用户名: 密码: 验证码:
金纳米粒子聚集体的生物学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米拓扑结构化表面近年来在生物医学领域的应用正受到越来越广泛的关注,如在传感检测和组织工程材料领域,这类材料有着独特的优势。但长期以来制备这种表面的方法存在多种不足。因而,通过一种简便易行的方法在多种材料表面制备这类表面,将有助于加快其在生物医学领域的理论研究和应用拓展。
     本论文的主要工作是通过简便易行的葡萄糖还原法在常见材料表面构建金纳米粒子聚集体(GNPL)构成的微纳米级拓扑结构。一方面考察了这种表面在应用于传统的酶联免疫吸附测试(ELISA)检测中的效果;另一方面,我们对其进行了化学改性修饰使之具备抗蛋白质吸附能力并接枝上能与细胞特异性结合的多肽甘氨酸-精氨酸-甘氨酸-天冬氨酸-酪氨酸(GRGDY),考察了这种微纳米结构化粗糙表面对L929成纤维细胞与表面之间的特异性结合作用的影响。进一步地,我们考察了修饰有能与特定癌细胞选择性结合的核酸适体的表面对混合癌细胞中特定细胞的选择性捕获能力。具体研究内容如下:
     1.利用葡萄糖还原法在多种材料表面制备了微纳米级三维结构的GNPL修饰的表面,考察了这种方法所制备的GNPL修饰酶标板在应用于ELISA中的检测效果。用金相显微镜和场发射扫描电子显微镜(FESEM)对这种GNPL的表面形貌和结构进行了表征。通过放射性同位素标记法测试了不同形貌的GNPL修饰表面对模型蛋白人纤维蛋白原(Fg),人血清白蛋白(HSA)和溶菌酶(LYZ)吸附量的影响,并进一步考察了所吸附LYZ的活性。考察了这种GNPL表面特殊的浸润性现象,以及捕获抗体固定方式对ELISA检测效果的影响。考察了这种GNPL修饰酶标板在对癌症标志蛋白人癌胚抗原(CEA)以及人抗凝血酶原(AT),兔免疫球蛋白(IgG)和人纤连蛋白(Fn)的检测效果。研究发现:这种GNPL形貌和对蛋白的吸附量可以很方便地受反应液用量来控制。新制备出的GNPL经不同方法处理后,分别出现出超亲水和超疏水两种完全相反的浸润状态,并且超亲水态的GNPL在应用于ELISA时效果最好。这种GNPL修饰板能显著提高ELISA对所测试蛋白的检测能力,且具有优异的选择性和稳定性。这种改进方法简便易行、低成本、易于推广、可以作为具有更高检测能力的酶联免疫测试方法的一个重要补充。
     2.通过表面化学改性的方法在GNPL表面制备了具有抗蛋白非特异性吸附能力并同时能与细胞发生特异性结合的表面。研究了GNPL表面粗糙度对L929成纤维细胞与该表面的特异性结合作用的影响。采用表面引发原子转移自由基聚合(SI-ATRP)在GNPL表面修饰上聚甲基丙烯酸寡聚乙二醇酯(POEGMA),并以其为间隔臂链接上能与细胞发生特异性作用的GRGDY短肽。通过场发射扫描电子显微镜(FESEM)、水接触角仪、表面粗糙度仪、椭圆偏振光谱仪和X-射线光电子能谱仪(XPS)对GNPL表面理化性质进行了表征。利用放射性同位素标记方法考察了修饰前后表面对蛋白Fg吸附量的影响,并利用ELISA测试了表面对血浆中Fn的吸附量。用L929成纤维细胞考察了细胞与表面之间的特异性结合作用,以及表面粗糙度因素对这种作用的影响。结果表明:这类未经修饰的GNPL表面自身显著抑制了L929细胞的黏附生长,而在修饰POEGMA并链接GRGDY分子后,表面微纳米拓扑结构不仅赋予各粗糙表面更加优异的抗蛋白吸附性能,并且能极大地增强细胞与表面特异性结合分子的作用,显著增强了表面的细胞相容性。该研究为基于细胞与材料相互作用的各种研究和应用提供了一种很有前景的表面修饰策略。
     3.利用同样的方法在金片表面制备了表面粗糙度递增的GNPL结构,并通过自组装的方法在其表面修饰上能与特定的癌细胞特异性结合的核酸适体(Aptamer, APT)TD05,考察了这种功能化表面对癌细胞混合液中特定的Ramos细胞的选择性捕获效果。采用水接触角仪、椭圆偏振光谱仪对修饰前后的表面进行了表征。分别在无血清和含血清两种不同条件下,考察了人B细胞白血病细胞Ramos和人T细胞白血病细胞CCRF-CEM(简称为CEM)在修饰前后的各GNPL表面的竞争性黏附行为。研究表明:无论是在含血清还是无血清培养条件下,两种细胞对GNPL表面都有着更高的亲和力。更重要的是,在修饰有APT后,GNPL表面粗糙度的增大对于该表面对Ramos细胞的选择性捕获作用有显著的增强作用,特别是在无血清条件下,其对Ramos细胞的选择性捕获能力是对照细胞CEM的18倍。该研究表明,这种GNPL修饰材料在癌症早期诊断,干细胞分离装置的制备等领域有着潜在应用前景。
     总之,本论文以葡萄糖还原法制备的GNPL微纳米结构化表面为研究基材,考察了这种方法对多种材料的适用性,以及反应液用量对这种微纳米结构化材料表面形貌和粗糙度的影响。并重点以这种微纳米结构化材料修饰的酶标板和金片为基材,研究了这类表面对蛋白吸附量及活性的影响,考察了将其用于ELISA中的效果。进一步地,我们研究了这种材料表面的粗糙度因素对表面与细胞之间特异性结合的影响,以及在修饰特异性配体后对癌细胞选择性捕获作用的影响。本文的工作为一类简便易行的微纳米拓扑结构修饰表面的制备及其在生物医学领域的研究提供了一定的理论指导并初步展示了其潜在应用价值。
The application of surfaces with micro-/nano structures in biomedical fields has drawn increasing attention in recent years, especially their notable advantages in innovative sensors and tissue engineering materials. However, it has long been difficult and costly in the preparation of such materials. Hence, developing a convenient method to form micro/nano structures on many materials of different nature is highly desirable, which will enable the transformation process of those surfaces in biomedical researches and applications.
