用户名: 密码: 验证码:
禽病原性大肠杆菌的生物学特性及其可能毒力相关基因的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽大肠杆菌病(Avian Colibacillosis)是指部分或全部由禽病原性大肠杆菌(Avian Pathogenic Escherichia coli, APEC)所引起的局部或全身性感染的疾病,包括大肠杆菌性败血症、大肠杆菌肉芽肿(Hjarre氏病)、气囊病(慢性呼吸道病, CRD)、禽蜂窝织炎、肿头综合症、腹膜炎、输卵管炎、滑膜炎、全眼球炎及脐炎/卵黄囊感染。禽大肠杆菌病是2至12周龄鸡和火鸡的一种常见传染病,给养禽业造成了严重的经济损失。大肠杆菌血清型复杂多样,在禽类中最常见的血清型是O1、O2和O78。本研究旨在收集不同地区、不同时间和不同群体更多的分离株基础上,了解我国禽大肠杆菌病的流行病学,分离和鉴定APEC可能的毒力相关基因,同时结合其生物学特性,为深入研究该病的致病机理和特异防制措施奠定基础。
     1.我国部分地区禽源大肠杆菌的分离与鉴定
     从我国江苏、上海、山东、陕西、河南、广东、浙江、新疆、湖北、天津、北京、安徽、四川、贵州、内蒙古、山西、重庆、甘肃、黑龙江、广西等20个省、市、自治区临诊上典型大肠杆菌病病变的病、死家禽中分离到大肠杆菌1351株,通过玻板凝集和试管凝集试验,除236株未能定型、28株自凝外,测定出1087个分离株的血清型,这些分离株覆盖了101个血清型,其中以O78、O2、O18、O36、O1、O4、O107、O11、O15、O88、O127、O14、O6、O26、O138、O91、O9、O60和O131等19个血清型为主,占定型菌株的74.3% (808/1087),为我国部分地区禽源大肠杆菌的常见血清型,其中O78血清型分离株占定型菌株的24.9% (271/1087),为禽源大肠杆菌最主要的血清型。同时这19个血清型也是健康家禽泄殖腔分离株的重要血清型,占分离株的42.0% (55/131),但临床分离株比泄殖腔分离株在这19个血清型间的出现频率高,差异极显著(P<0.01),而且O14、O18、O36、O60和O138等5个血清型几乎只出现于临床分离株中,而在泄殖腔样品所
Colibacillosis refers to any localized or systemic infection caused entirely or partly by avian pathogenic Escherichia coli (APEC), including septicaemia, granuloma (Hjarre’s disease), air sac disease, chronic respiratory disease (CRD), avian cellulitis, swollen head syndrome, peritonitis, salpingitis, osteomyelitis/synovitis, panophthalmitis, and omphalitis/yolk sac infection. Colibacillosis in mammals is most often a primary enteric disease, whereas colibacillosis in poultry is typically a secondary localized or systemic disease occurring when host defence has been impaired or overwhelmed. Collectively, infections caused by Escherichia coli (E.coli) are responsible for significant economic losses to the poultry industry in many parts of the world. The pioneer serological surveys indicate that the majority of avian septicaemic E.coli strains belong to a limited number of O serogroups (O1, O2, and O78). Analysis of the involvement of these potential virulence factors using experimental models of infection just began during the past few years. Nevertheless, all the actual roles of the known virulence factors are not fully elucidated and certain steps of the infection process have not been related to previously identified factors. Furthermore, the mechanisms by which avian pathogenic E.coli cause infection are largely unknown.
