-3645.
    [10] B.T. Holland, L. Abrams, A. Stein, Dual Templating of Macroporous Silicates withZeolitic Microporous Frameworks, J. Am. Chem. Soc. 1999, 121: 4308-4309.
    [11] T. Sen, G.J.T. Tiddy, J.L. Casci, M.W. Anderson, One-Pot Synthesis of Hierarchically Ordered Porous-Silica Materials with Three Orders of Length Scale, Angew. Chem. Int. Ed. 2003, 42: 4649-4653.
    [12] T.C. Wang, The Fabrication and Properties Evaluation of Aluminum/Ecoceramic Composites Based on Wood Templates, doctoral dissertation, 2006, P24.
    [13]刘玉新,颗粒材料孔结构形态的测量与表征,中国粉体技术2000, 6(4): 21-27.
    [14] B. Zhang, S. Li, Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry, Ind. Eng. Chem. Res. 1995,34: 1383-1386.
    [15] S. Brunauer, P.H. Emmett and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 1938, 60: 309-319.
    [16] U. Vogt, A. Herzog, R. Klingner, Porous Sic Ceramics with Oriented Structure from Natural Materials, 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings 2008, 23(4): 219-226.
    [17]王慧,曾令可,分形理论及其在材料科学中的应用,材料开发与应用, 2000, 15(5): 40-43.
    [18]郭向云,李永旺,评介利用压汞仪等测定介质表面分维的方法,化学进展, 1997, 10(1): 97-99.
    [19]张宝泉,李绍芬,廖晖,在多孔介质内气体扩散的分形表征,化工学报, 1994, 45(3): 272-277.
    [20] B. Lin, X. Shen, S. Cui, Study on Dispersion Stability of Fe3O4 Nonoparticles in Liquid, Mater. Review 2006,S20: 164-169.
    [21]Y.S. Kwok, X.X. Zhang, B. Qin, and K.K. Fung, Epitaxial NiO hillocks on truncated octahedral nanoparticles of passivated Ni, J. Appl. Phys. 2001, 89(5):3061-3063.
    [22] H. Giesche, Mercury Porosimetry:AGeneral (Practical) Overview, Part. Part. Syst. Charact. 2006, 23: 9-19.
    [23]唐明,混凝土材料分形特征及应用研究,哈尔滨工业大学博士论文, 2003, p57.
    [24]张济忠,分形,清华大学出版社, 1995, p318.
    [25] H. Liu, L. Zhang, N. A. Seaton, Determination of the Connectivity of Porous Solids from Nitrogen Sorption Measurements-Ⅱ. Generalisation, Chem. Eng. Sci. 1992, 47: 4393-4404.
    [1] H. Xia, H. Zhuang, T. Zhang, D. Xiao, Visible-light-activated nanocomposite photocatalyst of Fe2O3/SnO2, Mater. Lett. 2008, 62 (6-7): 1126-1128.
    [2] J.A. Glasscock, P.R.F. Barnes, I.C. Plumba, A. Bendavid and P.J. Martin, Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition, Thin Solid Film. 2008, 516(8): 1716-1724.
    [3] B. Ouertania, J. Ouerfellia, M. Saadouna, H. Ezzaouiab and B. Bessa?s, Characterisation of iron oxide thin films prepared from spray pyrolysis of iron trichloride-based aqueous solution, Thin Solid Film. 2008, 516(23): 8584-8586.
    [4] S.M. Abo-Naf, M.S. El-Amiry and A.A. Abdel-Khalek, FT-IR and UV–Vis optical absorption spectra ofγ-irradiated calcium phosphate glasses doped with Cr2O3, V2O5 and Fe2O3, Opt. Mater. 2008, 30(6): 900-909.
    [5] Y. Zhang, W. Liu, C. Wu, T. Gong, J. Wei, M. Ma, K. Wang, M. Zhong and D. Wu, Photoluminescence of Fe2O3 nanoparticles prepared by laser oxidation of Fe catalysts in carbon nanotubes, Mater. Research Bull. doi:10.1016/j.materresbull.2008.01.025.