     The main focus of this thesis is to build micro/nano topographical structures comprised of gold nanoparticle layer (GNPL) on material surfaces via a convenient glucose reduction process. And we first investigated the performances of GNPL modified ELISA plate in the applications of both indirect and sandwich format ELISA. Moreover, we modified the GNPL with protein-repellent polymer brush and conjugated it with GRGDY peptide, and studied the influence of GNPL roughness on the specific binding of L929fibroblasts. Finally, we conjugate tumor cell-specific aptamers (APT) TD05to GNPLs through surface self-assembly, and investigated its performances in selective capturing of specific tumor cells.
     First, we prepared micro/nano three dimensional GNPL on various materials by using glucose reduction method, and studied the performances of the GNPL modified ELISA plate in ELISA applications. Metallographic microscope and field emission scanning electron microscope (FESEM) were used to characterize the morphology of GNPL. And isotope labeling was used to monitor fibrinogen (Fg), human serum albumin (HSA) and lysozyme (LYZ) adsorption on GNPLs, and also, the activity of adsorbed LYZ was measured. Then, we studied the performances of the GNPL modified ELISA plates in ELISA by using cancer marker carcinoembryonic antigen (CEA), human antithrombin (AT), rabbit immonoglobulin (IgG), and human fibroncetin (Fn) as model analytes. We found that the morphologies of GNPL and the amount of adsorbed bioactive protein could be tuned simply by controlling the amount of reaction solution used. It is also shown that two opposite wetability states (superhydrophilic and superhydrophobic) of GNPLs can be formed, and the superhydrophilic state of GNPL was optimal in ELISA. The performances of GNPL in both indirect and sandwich ELISA showed the improved method can significantly enhanced the sensitivity and lowered the limit of detection. This improved method is convenient, universal and effective, and could be an ideal supplement to the conventional ELISA.
     In the second part of the thesis, we prepared low-fouling GNPL with cell-specific binding abilities. And investigated the effect of surface roughness on the specific binding between L929fibroblasts and the modified GNPLs. We modified GNPLs with poly(oligo(ethylene glycol) methyl ether methacrylate)(POEGMA) brush as spacers via surface-initiated atom transfer radical polymerization (SI-ATRP), and conjugate them with cell-specific peptide glycine-arginine-glycine-aspartic acid-tyrosine (GRGDY). FESEM, water contact angle, surface roughmeter, ellipsometry and X-ray photoelectron spectroscopy (XPS) were used to characterize the GNPLs before and after modifications. Isotope labeling was used to monitor Fg adsorption onto GNPLs before and after modification, and ELISA was used to study the Fn adsorption from human plasma. L929cells were used to investigate the specific binding between cells and GNPLs-POEGMA-GRGDY surface, and the effects of GNPLs roughness on this interaction. The results showed the pristine micro/nano rough structures significantly inhibited L929cell growth; however, after modification with POEGMA-GRGDY, the micro/nano structures greatly enhanced L929cell-specific interactions and improved the cell compatibility of surfaces while maintaining superior low-fouling ability compared with planar gold. Our findings demonstrated a promising and effective surface modification strategy for investigations and applications based on cell-surface interactions.
     Finally, we modified GNPLs of different roughness with TD05aptamers, a kind of tumor cell specific aptamer via self-assembly. And the selective binding effects of the functionalized GNPLs on the target tumor cell under serum-free and serum-containing culture conditions were investigated. Water contact angle and ellipsometry were used to characterize surface wetability and the thickness of polymer brush coatings on GNPLs before and after modification. The results demonstrated that the two kinds of tumor cells prefer to adhere on pristine GNPL surfaces compared to planar gold regardless of the presence of serum, and Ramos cells outnumbered slightly. More importantly, after the modification with TD05aptamer, the selective binding ability of GNPLs increased as surface roughness increased, especially, the number of adhered Ramos cells was18times higher than the CEM cells under serum-free conditions. Our results indicate that the properly functional ized GNPL holds great promise in future applications in cancer diagnosis, rare cell separation etc.
     In conclusion, this thesis mainly focused on the conveniently prepared GNPL modified surfaces, and investigated its universality on different materials, and the influence of the volume of reaction solution on the GNPL morphologies. The influence of GNPL on protein adsorption and activity were also investigated. Moreover, the performances of GNPL modified ELISA plate were studied detailedly, and satisfactory results were obtained. Furthermore, the influence of GNPL roughness on the specific binding between L929fibroblasts and GNPL surfaces, and the performances of APT functional ized GNPL in selective tumor cell binding were also investigated. Our work indicate that GNPL modified surfaces could find wide applications in biomedical research and applications.