     1. Isolation and identification of avian pathogenic Escherichia coli isolates in China
     We investigated 1351 E.coli isolates collected from visceral organs of poultry having died from colibacillosis from 20 provinces in China. Among these E.coli isolates,
引文
[1] Calnek BW. 禽病学 (第 10 版). 高 福, 苏敬良, 译. 北京: 中国农业出版社, 1999
    [2] 高 崧, 刘秀梵, 张如宽, 等. 我国部分地区禽病原性大肠杆菌的分离与鉴定. 畜牧兽医学报, 1999, 30(2): 164-171
    [3] 甘孟候. 中国禽病学. 北京: 中国农业出版社, 1999
    [4] Chen X, Gao S, Jiao X, et al. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhea in eastern China. Vet Microbiol, 2004, 103: 13-20
    [5] 陈祥, 高崧, 王雷, 等. 华东地区致初生仔猪腹泻大肠杆菌的O血清型和毒力因子. 微生物学报, 2004, 44(1): 96-100
    [6] 曹澍泽, 郭玉璞, 董国雄, 等. 兽医微生物学及免疫学技术. 北京: 北京农业大学出版社, 1992
    [7] 房海. 大肠埃希氏菌. 河北: 河北科学技术出版社, 1997
    [8] Rosenberger JK, Fries PA, Cloud SS, et al. In vitro and in vivo characterization of avian Escherichia coli. II. factors associated with pathogenicity. Avi Dis, 1985, 29: 1094-1107
    [9] Dho M, Lafont JP. Escherichia coli colonization of the trachea in poultry: comparison of virulent and avirulent strains in gnotoxenic chickens. Avi Dis, 1982, 26:787-797
    [10] Dho M, Lafont JP. Adhesive properties and iron uptake ability in Escherichia coli lethal and nonlethal for chicks. Avi Dis, 1984, 28:1016-1025
    [11] 王永坤. 鹅大肠杆菌性生殖器官病. 畜牧兽医学报, 1980, 11: 219-224
    [12] Blanco JE, Blanco M, Mora A, et al. Serotypes of Escherichia coli isolated from septicaemic chickens in Galicia (northwest Spain). Vet Microbiol, 1998, 61(3): 229-235
    [13] Allan BJ, van den Hurk JV, Potter AA. Characterization of Escherichia coli isolated from cases of avian colibacillosis. Can J Vet Res, 1993, 57(3): 146-151
    [14] Barbour EK, Nabbut NH, Al-Nakhli HM. Use of epidemiologic markers to identify the source of Escherichia coli infections in poultry. Am J Vet Res, 1985, 46(4): 989-991
    [15] Cloud SS, Rosenberger JK, Fries PA, et al. In vitro and in vivo characterization of avian Escherichia coli. I. Serotypes, metabolic activity, and antibiotic sensitivity. Avi Dis, 1985, 29(4): 1084-1093
    [16] Heller ED, Drabkin N. Some characteristics of pathogenic E.coli strains. Br Vet J, 1977, 133(6): 572-578
    [17] Sojka WJ, Garnaghan RBA. Escherichia coli infection in poultry. Res Vet Sci, 1961, 2: 340-353
    [18] Whittam TS, Wilson RA. Genetic relationships among pathogenic strains of avian Escherichia coli. Infect Immun, 1988, 56(9): 2458-2466
    [19] Dozois CM, Fairbrother JM, Harel J, et al. Pap- and pil- related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun, 1992, 60(7): 2648-2656
    [20] Jindal N, Rana N, Narang G, et al. Characterization and antibiogram of Escherichia coli isolates from poultry in some parts of Haryana. Indian Vet J, 1999, 76: 367-368
    [21] Kapur V, White DG, Wilson RA, et al. Outer membrane protein patterns mark clones of Escherichia coli O2 and O78 strains that cause avian septicemia. Infect Immun, 1992, 60: 1687-1691
    [1] Ambrozic J, Ostroversnik A, Starcic M, et al. Escherichia coli CoIV plasmid pRK100: genetic organization, stability and conjugal transfer. Microbiol, 1998, 144: 343-352
    [2] Cooke EM. Escherichia coli--an overview. J Hyg (Lond), 1985, 95(3): 523-530
    [3] Bergthorsson U, Ochman H. Heterogeneity of genome sizes among natural isolates of Escherichia coli. J Bacteriol, 1995, 177: 5784-5789
    [4] Barondess JJ, Beckwith J. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature, 1990, 346: 871-874
    [5] Dozois CM, Curtiss RIII. Pathogenic diversity of Escherichia coli and the emergence of ‘exotic’ islands in the gene stream. Vet Res, 1999, 30: 157-179
    [6] Hacker J, Blum-Oehler G, Mühldorfer, et al. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol, 1997, 23: 1089-1097
    [7] Bonacorsi SP, Clermont O, Tinsley C, et al. Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis associated strains. Infect Immun, 2000, 68: 2096-2101