    [6] G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu and E. W?ckelg?rd, Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers, Solar Energy Mater. doi:10.1016/j.solmat.2008.04.023.
    [7] Y. Qi, H. Qi, J. Li, C. Lu, Synthesis, microstructures and UV–vis absorption properties ofβ-Ni(OH)2 nanoplates and NiO nanostructures, J. Crystal Growth. 2008, 310(18): 4221-4225.
    [8] C. Shi, G. Wang, N. Zhao, X. Du, J. Li, NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties, Chem. Phys. Lett. 2008, 454(1-3): 75-79.
    [9] D. Franta, B. Negulescu, L. Thomas, P.R. Dahoo, M. Guyot, I. Ohlídal, J. Mistrík, T. Yamaguchi, Optical properties of NiO thin films prepared by pulsed laser deposition technique, Appl. Surf. Sci. 2005, 244(1-4): 426-430.
    [10] H. Chen, Y. Lu, W. Hwang, Thickness dependence of electrical and optical properties of sputtered Nickel oxide films, Thin Solid Film. 2006, 514(1-2): 361-365.
    [11] LT.Canham, Silicon quantum wire array fabrication by electrochemical and chemicaldissolution of wafers, Appl. Phys. Lett. 1990, 57 (10): 1046-1048.
    [12] T.K. Sham, D.T. Jiang, I. Coulthard, J.W. Lorimer, X.H. Feng, K.H. Tan, S.P. Frigo, R.A. Rosenberg, D.C. Houghton, B. Bryskiewicz, Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence, Nature 1993, 363: 331-334.
    [13] B. Benyahia, N. Gabouze, M. Haddadi, L. Guerbous, K. Beldjilali, Enhancement of the porous silicon photoluminescence by surface modification using a hydrocarbon layer, Thin Solid Film., 2008, 516(23): 8707-8711.
    [14] H. Sakaue, T. Tabei, M. Kameda, Optical properties of erbium-doped porous silicon waveguides, Sen. Actu. B: Chem. 2006, 119: 504-511.
    [15]杨一军,刘强春,杨保华,谢宇, Fe2O3/ SiO2介孔组装体系的制备和吸收边的光学性质,江西师范大学学报, 2002, 26(4): 306-309.
    [16] N.J. Kim, S.L. Choi, H.J. Lee, K.J. Kim, Nanostructures and luminescence properties of porous ZnO thin films prepared by sol–gel process, Curr. Appl. Phy. doi:10.1016/j.cap.2008.04.015
    [17] F.K. Yam, Z. Hassan, L.S. Chuah, Y.P. Ali, Investigation of structural and optical properties of nanoporous GaN film, Appl. Sur. Sci. 2007, 253: 7429-7434.
    [18] X.Y. Guo, T.L. Williamson, P.W. Bohn, Enhanced ultraviolet photoconductivity in porous GaN prepared by metal-assisted electroless etching, Solid State Comm. 2006, 140: 159-162.
    [19] X. Wang, P. Gao, J. Li, C.J. Summers, Z.L. Wang, Rectangular Porous ZnO-ZnS Nanocables and ZnS Nanotubes, Adv. Mater. 2002, 14:1732-1735.
    [20] S. Bu, Z. Jin, X. Liu, L. Yang, Z. Cheng, Fabrication of TiO2 porous thin films using peg templates and chemistry of the process, Mater. Chem. Phys. 2004, 88: 273-279.
    [21] H.E. Prakasam, O.K. Varghese, M. Paulose, G.K. Mor, C.A. Grimes, Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization, Nanotech. 2006, 17: 4285-4291.
    [22] Q. Huang, L. Gao, Preparation and Photoluminescence of Partially Filled ZnO Microtubes Using Block Copolymers, J. Am. Ceram. Soc. 2005, 88:1403-1406.