引文
[1]Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:Synthesis, characterization, and applications [J]. Adv. Mater.,2003,15:353-389.
    [2]Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene:The New Two-Dimensional Nanomaterial [J]. Angew. Chem. Int. Ed.,2009,48: 7752-7777.
    [3]Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev.,2004,104:293-346.
    [4]Caruso F. Nanoengineering of particle surfaces [J]. Adv. Mater.,2001,13: 11-22.
    [5]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26: 3995-4021.
    [6]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics [J]. Chem. Rev.,2005, 105:1547-1562.
    [7]Zhou J, Liu Z, Li F Y. Upconversion nanophosphors for small-animal imaging [J]. Chem. Soc. Rev.,2012,41:1323-1349.
    [8]Tian L J, Sun Y J, Yu Y, et al. Surface effect of nano-phosphors studied by time-resolved spectroscopy of Ce3+[J]. Chem. Phys. Lett.,2008,452:188-192.
    [9]Peng D, Zhang J, Liu Q, et al. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity [J]. J. Inorg. Biochem.,2007,101:1457-1463.
    [10]Su W B, Chang C S, Tsong T T. Quantum size effect on ultra-thin metallic films [J]. J. Phys. D Appl. Phys.,2010,43:013001.
    [11]Kato T, Imada M. Macroscopic quantum tunneling of a fluxon in a long Josephson junction [J]. J. Phys. Soc. Jpn.,1996,65:2963-2975.
    [12]Rajashabala S, Navaneethakrishnan K. Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well [J]. Superlattices Microstruct., 2008,43:247-261.
    [13]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J]. Acc. Chem. Res., 1999,32:435-445.
    [14]Gleiter H. Nanocrystalline Materials[J]. Prog. Mater. Sci.,1989,33:223-315.
    [15]Niemeyer C M. Nanoparticles, proteins, and nucleic acids:Biotechnology meets materials science [J]. Angew. Chem. Int. Ed.,2001,40:4128-4158.
    [16]Capek I. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes [J]. Adv. Colloid Interface Sci.,2009,150:63-89.
    [17]Portney N G, Ozkan M. Nano-oncology:drug delivery, imaging, and sensing [J]. Anal. Bioanal. Chem.,2006,384:620-630.
    [18]Zhou J F, Ralston J, Sedev R, et al. Functionalized gold nanoparticles: Synthesis, structure and colloid stability [J]. J. Colloid Interface Sci.,2009,331: 251-262.
    [19]Thaxton C S, Georganopoulou D G, Mirkin C A. Gold nanoparticle probes for the detection of nucleic acid targets [J]. Clin. Chim. Acta,2006,363:120-126.
    [20]Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications [J]. Angew. Chem. Int. Ed.,2004,43: 6042-6108.
    [21]Pandana H, Aschenbach K H, Gomez R D. Systematic aptamer-gold nanoparticle colorimetry for protein detection:Thrombin [J]. IEEE Sens. J., 2008,8:661-666.
    [22]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science,1997,277:1078-1081.
    [23]Wang L, Ma W, Chen W, et al. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection [J]. Biosens. Bioelectron.,2011, 26:3059-3062.
    [24]Mao X, Ma Y Q, Zhang A G, et al. Disposable Nucleic Acid Biosensors Based on Gold Nanoparticle Probes and Lateral Flow Strip [J]. Anal. Chem.,2009,81: 1660-1668.
    [25]Kim D, Jeong Y Y, Jon S. A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer [J]. Acs Nano,2010,4:3689-3696.
    [26]Ambrosi A, Airo F, Merkoci A. Enhanced Gold Nanoparticle Based ELISA for a Breast Cancer Biomarker [J]. Anal. Chem.,2010,82:1151-1156.
    [27]Zhang M, Ye B-C. Colorimetric Chiral Recognition of Enantiomers Using the Nucleotide-Capped Silver Nanoparticles [J]. Anal. Chem.,2011,83: 1504-1509.
    [28]Wang Y, Li Z, Li H, et al. A novel aptasensor based on silver nanoparticle enhanced fluorescence [J]. Biosens. Bioelectron.,2012,32:76-81.
    [29]Wang L, Li H, Tian J, et al. Monodisperse, Micrometer-Scale, Highly Crystalline, Nanotextured Ag Dendrites:Rapid, Large-Scale, Wet-Chemical Synthesis and Their Application as SERS Substrates [J]. ACS Appl. Mater. Inter.,2010,2:2987-2991.
    [30]Zemp R J. Detecting rare cancer cells [J]. Nature Nanotech,2009,4:798-799.
    [31]Chen W, Xu D H, Liu L Q, et al. Ultrasensitive Detection of Trace Protein by Western Blot Based on POLY-Quantum Dot Probes [J]. Anal. Chem.,2009,81: 9194-9198.
    [32]Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor [J]. J. Am. Chem. Soc., 2006,128:2228-2229.
    [33]Yang S T, Wang X, Wang H F, et al. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents [J]. J. Phys. Chem. C,2009, 113:18110-18114.
    [34]Wu H, Huo Q, Varnum S, et al. Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers [J]. Analyst,2008,133: 1550-1555.