    [8] Pradel N, Leroy-Setrin S, Joly B, et al. Genomic subtraction to identify and characterize sequences of shiga toxin-producing Escherichia coli O91: H21. Appl Environ Microbiol, 2002, 68: 2316-2325
    [9] Brown PK, Curtiss RIII. Unique chromosomal regions associated with virulence of an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci USA, 1996, 93: 11149-11154
    [10] Parreira VR, Gyles CL. A novel pathogenicity island integrated adjacent to the thrW tRNA gene of avian pathogenic Escherichia coli encodes a vacuolating autotransporter toxin. Infect Immun, 2003, 71: 5087-5096
    [11] Barnes HJ, Gross WB. Colibacillosis in diseases of poultry. Edited by Calnek BW, Barnes HJ, Beard CW, et al. Ames, IA: Iowa State University Press, 1997: 131-141
    [12] Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res, 1999, 30, 299-316
    [13] White DG, Dho-Moulin M, Wilson RA et al. Clonal relationships and variation in virulence among Escherichia coli strains of avian origin. Microbiol Pathog, 1993, 14: 399-409
    [14] Diatchenko L,Lau YFC,Campbell AP,et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acid Sci USA, 1996, 93(12): 6025-6030
    [15] Stocki SL,Babiuk LA,Rawlyk NA,et al. Identification of genomic differences between Escherichia coli strains pathogenic for poultry and E.coli K-12 MG1655 using suppression subtractive hybridization analysis. Microbiol Pathog, 2002, 33(6): 289-298
    [16] 陈 祥, 赵 娟, 高 崧, 等. 抑制差减杂交筛选禽致病性大肠杆菌基因组差异片段及其分析. 微生物学报, 2005, 45(5): 680-684
    [17] 高 崧, 刘秀梵, 张如宽, 等. 我国部分地区禽病原性大肠杆菌的分离与鉴定. 畜牧兽医学报, 1999, 30(2): 164-171
    [18] 高 崧, 吴长新, 文其乙, 等. 不同地区 101 个禽源性大肠杆菌分离株的致病性试验. 中国预防兽医学报, 1999, 21(1): 13-16
    [19] Ausubel F, Brent R, Kingston R E, et al. 精编分子生物学实验指南. 颜子颖, 王海林, 译. 北京:科学出版社, 1998
    [20] Sambrook J, Russell DW. 分子克隆实验指南(第三版). 黄培堂, 译. 北京: 科学出版社, 2002
    [21] Tinsley CR, Nassif X. Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities. Proc Natl Acad Sci USA, 1996, 93(10): 11109-11114
    [22] Emmerth M, Goebel W, Miller SI, et al. Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol, 1999, 181(18): 5652-5661
    [23] Lin LF, Posfai J, Roberts RJ, et al. Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc Natl Acad Sci USA, 2001, 98: 2740-2745
    [24] Agron PG, Walker RL, Kinde H, et al. Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl Environ Microbiol, 2001, 67: 4984-4991
    [25] Radnedge L, Gamez-Chin S, McCready PM, et al. Identification of nucleotide sequences for the specific and rapid detection of Yersinia pestis. Appl Environ Microbiol, 2001, 67: 3759-3762
    [26] Townsend KM, Frost AJ, Lee CW, et al. Development of PCR assays for species- and type-specific identification of Pasteurella multicida isolates. J Clin Microbiol, 1998, 36: 1096-1100
    [27] Akopyants NS, Fradkov A, Diatchenko L, et al. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc Natl Acad Sci USA, 1998, 95(10): 13108-13113
    [28] Mahairas GG, Sabo PJ, Hicley MJ, et al. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol, 1996, 178: 1274-1282
    [29] Sorsa LJ, Dufke S, Schubert S, et al. Identification of novel virulence-associated loci in uropathogenic Escherichia coli by suppression subtractive hybridization. FEMS Microbiol Lett, 2004, 230: 203-208
    [30] Calnek BW. 禽病学 (第 10 版). 高 福, 苏敬良, 译. 北京: 中国农业出版社: 1999
    [31] Dozois CM, Daigle F, Curtiss RIII. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acid Sci USA, 2003, 100(1): 247-252
    [32] 高 崧, 姜 焱, 刘业兵, 等. 禽病原性大肠杆菌 1 型菌毛的分离与鉴定. 微生物学报, 1999, 39(6): 521-526
    [33] 刘业兵, 高 崧, 彭大新, 等. 禽病原性大肠杆菌 I 型菌毛单克隆抗体的研制及其对分离株的检测. 中国兽医学报, 2000, 20(3): 148-151
    [34] Rychlik I, Sebkova A, Gregorova D, et al. Low-molecular-weight plasmid of Salmonella enterica serovar enteritidis codes for retron reverse transcriptase and influences phage resistance. J Bacteriol, 2001, 183(9): 2852-2858