    [23] Y.L. Wu, S. Fu, A.I.Y. Tok, X.T. Zeng, C.S. Lim, L.C. Kwek and F.C.Y. Boey, A dual-colored bio-marker made of doped ZnO nanocrystals, Nanotech. 2008, 19:345605.
    [24] L.D. Stefano, I. Rendina, M.D. Stefano, A. Bismuto, & P. Maddalena, Marine diatomsas optical chemical sensors. 2005, Appl. Phys. Lett. 87: 233902.
    [25] W. Zhang, D. Zhang, T.X. Fan, J. Ding, Q. Guo, H. Ogawa, Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales, Nanotech. 2006, 17:840-844.
    [26] H.W. Lee, S.P. Lau, Y.G. Wang, Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered catholic vacuum arc technique, J. Cryst. Growth 2004, 268: 596-601.
    [27]王明新,数学物理方程,清华大学出版社, 2.8节, 2005, P49.
    [28]张三慧,大学物理学/第四册/波动与光学,清华大学出版社,第2章, 2000, P82.
    [29] X.F. Li, T.X Fan, Z.T. Liu, J. Ding, Q.X. Guo, D. Zhang Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods, J. Euro. Ceram. Soc. 2006, 26(16): 3657-3664.
    [30] S.H. Jo, J.Y. Lao, Z.F. Ren, et al. Field-emission studies on thin films of zinc oxide nanoneedle arrays, Appl. Phys. Lett. 2003, 83 (23): 4821-4823.
    [31] S.H.Bae, S.Y. Lee, B.J. Jin, S. Im, Pulsed laser deposition of ZnO thin films for applications of light emission, Appl. Sur. Sci. 2000, 154-155: 458-461.
    [32] X. Zhong, W. Knoll, Morphology-controlled large-scale synthesis of ZnO nanocrystals from bulk ZnO, Chem. Comm. 2005, 9: 1158-1160.
    [33] Y.W. Sun, J. Gospodyn, P. Kursa, J. Sit, R.G. DeCorby, Y.Y. Tsui, Dense and porous ZnO thin films produced by pulsed laser deposition, Appl. Sur. Sci. 2005, 248: 392-396.
    [34]K. Vanheusden, C.H. Seager, W.L. Warren, et al. Correlation between photo luminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett. 1996, 68(3): 403-405.
    [35] Z. Fan, P. Chang, J.G. Lu, Photoluminescence and polarized photodetection of single ZnO nanowires, Appl. Phys. Lett. 2004, 85: 6128-6130.
    [36] P. Viswanathamurthi, N. Bhattarai, H.Y. Kim and D.R. Lee, The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning, Nanotech. 2004, 15: 320-323.
    [37] Y.L Liu, Y.C. Liu, H. Yang, W.B. Wang, J.G. Ma, J.Y. Zhang, Y.M. Lu, D.Z. Shen and X.W. Fan, The optical properties of ZnO films grown on porous Si templates, J. Phys. D: Appl. Phys. 2003, 36: 2705–2708.
    [38] Z. Fu, B. Lin, G. Liao, Z. Wu, The effect of Zn buffer layer on growth andluminescence of ZnO flms deposited on Si substrates, J. Crystal Growth 1998, 193: 316-321.
    [39] B.J. Jin, S. Im, S.Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Film 2000, 36: 107-110.
    [40] B. Reeja-Jayan, E.D. Rosa, S. Sepulveda-Guzman, R.A. Rodriguez, and M.J. Yacaman, Structural Characterization and Luminescence of Porous Single Crystalline ZnO Nanodisks with Sponge-like Morphology, J. Phys. Chem. C 2008, 112: 240-246. [ 41 ] A. Studenikin, N. Golego, M. Cocivra, Fabrication of green and orange photo-luminescent undoped ZnO films using spray pyrolysis, J. Apppl. Phys. 1998, 84(4): 2287-2294.
    [42] Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction, Nanotech. 2003, 14: 11-15.