    [35]Henderson E J, Shuhendler A J, Prasad P, et al. Colloidally Stable Silicon Nanocrystals with Near-Infrared Photoluminescence for Biological Fluorescence Imaging [J]. Small,2011,7:2507-2516.
    [36]Park J S, Cho M K, Lee E J, et al. A highly sensitive and selective diagnostic assay based on virus nanoparticles [J]. Nat. Nanotechnol.,2009,4:259-264.
    [37]Kalele S, Gosavi S W, Urban J, et al. Nanoshell particles:synthesis, properties and applications [J]. Curr. Sci.,2006,91:1038-1052.
    [38]Jin Y, Gao X. Plasmonic fluorescent quantum dots [J]. Nat. Nanotechnol.,2009, 4:571-576.
    [39]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [40]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications [J]. Science,2002,297:787-792.
    [41]Ajayan P M. Nanotubes from carbon [J]. Chem. Rev.,1999,99:1787-1799.
    [42]Yang W, Ratinac K R, Ringer S P, et al. Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene? [J]. Angew. Chem. Int. Ed.,2010,49: 2114-2138.
    [43]Wang G, Huang H, Zhang G, et al. Dual Amplification Strategy for the Fabrication of Highly Sensitive Interleukin-6 Amperometric Immunosensor Based on Poly-Dopamine [J]. Langmuir,2011,27:1224-1231.
    [44]Balasubramanian S, Kagan D, Hu C M, et al. Micromachine-enabled capture and isolation of cancer cells in complex media [J]. Angew. Chem. Int. Ed., 2011,50:4161-4164.
    [45]Maehashi K, Katsura T, Kerman K, et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors [J]. Anal. Chem., 2007,79:782-787.
    [46]Zhang Q, Xu J-J, Liu Y, et al. In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems [J]. Lab Chip,2008,8:352-357.
    [47]Wang W, Wu W-Y, Zhong X, et al. Aptamer-based PDMS-gold nanoparticle composite as a platform for visual detection of biomolecules with silver enhancement [J]. Biosens. Bioelectron.,2011,26:3110-3114.
    [48]Wu W-Y, Bian Z-P, Wang W, et al. PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I [J]. Sens. Actuators, B,2010,147:298-303.
    [49]Bai H-J, Shao M-L, Gou H-L, et al. Patterned Au/Poly(dimethylsiloxane) Substrate Fabricated by Chemical Plating Coupled with Electrochemical Etching for Cell Patterning [J]. Langmuir,2009,25:10402-10407.
    [50]Wu J, Bai H J, Zhang X B, et al. Thermal/Plasma-Driven Reversible Wettability Switching of a Bare Gold Film on a Poly(dimethylsiloxane) Surface by Electroless Plating [J]. Langmuir,2010,26:1191-1198.
    [51]Chen S-P, Wu J, Yu X-D, et al. Preparation of metal nanoband microelectrode on poly(dimethylsiloxane) for chip-based amperometric detection [J]. Anal. Chim.Acta,2010,665:152-159.
    [52]Kong Y, Chen H W, Wang Y R, et al. Fabrication of a gold microelectrode for amperometric detection on a polycarbonate ellectrophoresis chip by photodirected electroless plating [J]. Electrophoresis,2006,27:2940-2950.
    [53]Hao Z X, Chen H W, Zhu X Y, et al. Modification of amorphous poly(ethylene terephthalate) surface by UV light and plasma for fabrication of an electrophoresis chip with an integrated gold microelectrode [J]. J. Chromatogr. A,2008,1209:246-252.
    [54]Wang W-K, Zheng M-L, Chen W-Q, et al. Microscale Golden Candock Leaves Self-Aggregated on a Polymer Surface:Raman Scattering Enhancement and Superhydrophobicity [J]. Langmuir,2011,27:3249-3253.
    [55]Wang B, Chen K, Jiang S, et al. Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces [J]. Biomacromolecules,2006,7:1203-1209.
    [56]Tabakman S M, Chen Z, Casalongue H S, et al. A New Approach to Solution-Phase Gold Seeding for SERS Substrates [J]. Small,2011,7:499-505.
    [57]Wang G F, Huang H, Zhang G, et al. Gold nanoparticles/L-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor [J]. Anal. Meth.,2010,2:1692-1697.
    [58]Hilmi A, Luong J H T. Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips [J]. Anal. Chem.,2000,72: 4677-4682.
    [59]Liu R, Liu J, Xiaoxia Z, et al. Cysteine Modified Small Ligament Au Nanoporous Film:An Easy Fabricating SALDI Substrate with High Laser Desorption/Ionization Efficiency [J]. Anal. Chem.,2011,83:3668-3674.
    [60]Wang H, Liu Y L, Yang Y H, et al. A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles and plasma-polymerized film [J]. Anal. Biochem.,2004,324:219-226.
    [61]Pal A, Stokes D L, Vo-Dinh T. Photochemically prepared gold metal film in a carbohydrate-based polymer:A practical, solid substrate for surface-enhanced Raman scattering [J]. Curr. Sci.,2004,87:486-491.
    [62]Aptel J D, Voegel J C, Schmitt A. Adsorption-kineticcs of proteins onto solid-surfaces in the limit of the interfacial interactions control [J]. Colloids Surf.,1988,29:359-371.