    [35] Christie PJ, Vogel JP. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol, 2000, 8: 354-360
    [36] Ozanne G, Mathieu LG, Baril JP. Production of colicin V in vitro and in vivo and observations on its effects in experimental animals. Infect Immun, 1977, 17(3): 497-503
    [1] Sussman M. Escherichia coli: mechanisms of virulence. Cambridge Univ Press, Cambridge, UK, 1997
    [2] Russo TA, Johnson JR. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis, 2000, 181(5): 1753-1754
    [3] Dozois CM, Curtiss RIII. Pathogenic diversity of Escherichia coli and the emergence of 'exotic' islands in the gene stream. Vet Res, 1999, 30(2-3), 157-179
    [4] Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature, 2000, 405 (6784): 299-304
    [5] Bergthorsson U, Ochman H. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol, 1998, 15(1):6-16
    [6] Jarvis KG, Giron JA, Jerse AE, et al. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci USA, 1995, 92(17): 7996-8000
    [7] Bloch CA, Rode CK. Pathogenicity island evaluation in Escherichia coli K1 by crossing with laboratory strain K-12. Infect Immun, 1996, 64(8): 3218-3223
    [8] Brown PK, Curtiss RIII. Unique chromosomal regions associated with virulence of an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci USA, 1996, 93(20): 11149-11154
    [9] Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res, 1999, 30 (2-3): 299-316
    [10] Dozois CM, Dho-Moulin M, Bree A, et al. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the Tsh genetic region. Infect Immun, 2000, 68(7): 4145-4154
    [11] Calnek BW. 禽病学 (第 10 版). 高 福, 苏敬良, 译. 北京: 中国农业出版社, 1999
    [12] Dozois CM, Daigle F, Curtiss RIII. Identification of pathogen specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci USA, 2003, 100(1): 247-252
    [13] 高 崧, 姜 焱, 刘业兵, 等. 禽病原性大肠杆菌 1 型菌毛的分离与鉴定. 微生物学报, 1999, 39(6): 521-526
    [14] 刘业兵, 高 崧, 彭大新, 等. 禽病原性大肠杆菌 I 型菌毛单克隆抗体的研制及其对分离株的检测. 中国兽医学报, 2000, 20(3): 148-151
    [15] Graham JE, Clark-Curtiss JE. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA, 1999, 96: 11554-11559
    [16] Daigle F, Graham JE, Curtiss RIII. Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol, 2001, 41(5): 1211-1222
    [17] Graham JE, Peek RM, Krishna U, et al. Global analysis of Helicobacter pylori gene expression in human gastric mucosa. Gastroenterology, 2002, 123(5): 1637-1648
    [18] Hou JY, Graham JE, Clark-Curtiss JE. Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infect Immun, 2002, 70(7): 3714-3726
    [19] Liu S, Graham JE, Bigelow L, et al. Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol, 2002, 68(4): 1697-1705
    [20] Baltes N, Gerlach GF. Identification of genes transcribed by Actinobacillus pleuropneumoniae in necrotic porcine lung tissue by using selective capture of transcribed sequences. Infect Immun, 2004, 72(11): 6711-6716
    [21] 陈 祥, 赵 娟, 高 崧, 等. 抑制差减杂交筛选禽致病性大肠杆菌基因组差异片段及其分析. 微生物学报, 2005, 45(5): 680-684
    [22] 高 崧, 刘秀梵, 张如宽, 等. 我国部分地区禽病原性大肠杆菌的分离与鉴定. 畜牧兽医学报, 1999, 30(2): 164-171
    [23] 高 崧, 吴长新, 文其乙, 等. 不同地区 101 个禽源性大肠杆菌分离株的致病性试验. 中国预防兽医学报, 1999, 21(1): 13-16
    [24] Ausubel F, Brent R, Kingston RE, et al. 精编分子生物学实验指南. 颜子颖, 王海林, 译. 北京: 科学出版社, 1998
    [25] Sambrook J, Russell DW. 分子克隆实验指南 (第三版). 黄培堂, 译. 北京: 科学出版社, 2002
    [26] Hensel M, Shea JE, Gleeson C, et al. Simultaneous identification of bacterial virulence genes by negative selection. Science, 1995, 269(5222): 400-403
    [27] Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues. Science, 1993, 259 (5095): 686-688
    [28] Provence DL, Curtiss RIII. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun, 1994, 62: 1369-1380
    [29] Stathopoulos C, Provence DL, Curtiss RIII. Characterization of the avian pathogenicEscherichia coli hemagglutinin Tsh, a member of the immunoglobulin a protease-type family of autotransporters. Infect Immun, 1999, 67(2): 772-781