    [43] M. Liu, A.H. Kitai, P. Mascher, Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese, J. Lumin. 1992, 54: 35-42.
    [44] Z.Q. Chen, S. Yamamoto, A. Kawasusoa, Y. Xu, T. Sekiguchi, Characterization of homoepitaxial and heteroepitaxial ZnO films grown by pulsed laser deposition, Appl. Sur. Sci. 2005, 224: 377-380.
    [45] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method, J. Crystal Growth 2000, 221: 431-434.
    [46] Y.I. Alivov, A.V. Chernykh, M.V. Chukichev, R.Y. Korotkov, Thin polycrystalline zinc oxide films obtained by oxidation of metallic zinc films, Thin Solid Film. 2005, 473: 241-246.
    [47] R. Radoi, P. Fernandez, J. Piqueras, M.S. Wiggins and J. Solis, Luminescence properties of mechanically milled and laser irradiated ZnO, Thin Solid Film. 2003, 14: 794-798.
    [48] A.E. Hichou, M. Addou, A. Bougrine, R. Dounia, J. Ebothé, M. Troyon, M. Amrani, Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis, Mater. Chem. Phys. 2004, 83: 43-47.
    [49] R.G Singh, F. Singh, V. Agarwa and R.M Mehra, Photoluminescence studies of ZnO/porous silicon nanocomposites, J. Phys. D: Appl. Phys. 2007, 40: 3090-3093.
    [50]傅竹西,吴自勤,阴极射线发光分析方法及其在新材料研究中的应用,物理, 2000, 29(2): 96-99.
    [51]C.X. Guo, Z.X. Fu, C.S. Shi, Superlinear increase phenomenon of UV luminescence of ZnO film under cathodoluminescent excitation, Chin. J. Lumin. 1998, 19(3): 239-241.
    [52]Z.X. Fu, B.X. Lin, G.H. Liao, et al. The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates, J. Cryst. Growth. 1998, 193(3): 316-321.
    [53]X.L. Xu, J. Xu, et al. Cathodoluminescence of ZnO films on silcon, Chin. J. Lumin. 2003, 24(2) :177-179.
    [54]宋国利,梁红,孙凯霞,纳米晶ZnO可见发射机制的研究,光子学报, 2004, 33(4): 485-488.
    [55]边超, ZnO荧光薄膜的制备及特性研究,硕士论文,郑州大学,2003: 13-16.
    [56]徐彭寿,孙玉明,施朝淑,徐法强,潘海斌, ZnO及其缺陷电子结构对光谱特性的影响,红外与毫米波学报, 2002, 21: 91-96.
    [57]A.F. Kohan, G. Ceder, D. Morgan, Chris G. Van de Walle, First-principles study of native point defects in ZnO, Phys. Rev. B 2000, 61(22): 15019-15027.
    [58]王卿璞,张德恒等,射频磁控溅射法制备ZnO薄膜的发光特性,发光学报, 2003, 24(1): 69-72.
    [59] Z. Fu, B. Lin, J. Zhu, MOCVD growth of ZnO films and their luminescence properties, Chin. J. Lumin. 2001, 22: 119-124.
    [1] J.S. Suehle, R.E. Cavicchi, M. Gaitan, S.Semancik, Tin oxide gas sensor fabricated using CMOS micro-hotplates andin-situ processing, Electron Device Lett. 1993, 14(3): 118-120.
    [2] Z.R. Dai, J.L. Gole, J.D. Stout, and Z.L. Wang, Tin Oxide Nanowires, Nanoribbons, and NanotubesTin Oxide Nanowires, Nanoribbons, and Nanotubes, J. Phys. Chem. B 2002, 106: 1274-1279.
    [3] A. Chaturvedi, V.N. Mishra, R. Dwivedi, and S.K. Srivastava, Selectivity and sensitivity studies on plasma treated thick film tin oxide gas sensors, Microelectron. J. 2000, 31(4): 283-290.