    [63]Alaeddine S, Andreasson H, Larsson M, et al. Discontinous formation and desorption of clusters during particles adsorption at surfaces [J]. Biophys. Chem.,1995,54:211-218.
    [64]Sevastianov V I, Kulik E A, Kalinin I D. The model of continuous heterogeneityof protein surface interactions for human serum-albumin and human immunoglobulin-G adsorption onto quartz [J]. J. Colloid Interface Sci., 1991,145:191-206.
    [65]Lundstrom I. Models of protein adsorption on solid-surfaces [J]. Prog. Colloid Polym. Sci.,1985,70:76-82.
    [66]Lee W K, McGuire J, Bothwell M K. A mechanistic approach to modeling single protein adsorption at solid-water interfaces [J]. J. Colloid Interface Sci., 1999,213:265-267.
    [67]Latour R A, Hench L L. A theoretical analysis of the thermodynamic contributions for the adsorption of individual protein residues on functionalized surfaces [J]. Biomaterials,2002,23:4633-4648.
    [68]Zhou J, Chen S F, Jiang S Y. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model [J]. Langmuir, 2003,19:3472-3478.
    [69]Roach P, Farrar D, Perry C C. Surface tailoring for controlled protein adsorption:Effect of topography at the nanometer scale and chemistry [J]. J. Am. Chem. Soc.,2006,128:3939-3945.
    [70]Lord M S, Foss M, Besenbacher F. Influence of nanoscale surface topography on protein adsorption and cellular response [J]. Nano Today,2010,5:66-78.
    [71]Schubert-Ullrich P, Rudolf J, Ansari P, et al. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins:an overview [J]. Anal. Bioanal. Chem.,2009,395:69-81.
    [72]Cheng C-M, Martinez A W, Gong J, et al. Paper-Based ELISA [J]. Angew. Chem. Int. Ed.,2010,49:4771-4774.
    [73]Ashworth TR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death [J]. Aust Med J.,1869,14:146-149.
    [74]Clare S E, Sener S F, Wilkens W, et al. Prognostic significance of occult lymph node metastases in node-negative breast cancer [J]. Ann. Surg. Oncol.,1997,4: 447-451.
    [75]Braun S, Pantel K, Muller P, et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage Ⅰ, Ⅱ, or Ⅲ breast cancer [J]. New Engl. J. Med.,2000,342:525-533.
    [76]Alunni-Fabbroni M, Sandri M T. Circulating tumour cells in clinical practice: Methods of detection and possible characterization [J]. Methods,2010,50: 289-297.
    [77]Vona G, Sabile A, Louha M, et al. Isolation by size of epithelial tumor cells-A new method for the immunomorphological and molecular characterization of circulating tumor cells [J]. Am. J. Pathol.,2000,156:57-63.
    [78]Rosenberg R, Gertler R, Stricker D, et al. Telomere length and hTERT expression in patients with colorectal carcinoma [J]. Recent Results Cancer Res.,2003,162:177-181.
    [79]Muller V, Stahmann N, Riethdorf S, et al. Circulating tumor cells in breast cancer:Correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity [J]. Clin. Cancer Res.,2005, 11:3678-3685.
    [80]Peters C E, Woodside S M, Eaves A C. Isolation of subsets of immune cells [J]. Methods Mol. Biol.,2005,302:95-116.
    [81]Allard W J, Matera J, Miller M C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases [J]. Clin. Cancer Res.,2004,10:6897-6904.
    [82]Jung R, Petersen K, Kruger W, et al. Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes [J]. Br. J. Cancer,1999,81:870-873.
    [83]Pantel K, Alix-Panabieres C, Riethdorf S. Cancer micrometastases [J]. Nat. Rev. Clin. Oncol.,2009,6:339-351.
    [84]Thiery J P, Sleeman J P. Complex networks orchestrate epithelial-mesenchymal transitions [J]. Nat. Rev. Mol. Cell Biol.,2006,7:131-142.
    [85]Yang J, Weinberg R A. Epithelial-mesenchymal transition:At the crossroads of development and tumor metastasis [J]. Dev. Cell,2008,14:818-829.
    [86]Cristofanilli M, Budd G T, Ellis M J, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer [J]. New Engl. J. Med., 2004,351:781-791.
    [87]Cristofanilli M, Hayes D F, Budd G T, et al. Circulating tumor cells:A novel prognostic factor for newly diagnosed metastatic breast cancer [J]. J. Clin. Oncol.,2005,23:1420-1430.
    [88]Danila D C, Heller G, Gignac G A, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer [J]. Clin. Cancer Res.,2007,13:7053-7058.
    [89]Iakovlev V V, Goswami R S, Vecchiarelli J, et al. Quantitative detection of circulating epithelial cells by Q-RT-PCR [J]. Breast Cancer Res. Treat.,2008, 107:145-154.
    [90]Nagrath S, Sequist L V, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology [J]. Nature,2007,450: 1235-U10.
    [91]Alix-Panabieres C, Vendrell J P, Pelle O, et al. Detection and characterization of putative metastatic precursor cells in cancer patients [J]. Clin. Chem.,2007, 53:537-539.
    [92]Tewes M, Aktas B, Welt A, et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer:an option for monitoring response to breast cancer related therapies [J]. Breast Cancer Res. Treat,2009,115:581-590.
    [93]Fehm T, Becker S, Duerr-Stoerzer S, et al. Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status [J]. Breast Cancer Res.,2007,9:R74.