    [30] Otto BR, van Dooren SJ, Dozois CM, et al. Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect Immun, 2002, 70(1): 5-10
    [31] Joiner KA. Complement evasion by bacteria and parasites. Annu Rev Microbiol, 1988, 42: 201-230
    [32] Neilands JB. Mechanism and regulation of synthesis of aerobactin in Escherichia coli K12 (pColV-K30). Can J Microbiol, 1992, 38(7): 728-733
    [33] B?umler AJ, Norris TL, Lasco T, et al. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J Bacteriol, 1998, 180: 1446-1453
    [34] Russo TA, Carlino UB, Mong A, et al. Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect Immun, 1999, 67: 5306-5314
    [35] Russo TA, McFadden CD, Carlino-MacDonald UB, et al. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun, 2002, 70: 7156-7160
    [36] Rychlik I, Sebkova A, Gregorova D, et al. Low-molecular-weight plasmid of Salmonella enterica serovar enteritidis codes for retron reverse transcriptase and influences phage resistance. J Bacteriol, 2001, 183(9): 2852-2858
    [37] Christie PJ, Vogel JP. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol, 2000, 8: 354-360
    [38] Smith HW, Huggins MB. Further observations on the association of the colicin V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol, 1976, 92: 335-350
    [39] Katz ME, Wright CL, Gartside TS, et al. Genetic organization of the duplicated vap region of the Dichetobacter nodosus genome. J Bacteriol, 1994, 176:2663-2669
    [40] 吴乃虎. 基因工程原理第二版(上册). 北京: 科学出版社,1999
    [1] Cooke EM. Escherichia coli--an overview. J Hyg (Lond), 1985, 95(3): 523-530
    [2] Calnek BW. 禽病学 (第10版). 高 福, 苏敬良, 译. 北京: 中国农业出版社, 1999
    [3] Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res, 1999, 30: 299-316
    [4] Cloud SS, Rosenberger JK, Fries PA, et al. In vitro and in vivo characterization of avian Escherichia coli. I. Serotypes, metabolic activity, and antibiotic sensitivity. Avi Dis, 1985, 29(4): 1084-1093
    [5] Dho-Moulin M, van den Bosch JF, Girardeau JP, et al. Surface antigens from Escherichia coli O2 and O78 strains of avian origin. Infect Immun, 1990, 58(3): 740-745
    [6] Naveh MW, Zusman T, Skutelsky E, et al. Adherence pili in avian strains of Escherichia coli: Effect on pathogenicity. Avi Dis, 1984, 28: 651-661
    [7] Pourbakhsh SA, Boulianne M, Martineau-Doize B, et al. Virulence mechanisms of avian fimbriated Escherichia coli in experimentally inoculated chickens. Vet Microbiol, 1997, 58(24): 195-213
    [8] Dozois CM, Fairbrother JM, Harel J, et al. Pap- and pil- related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun, 1992, 60(7): 2648-2656
    [9] Emery DA, Nagaraja KV, Shaw DP, et al. Virulence factors of Escherichia coli associated with colisepticemia in chickens and turkeys. Avi Dis, 1992, 36(3): 504-511
    [10] Blanco M, Blanco JE, Alonso MP, et al. Detection of pap, sfa and afa adhesin-encoding operons in uropathogenic Escherichia coli strains: relationship with expression of adhesins and production of toxins. Res Microbiol, 1997, 148(9): 745-755
    [11] Dozois CM, Daigle F, Curtiss RIII. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acid Sci USA, 2003, 100(1): 247-252
    [12] 陈 祥, 赵 娟, 高 崧, 等. 抑制差减杂交筛选禽致病性大肠杆菌基因组差异片段及其分析. 微生物学报, 2005, 45(5): 680-684
    [13] Chen X, Gao S, Jiao X, et al. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhea in eastern China. Vet Microbiol, 2004, 103: 13-20
    [14] 陈 祥, 高 崧, 王雷, 等. 华东地区致初生仔猪腹泻大肠杆菌的O血清型和毒力因子. 微生物学报, 2004, 44(1): 96-100
    [15] Ausubel F, Brent R, Kingston RE, et al. 精编分子生物学实验指南. 颜子颖, 王海林, 译. 北京: 科学出版社, 1998
    [16] Sambrook J, Russell DW. 分子克隆实验指南 (第三版). 黄培堂, 译. 北京: 科学出版社, 2002
    [17] Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol, 1988, 170(6): 2575-2583
    [18] Sack DA, Huda S, Neogi PK, et al. Microtiter ganglioside enzyme-linked immunosorbent assay for vibrio and Escherichia coli heat-labile enterotoxins and antitoxin. J Clin Microbiol, 1980, 11(1): 35-40