    [4] A.R. Raju, and C.N.R. Rao, Gas-sensing characteristics of ZnO and copper-impregnated ZnO, Sens. Actuat. B Chem. 1991, 3(4): 305-310.
    [5] J. Xu, Q. Pan, Y. Shun, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuat. B Chem. 2000, 66(1-3): 277-279.
    [6] X. Liu, Z. Xu, Y. Liu, A novel high performance ethanol gas sensor based on CdO- Fe2O3 semiconductivity materials, Sens. Actuat. B Chem. 1998, 52: 270-273.
    [7]张伟达,α- Fe2O3气敏陶瓷的研究,功能材料1994, 25(5): 426-431.
    [8]牛新书,杜卫平,杜卫民,蒋凯,掺杂稀土氧化物的ZnO材料的制备及气敏性能,稀土, 2003, 6: 44-47.
    [9] M.S. Wagh, L.A. Patil, Tanay Seth, D.P. Amalnerkar, Surface cupricated SnO2–ZnO thick films as a H2S gas sensor, Mater. Chem. Phys., 2004, 84: 228-233.
    [10] Y. Hu, X. Zhou, Q. Han, Q. Cao, Y. Huang, Sensing properties of CuO/ZnO heterojunction gas sensors, Mater. Sci. Eng. B, 2003, 99: 41-43.
    [11] D. Wang, X. Chu, M. Gong, Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties, Nanotech., 2007, 18: 185601.
    [12] L. Liao, H.B. Lu, J.C. Li, C. Liu, and D.J. Fu, The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation, App. Phys. Lett., 2007, 91: 173110.
    [13]徐甲强,沈瑜生,超微粒α-Fe2O3的气敏机理初探,无机材料学报1992, 7(1): 32-36.
    [14] X.Q. Liu, S.W. Tao, Y.S. Shen, Preparation and characterization of nanocrystallineα-Fe2O3 by a sol-gel process, Sens. Actuat. B Chem.1997, 40: 161-165.
    [15]陈艾,敏感材料与传感器,化学工业出版社, 2004:第五章气敏材料与气敏传感器.
    [16] P. Bhattacharyya, P.K. Basu, H. Saha, S. Basu, Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol-gel method, Sens. Actuat. B Chem. 2007, 124: 62-67.
    [17] B. Baruwati, D.K. Kumar, S.V. Manorama, Hydrothermal synthesis of highlycrystalline ZnO: a competitive sensor for LPG and EtOH, Sens. Actuators, B, Chem 2006 119: 676-682.
    [18] G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Mater. Sci. Eng. R 2008 61: 1-39.
    [19] M. Tiemann, Porous metal oxides as gas sensors, Chem. Eur. J. 2007 13: 8376-8388.
    [20] M.E. Franke, T.J. Koplin, Y. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2006 2: 36-50.
    [21] S. ROY, and S. BASU, Improved zinc oxide film for gas sensor applications, Bull. Mater. Sci. 2002, 25(6): 513-515.
    [22] H.W. Ryu, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Hong, Y.J. Seo, D.C. Shin, J.S. Park, G.P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat. B Chem. 2003, 96: 717-722.
    [23] V.R. Shinde, T.P. Gujar, C.D. Lokhande, LPG sensing properties of ZnO films prepared by spray pyrolysis method: Effect of molarity of precursor solution, Sens. Actuat. B Chem. 2007, 120: 551-559.
    [24] T. Gao, T.H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications, Appl. Phys. A 2005, 80: 1451-1454.
    [25] C. Wang, X. Chu, M. Wu, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sens. Actuat. B Chem. 2006, 113: 320-323.
    [26] Y. Lv, L. Guo, H. Xu, X. Chu, Gas-sensing properties of well-crystalline ZnO nanorods grown by a simple route, Physica E 2007, 36: 102-105.
    [27] H. Xu, X. Liu, D. Cui, M. Li, M. Jiang, A novel method for improving the performance of ZnO gas sensors, Sens. Actuat. B Chem. 2006, 114: 301-307.