    [94]Yu M, Stott S, Toner M, et al. Circulating tumor cells:approaches to isolation and characterization [J]. J. Cell Biol.,2011,192:373-382.
    [95]Wang W, Wu W Y, Zhong X Q, et al. Aptamer-based PDMS-gold nanoparticle composite as a platform for visual detection of biomolecules with silver enhancement [J]. Biosens. Bioelectron.,2011,26:3110-3114.
    [96]Proske D, Blank M, Buhmann R, et al. Aptamers-basic research, drug development, and clinical applications [J]. Appl. Microbiol. Biotechnol.,2005, 69:367-374.
    [97]Fichou Y, Ferec C. The potential of oligonucleotides for therapeutic applications [J]. Trends Biotechnol.,2006,24:563-570.
    [98]Ulrich H, Trujillo C A, Nery A A, et al. DNA and RNA aptamers:From tools for basic research towards therapeutic applications [J]. Comb. Chem. High T Scr.,2006,9:619-632.
    [99]Ke Y, Lindsay S, Chang Y, et al. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays [J]. Science,2008,319: 180-183.
    [100]Clark J, Smith S S, Application of nanoscale bioassemblies to clinical laboratory diagnostics [M]. In Advances in Clinical Chemistry, Makowski, G. S., Ed.2006,41:23-48.
    [101]Wang B, L Weldon A, Kumnorkaew P, et al. Effect of Surface Nanotopography on Immunoaffinity Cell Capture in Microfluidic Devices [J]. Langmuir,2011, 27:11229-11237
    [102]Wan Y, Mahmood M A, Li N, et al. Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology [J]. Cancer,2012,118: 1145-1154.
    [103]Chen L, Liu X, Su B, et al. Aptamer-Mediated Efficient Capture and Release of T Lymphocytes on Nanostructured Surfaces [J]. Adv Mater,2011,23: 4376-4380.
    [104]Liu G, Mao X, Phillips J A, et al. Aptamer-Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells [J]. Anal Chem,2009,81:10013-10018.
    [105]Sekine J, Luo S C, Wang S, et al. Functionalized Conducting Polymer Nanodots for Enhanced Cell Capturing:The Synergistic Effect of Capture Agents and Nanostructures [J]. Adv. Mater.,2011,23:4788-4792.
    [106]Zhang S, Ni W, Kou X, et al. Formation of gold and silver nanoparticle Arrays and thin shells on mesostructured silica nanofibers [J]. Adv. Funct. Mater., 2007,17:3258-3266.
    [107]Zhang X, Shi F, Yu X, et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface [J]. J. Am. Chem. Soc.,2004,126:3064-3065.
    [108]Yu S H, Colfen H, Mastai Y. Formation and optical properties of gold nanoparticles synthesized in the presence of double-hydrophilic block copolymers [J]. J. Nanosci. Nanotechnol.,2004,4:291-298.
    [109]Wei D, Qian W, Shi Y, et al. Mass synthesis of single-crystal gold nanosheets based on chitosan [J]. Carbohydr. Res.,2007,342:2494-2499.
    [110]Bakshi M S, Possmayer F, Petersen N O. Aqueous-phase room-temperature synthesis of gold nanoribbons:Soft template effect of a gemini surfactant [J]. J. Phys. Chem. C,2008,112:8259-8265.
    [111]Thomas K G, Barazzouk S, Ipe B I, et al. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods [J]. J. Phys. Chem. B,2004,108: 13066-13068.
    [112]Nie Z, Fava D, Kumacheva E, et al. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers [J]. Nat. Mater.,2007,6:609-614.
    [113]Ming T, Kou X, Chen H, et al. Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation [J]. Angew. Chem. Int. Ed.,2008,47: 9685-9690.
    [114]Choi Y E, Kwak J W, Park J W. Nanotechnology for Early Cancer Detection [J]. Sensors,2010,10:428-455.
    [115]Cheow L F, Ko S H, Kim S J, et al. Increasing the Sensitivity of Enzyme-Linked Immunosorbent Assay Using Multiplexed Electrokinetic Concentrator [J]. Anal. Chem.,2010,82:3383-3388.
    [116]Fang Z C, Soleymani L, Pampalakis G, et al. Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit [J]. Acs Nano,2009,3:3207-3213.
    [117]Yang W, Yu M, Sun X, et al. Microdevices integrating affinity columns and capillary electrophoresis for multibiomarker analysis in human serum [J]. Lab Chip,2010,10:2527-2533.
    [118]Huang X J, Li C C, Gu B, et al. Controlled molecularly mediated assembly of gold nanooctahedra for a glucose biosensor [J]. J. Phys. Chem. C,2008,112: 3605-3611.
    [119]Deng C Y, Chen J H, Nie L H, et al. Sensitive Bifunctional Aptamer-Based Electrochemical Biosensor for Small Molecules and Protein [J]. Anal. Chem., 2009,81:9972-9978.
    [120]Xie C, Xu F, Huang X, et al. Single gold nanoparticles counter:an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays [J]. J. Am. Chem. Soc,2009,131:12763-12770.
    [121]Mubeen S, Zhang T, Chartuprayoon N, et al. Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes [J]. Anal Chem, 2010,82:250-257.
    [122]Tang D P, Tang J, Su B L, et al. Simultaneous determination of five-type hepatitis virus antigens in 5 min using an integrated automatic electrochemical immunosensor array [J]. Biosens. Bioelectron.,2010,25:1658-1662.