    [19] Dozois CM, Dho-Moulin M, Bree A, et al. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the tsh genetic region. Infect Immun, 2000, 68(7): 4145-4154
    [20] B?umler AJ, Norris TL, Lasco T, et al. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J Bacteriol, 1998, 180: 1446-1453
    [21] Russo TA, Carlino UB, Mong A, et al. Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect Immun, 1999, 67: 5306-5314
    [22] Dobrindt U, Blum-Oehler G, Nagy G, et al. Genetic structure and distribution of four pathogenicity islands (PAI I536 to PAI IV536) of uropathogenic Escherichia coli strain 536. Infect Immun, 2002, 70 (11): 6365-6372
    [23] Russo TA, McFadden CD, Carlino-MacDonald U B, et al. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun, 2002, 70: 7156-7160
    [24] Provence DL, Curtiss RIII. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun, 1994, 62: 1369-1380
    [25] Maurer JJ, Brown TP, Steffens WL, et al. The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avi Dis, 1998, 42(1): 106-118
    [26] Ngeleka M, Brereton L, Brown G, et al. Pathotypes of avian Escherichia coli as related to tsh-, pap-, pil-, and iuc- DNA sequences, and antibiotic sensitivity of isolates from internal tissues and the cloacae of broilers. Avi Dis, 2002, 46: 143-152
    [27] Jan?en T, Schwarz C, Preikschat P, et al. Virulence-associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. Int J Med Microbiol, 2001, 291(5): 371-378
    [28] Delicato ER, de Brito BG, Konopatzki AP, et al. Occurrence of the temperature-sensitive hemagglutinin among avian Escherichia coli. Avi Dis, 2002, 46(3): 713-716
    [29] Ewers C, Janssen T, Kiessling S, et al. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet Microbiol, 2004, 104(1-2): 91-101
    [1] Calnek BW 主编. 禽病学(第 10 版). 高福, 苏敬良, 译. 北京: 中国农业出版社, 1999
    [2] Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res, 1999, 30(2-3): 299-316
    [3] Pourbakhsh SA, Dho-Moulin M, Bree A, et al. Localization of the in vivo expression of P and F1 fimbriae in chickens experimentally inoculated with pathogenic Escherichia coli. Microbiol Pathog, 1997, 22(6): 331-341
    [4] Vidotto MC, Navarro HR, Gaziri LCJ, et al. Adherence pili of pathogenic strains of avian Escherichia coli. Vet Microbiol, 1997, 59: 79-87
    [5] Provence DL, Curtiss RIII. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun, 1994, 62: 1369-1380
    [6] Blanco JE, Blanco M, Mora A, et al. Production of toxins (enterotoxins, verotoxins, and necrotoxins) and colicins by Escherichia coli strains isolated from septicemic and healthy chickens: relationship with in vivo pathogenicity. J Clin Microbiol, 1997, 35(11): 2953-2957
    [7] Mellata M, Dho-Moulin M, Dozois CM, et al. Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and pathogenicity. Infect Immun, 2003, 71(1): 536-540
    [8] Foley SL, Horne SM, Giddings CW, et al. Iss from a virulent avian Escherichia coli. Avi Dis, 2000, 44:185-191
    [9] Lafont JP, Dho M, D'Hauteville HM, et al. Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun, 1987, 55(1): 193-197
    [10] Dozois CM, Daigle F, Curtiss RIII. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acid Sci USA, 2003, 100(1): 247-252
    [11] Vidotto MC, Terra VA, Lima GSCC, et al. Iron-regulated outer-membrane proteins of strains of avian septicemic Escherichia coli. Braz J Med Biol Res, 1994, 27: 1291-1297
    [12] 高 崧, 刘秀梵, 张如宽, 等. 我国部分地区禽病原性大肠杆菌的分离与鉴定. 畜牧兽医学报, 1999, 30(2): 164-171
    [13] Chen X, Gao S, Jiao X, et al. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhea in eastern China. Vet Microbiol, 2004, 103: 13-20
    [14] 陈祥, 高崧, 王雷, 等. 华东地区致初生仔猪腹泻大肠杆菌的O血清型和毒力因子. 微生物学报, 2004, 44(1): 96-100
    [15] Rosenberger JK, Fries PA, Cloud SS, et al. In vitro and in vivo characterization of avian Escherichia coli. II. factors associated with pathogenicity. Avi Dis, 1985, 29: 1094-1107