    [28] J.J. Delaunay, N. Kakoiyama, I. Yamada, Fabrication of three-dimensional network of ZnO tetratpods and its response to ethanol, Mater. Chem. Phys. 2007, 104: 141-145.
    [29] T. Wagner, T. Waitz, J. Roggenbuck, M. Fr?ba, C.D. Kohl, M. Tiemann, Ordered mesoporous ZnO for gas sensing, Thin Solid Film. 2007, 515: 8360-8363.
    [30] A.P. Chatterjee, P. Mitra, A.K. Mukhopadhyay, Chemically deposited zinc oxide thin film gas sensor, J. Mater. Sci. 1999, 34: 4225-4231.
    [31] J. Xu, Y. Shun, Q. Pan, J. Qin, Sensing characteristics of double layer film of ZnO, Sens. Actuat. B Chem. 2000, 66: 161-163.
    [32] M. Aslam, V.A. Chaudhary, I.S. Mulla, S.R. Sainkar, A.B. Mandale, A.A. Belhekar, K. Vijayamohanan, A highly selective ammonia gas sensor using surface-ruthenated zinc oxide, Sens. Actuat. B Chem. 1999, 75: 162-167.
    [33] B. Baruwati, D.K. Kumar, S.V. Manorama, Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH, Sens. Actuat. B Chem. 2006, 119: 676-682.
    [34] J. Xu, Y. Chen, D. Chen, J. Shen, Hydrothermal synthesis and gas sensing characters of ZnO nanorods, Sens. Actuat. B Chem. 2006, 113: 526-531.
    [35] N. Yamazoe, G. Sakai, and K. Shimanoe, Oxide semiconductor gas sensors, Catal. Survey. Asia 2003 7(1): 63-75.
    [36] A. Chaparadza, S.B. Rananavare, Room temperature Cl2 sensing using thick nanoporousfilms of Sb-doped SnO2, Nanotech. 2008 19: 245501.
    [37] W.B. Ingler Jr, S.U.M. Khan, Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination, Thin Solid Film. 2004, 461: 301-308.
    [38]W.B. Ingler Jr, S.U.M. Khan,, Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes inwater splitting, Inter. J. Hydro. Ener. 2005, 30: 821-827.
    [39] C. Ronning, P. X. Gao, Y. Ding, and Z. L. Wang, Manganese-doped ZnO nanobelts for spintronics, Appl. Phys. Lett. 2004, 84(5): 783-785.
    [40] G. Gleitzer, Electrical properties of anhydrous iron oxides, Key Eng. Mater. 1997, 125-126: 355-418.
    [41] Z. Fan, X. Wen, S. Yang, J. G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors, Appl. Phys. Lett. 2005, 87: 013113.
    [42] A. Gurlo, N. BIrsan, A. Oprea, M. Sahm, T. Sahm, U. Weimar, An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3, Appl. Phys. Lett. 2004, 85: 2280-2282.
    [43]Y.C. Lee, Y.L. Chueh, C.H. Hsieh, M.T. Chang, L.J. Chou, Z.L. Wang, Y.W. Lan, C.D. Chen, H. Kurata, and S. Isoda, p-Type a-Fe2O3 Nanowires and their n-Type Transition in a Reductive Ambient, Small 2007, 3: 1356-1361.
    [44] J.A. Dean, Lange’s Handbook of Chemistry, McGraw-Hill Professional, 2004, p4.41-4.53 (Chapter 4).
    [45] J. Jose, M.A. Khadar, Impedance spectroscopic analysis of AC response of nanophase ZnO and ZnO-Al2O3 nanocomposites, Nanostructured Mater. 1999, 8: 1091-1099.
    [46] A. Bera, D. Basak, Carrier relaxation through two-electron process during photo conduction in highly UV sensitive quasi-one-dimensional ZnO nanowires, Appl. Phys. Lett. 2008, 93: 053012.
    [47] S.R. Morrison, The Chemical Physics of surfaces 2nd, NewYork: Plenum Press, 1999 251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700