    [123]Morel A L, Volmant R M, Methivier C, et al. Optimized immobilization of gold nanoparticles on planar surfaces through alkyldithiols and their use to build 3D biosensors [J]. Colloids Surf., B.,2010,81:304-312.
    [124]Song C Y, Wang Z Y, Yang J, et al. Preparation of 2-mercaptobenzothiazole-labeled immuno-Au aggregates for SERS-based immunoassay [J]. Colloids Surf., B.,2010,81:285-288.
    [125]Yang M, Qu F, Li Y, et al. Direct electrochemistry of hemoglobin in gold nanowire array [J]. Biosens. Bioelectron.,2007,23:414-420.
    [126]Sun Y, Fan W H, McCann M P, et al. Rapid and Quantitative Quality Control of Microarrays Using Cationic Nanoparticles [J]. Biotechnol. Bioeng.,2009, 102:960-964.
    [127]Eteshola E, Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels [J]. Sensors and Actuators.,2001,72:129-133.
    [128]Jia C P, Zhong X Q, Hua B, et al. Nano-ELISA for highly sensitive protein detection [J]. Biosens. Bioelectron..2009,24:2836-2841.
    [129]Yang M H, Sun S, Kostov Y, et al. Lab-on-a-chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB) [J]. Lab Chip, 2010,10:1011-1017.
    [130]Dixit C K, Vashist S K, O'Neill F T, et al. Development of a High Sensitivity Rapid Sandwich ELISA Procedure and Its Comparison with the Conventional Approach [J]. Anal. Chem.,2010,82:7049-7052.
    [131]Vogler E A. Structure and reactivity of water at biomaterial surfaces [J]. Adv. Colloid Interface Sci.,1998,74:69-117.
    [132]Sun W N, Chen T, Chen C X, et al. A study on membrane morphology by digital image processing [J]. J. Membr. Sci.,2007,305:93-102.
    [133]Lee J-H, Kim J S, Park J-S, et al. A Three-Dimensional and Sensitive Bioassay Based on Nanostructured Quartz Combined with Viral Nanoparticles [J]. Adv. Funct. Mater.,2010,20:2004-2009.
    [134]Bellezza F, Cipiciani A, Quotadamo M A. Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles [J]. Langmuir,2005, 21:11099-11104.
    [135]Song W, Chen H. Protein adsorption on materials surfaces with nano-topography [J]. Chin. Sci. Bull.,2007,52:3169-3173.
    [136]Ikami M, Kawakami A, Kakuta M, et al. Immuno-pillar chip:a new platform for rapid and easy-to-use immunoassay [J]. Lab Chip,2010,10:3335-3340.
    [137]Xu Z, Liu X W, Ma Y S, et al. Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles [J]. Environ. Sci. Pollut. Res.,2010,17:798-806.
    [138]Liu K, Yao X, Jiang L. Recent developments in bio-inspired special wettability [J]. Chem. Soc. Rev.,2010,39:3240.
    [139]N. W R. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936,28:988-994.
    [140]D; C A B, S. B. Wettability of porous surfaces [J]. Trans. Faraday Soc.,1944, 40:546-551.
    [141]Foss M, Dolatshahi-Pirouz A, Jensen T, et al. Fibronectin Adsorption, Cell Adhesion, and Proliferation on Nanostructured Tantalum Surfaces [J]. Acs Nano,2010,4:2874-2882.
    [142]Peerani R, Bauwens C, Kumacheva E, et al. Patterning mouse and human embryonic stem cells using micro-contact printing [J]. Methods Mol. Biol., 2009,482:21-33.
    [143]den Braber E T, de Ruijter J E, Ginsel L A, et al. Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces [J]. J. Biomed. Mater. Res.,1998,40:291-300.
    [144]Zhou F, Yuan L, Huang H, et al. Phenomenon of "contact guidance" on the surface with nano-micro-groove-like pattern and cell physiological effects [J]. Chin. Sci. Bull.,2009,54:3200-3205.
    [145]Stamatialis D, Papenburg B J, Rodrigues E D, et al. Insights into the role of material surface topography and wettability on cell-material interactions [J]. Soft Matter,2010,6:4377-4388.
    [146]Lensen M C, Schulte V A, Diez M, et al. Surface Topography Induces Fibroblast Adhesion on Intrinsically Nonadhesive Poly(ethylene glycol) Substrates [J]. Biomacromolecules,2009,10:2795-2801.
    [147]Lamers E, van Horssen R, te Riet J, et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration [J]. Eur. Cells Mater.,2010,20:329-343.
    [148]Loya M C, Brammer K S, Choi C, et al. Plasma-induced nanopillars on bare metal coronary stent surface for enhanced endothelialization [J]. Acta Biomater, 2010,6:4589-4595.
    [149]Palmaz J C, Benson A, Sprague E A. Influence of surface topography on endothelialization of intravascular metallic material [J]. J. Vasc. Interv. Radiol., 1999,10:439-444.
    [150]Zhao L, Liu L, Wu Z, et al. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation [J]. Biomaterials,2012,33:2629-2641.
    [151]Dalby M J, Andar A, Nag A, et al. Genomic expression of mesenchymal stem cells to altered nanoscale topographies [J]. J. Royal Soc. Interface,2008,5: 1055-1065.