    [16] Dho M, Lafont JP. Escherichia coli colonization of the trachea in poultry: comparison ofvirulent and avirulent strains in gnotoxenic chickens. Avi Dis, 1982, 26: 787-797
    [17] Dho M, Lafont JP. Adhesive properties and iron uptake ability in Escherichia coli lethal and nonlethal for chicks. Avi Dis, 1984, 28: 1016-1025
    [18] Ausubel F, Brent R, Kingston RE, et al. 精编分子生物学实验指南. 颜子颖, 王海林, 译. 北京: 科学出版社, 1998
    [19] Sambrook J, Russell DW. 分子克隆实验指南 (第三版). 黄培堂, 译. 北京: 科学出版社, 2002
    [20] 曹澍泽, 郭玉璞, 董国雄, 等. 兽医微生物学及免疫学技术. 北京: 北京农业大学出版社, 1992
    [21] 高 崧, 姜 焱, 刘业兵, 等. 禽病原性大肠杆菌 1 型菌毛的分离与鉴定. 微生物学报, 1999, 39(6): 521-526
    [22] Kaipainen T, Pohjanvirta T, Shpigel N Y, et al. Virulence factors of Escherichia coli isolated from bovine clinical mastitis. Vet Microbiol, 2002, 85: 37-46
    [23] Barnes HJ, Gross WB. Colibacillosis. In: Calnek BW, Barnes HJ, Beard CW, et al (Eds.), Disease of Poultry. 10th edn (pp. 131-141). Ames, IA: Iowa State University Press, 1997
    [24] Naveh MW, Zusman T, Skutelsky E, et al. Adherence pili in avian strains of Escherichia coli: Effect on pathogenicity. Avi Dis, 1984, 28: 651-661
    [25] Dozois CM, Chanteloup N, Dho-Moulin M, et al. Bacterial colonization and in vivo expression of F1 (type 1) fimbrial antigens in chickens experimentally infected with pathogenic Escherichia coli. Avi Dis, 1994, 38 (2): 231-239
    [26] La Ragione RM, Sayers AR, Woodward MJ. The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78: K80 in the day-old-chicken model. Epidemiol Infect, 2000, 124: 351-363.
    [27] Dozois CM, Pourbakhsh SA, Fairbrother JM. Expression of P and type 1 (F1) fimbriae in pathogenic Escherichia coli from poultry. Vet Microbiol, 1995, 45(4): 297-309
    [28]Dress DT, Waxler GL. Enteric colibacillosis in gnotobiotic swine: An electron microscope study. Am J Vet Res, 1970, 31(7): 1159-1171
    [29] Marc D. Arne P, Bree A, et al. Colonization ability and pathogenic properties of a fim- mutant of an avian strain of Escherichia coli. Res Microbiol, 1998, 149: 473-485
    [30] Kariyawasam S, Wilkie BN, Gyles CL. Resistance of broiler chickens to Escherichia coli respiratory tract infection induced by passively transferred egg-yolk antibodies. Vet Microbiol, 2004, 98: 273-284
    [31] Dozois CM, Fairbrother JM, Harel J, et al. Pap- and pil- related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun, 1992, 60: 2648-2656.
    [32] van den Bosch JF, Hendriks JH, Gladigau I, et al. Identification of F11 fimbriae on chicken Escherichia coli strains. Infect Immun, 1993, 61(3): 800-806
    [33] Delicato ER, de Brito BG, Gaziri LCJ, et al. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Vet Microbiol, 2003, 94: 97-103
    [34] Linggood MA, Roberts M, Ford S, et al. Incidence of the aerobactin iron uptake system among Escherichia coli isolates from infections of farm animals. J Gen Microbiol, 1987, 133(4): 835-842
    [35] Emery DA, Nagaraja KV, Shaw DP, et al. Virulence factors of Escherichia coli associated with colisepticemia in chickens and turkeys. Avi Dis, 1992, 36(3): 504-511
    [36] Maurer JJ, Brown TP, Steffens WL, et al. The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avi Dis, 1998, 42(1): 106-118
    [37] Jan?en T, Schwarz C, Preikschat P, et al. Virulence-associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. Int J Med Microbiol, 2001, 291(5): 371-378
    [38] Dozois CM, Dho-Moulin M, Bree A, et al. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the tsh genetic region. Infect Immun, 2000, 68(7): 4145-4154
    [39] Delicato ER, de Brito BG, Konopatzki AP, et al. Occurrence of the temperature-sensitive hemagglutinin among avian Escherichia coli. Avi Dis, 2002, 46(3): 713-716
    [40] Ewers C, Janssen T, Kiessling S, et al. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet Microbiol, 2004, 104(1-2): 91-101