    [152]Kolind K, Dolatshahi-Pirouz A, Lovmand J, et al. A combinatorial screening of human fibroblast responses on micro-structured surfaces [J]. Biomaterials,2010, 31:9182-9191.
    [153]Kunzler T P, Drobek T, Schuler M, et al. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients [J]. Biomaterials,2007,28:2175-2182.
    [154]Li L, Wu J, Gao C. Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment [J]. Colloids Surf., B,2011,85:12-18.
    [155]Marcon L, Spriet C, Coffinier Y, et al. Cell Adhesion Properties on Chemically Micropatterned Boron-Doped Diamond Surfaces [J]. Langmuir,2010,26: 15065-15069.
    [156]Lagunas A, Comelles J, Martinez E, et al. Universal Chemical Gradient Platforms Using Poly(methyl methacrylate) Based on the Biotin-Streptavidin Interaction for Biological Applications [J]. Langmuir,2010,26:14154-14161.
    [157]Li B, Chen J, Wang J H C. RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts [J]. J. Biomed. Mater. Res. A.,2006,79A:989-998.
    [158]Yea C H, Lee B, Kim H, et al. The immobilization of animal cells using the cysteine-modified RGD oligopeptide [J]. Ultramicroscopy,2008,108: 1144-1147.
    [159]VandeVondele S, Voros J, Hubbell J A. RGD-Grafted poly-1-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion [J]. Biotechnol. Bioeng.,2003,82: 784-790.
    [160]Causa F, Battista E, Della Moglie R, et al. Surface Investigation on Biomimetic Materials to Control Cell Adhesion:The Case of RGD Conjugation on PCL [J]. Langmuir,2010,26:9875-9884.
    [161]Brink H E, Stalling S S, Nicoll S B. Influence of serum on adult and fetal dermal fibroblast migration, adhesion, and collagen expression [J]. In Vitro Cell. Dev. Biol. Anim.,2005,41:252-257.
    [162]Chen H, Brook M A, Chen Y, et al. Surface properties of PEO-silicone composites:reducing protein adsorption [J]. J. Biomater. Sci., Polym. Ed.,2005, 16:531-548.
    [163]Tan H P, DeFail A J, Rubin J P, et al. Novel multiarm PEG-based hydrogels for tissue engineering [J]. J. Biomed. Mater. Res. A.,2010,92A:979-987.
    [164]Mei Y, Wu T, Xu C, et al. Tuning cell adhesion on gradient poly(2-hydroxyethyl methacrylate)-grafted surfaces [J]. Langmuir,2005,21: 12309-12314.
    [165]Liu X, Wu Z, Zhou F, et al. Poly(vinylpyrrolidone-b-styrene) block copolymers tethered surfaces for protein adsorption and cell adhesion regulation [J]. Colloids Surf., B.,2010,79:452-459.
    [166]Ishihara K, Nomura H, Mihara T, et al. Why do phospholipid polymers reduce protein adsorption? [J]. J. Biomed. Mater. Res.,1998,39:323-330.
    [167]Raynor J E, Petrie T A, Garcia A J, et al. Controlling cell adhesion to titanium: Functionalization of poly oligo(ethylene glycol)methacrylate brushes with cell-adhesive peptides [J]. Adv. Mater.,2007,19:1724-1728.
    [168]Tugulu S, Silacci P, Stergiopulos N, et al. RGD-Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells [J]. Biomaterials,2007,28:2536-2546.
    [169]Jones D M, Brown A A, Huck W T S. Surface-initiated polymerizations in aqueous media:Effect of initiator density [J]. Langmuir,2002,18:1265-1269.
    [170]Schuler M, Owen G R, Hamilton D W, et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence:A cell morphology study [J]. Biomaterials,2006,27:4003-4015.
    [171]Prasad B R, Brook M A, Smith T, et al. Controlling cellular activity by manipulating silicone surface roughness [J]. Colloids Surf., B.,2010,78: 237-242.
    [172]Wirth C, Comte V, Lagneau C, et al. Nitinol surface roughness modulates in vitro cell response:a comparison between fibroblasts and osteoblasts [J]. Mater. Sci. Eng., C.,2005,25:51-60.
    [173]Lord M S, Cousins B G, Doherty P J, et al. The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response [J]. Biomaterials, 2006,27:4856-4862.
    [174]Dalby M J, Giannaras D, Riehle M O, et al. Rapid fibroblast adhesion to 27nm high polymer demixed nano-topography [J]. Biomaterials,2004,25:77-83.
    [175]Le Saux G, Magenau A, Boecking T, et al. The Relative Importance of Topography.and RGD Ligand Density for Endothelial Cell Adhesion [J]. Plos One,2011,6:e21869.
    [176]Petrie T A, Capadona J R, Reyes C D, et al. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports [J]. Biomaterials,2006,27:5459-5470.
    [177]Yang Y Z, Glover R, Ong J L. Fibronectin adsorption on titanium surfaces and its effect on osteoblast precursor cell attachment [J]. Colloids Surf, B.,2003, 30:291-297.
    [178]Pierschbacher M D, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule [J]. Nature,1984,309: 30-33.
    [179]El-Ghannam A R, Ducheyne P, Risbud M, et al. Model surfaces engineered with nanoscale roughness and RGD tripeptides promote osteoblast activity [J]. J. Biomed. Mater. Res. A.,2004,68A:615-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700