    [41] Johnson TJ, Giddings CW, Horne SM, et al. Location of increased serum survival gene and selected virulence traits on a conjugative R plasmid in an avian Escherichia coli isolate. Avi Dis, 2002, 46(2):342-352
    [42] Nolan LK, Giddings CW, Horne SM, et al. Complement resistance, as determined by viable count and flow cytometric methods, and its association with the presence of iss and the virulence of avian Escherichia coli. Avi Dis, 2002, 46(2): 386-3921
    [43] Doetkott DM, Nolan LK, Giddings CW, et al. Large plasmids of avian Escherichia coli isolates. Avi Dis, 1996, 40(4): 927-930
    [44] Nolan LK, Wooley RE, Brown J, et al. Comparison of a complement resistance test, a chicken embryo lethality test, and the chicken lethality test for determining virulence of avian Escherichia coli. Avi Dis, 1992, 36(2): 395-397
    [45] Knobl T, Baccaro MR, Moreno AM, et al. Virulence properties of Escherichia coli isolatedfrom ostriches with respiratory disease. Vet Microbiol, 2001, 83(1): 71-80
    [46] Vidotto MC, Muller EE, de Freitas JC, et al. Virulence factors of avian Escherichia coli. Avi Dis, 1990, 34: 531-538
    [47] Pfaff-McDonough SJ, Horne SM, Giddings CW, et al. Complement resistance-related traits among Escherichia coli isolates from apparently healthy birds and birds with colibacillosis. Avi Dis, 2000, 44(1): 23-33
    [48] Orskov F, Orskov I. Escherichia coli serotyping and disease in man and animals. Can J Microbiol, 1992, 38(7): 699-704
    [49] Pourbakhsh SA, Boulianne M, Martineau-Doize B, et al. Virulence mechanisms of avian fimbriated Escherichia coli in experimentally inoculated chickens. Vet Microbiol, 1997, 58(24): 195-213
    [50] Mellata M, Dho-Moulin M, Dozois CM, et al. Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun, 2003, 71(1): 494-503
    [51] Ngeleka M, Brereton L, Brown G, et al. Pathotypes of avian Escherichia coli as related to tsh-, pap-, pil-, and iuc- DNA sequences, and antibiotic sensitivity of isolates from internal tissues and the cloacae of broilers. Avi Dis, 2002, 46: 143-152
    [52] Hacker JG, Blum-Oehler I, Muhldorfer, et al. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol, 1997, 23: 1089-1097
    [53] Groisman EA, Ochman H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell, 1996, 87: 791-794
    [54] Gophna U, Oelschlaeger TA, Hacker J, et al. Yersinia HPI in septicemic Escherichia coli strains isolated from diverse hosts. FEMS Microbiol Lett, 2001, 196(1): 57-60
    [55] 陈 祥, 赵 娟, 高 崧, 等. 我国部分地区猪源大肠杆菌 LEE 和 HPI 毒力岛相关基因的检测. 中国人兽共患病学报, 2006, 22(1): 37-40
    [1] Escherich T. The intestinal bacteria of the neonate and breast-fed infant. Rev Infect Dis, 1989, 11(2): 352-356
    [2] Cooke EM. Escherichia coli--an overview. J Hyg (Lond), 1985, 95(3): 523-530
    [3] Yogaratnam V. Analysis of the causes of high rates of carcass rejection of a poultry processing plant. Vet Rec, 1995, 137: 215-217
    [4] 王永坤. 鹅大肠杆菌性生殖器官病. 畜牧兽医学报, 1980, 11: 219-224
    [5] Gross WG. Diseases due to Escherichia coli in poultry. In Gyles CL, (eds.). Escherichia coli in domestic animals and humans. CAB International, Wallingford, United Kinglom, 1994, pp. 237-260
    [6] Beery JT, Doyle MP, Schoeni JL. Colonization of chicken cecae by Escherichia coli associated with hemorrhagic colitis. Appl Environ Microbiol, 1985, 49(2): 310-315
    [7] Doyle MO, Schoeni JL. Isolation of Escherichia coli O157: H7 from retail fresh meats and poultry. Appl Environ Microbiol, 1987, 53(10): 2394-2396
    [8] Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157: H7, other enterohemorrhagic E.coli and the associated hemolytic uremic syndrome. Epidemiol Rev, 1991, 13: 60-98
    [9] Stavric S, Buchanan B, Gleeson TM. Intestinal colonization of young chicks with Escherichia coli O157: H7 and other verotoxin-producing serotypes. J Appl Bacteriol, 1993, 74: 557-563
    [10] Blanco JE, Blanco M, Mora A, et al. Serotypes of Escherichia coli isolated from septicaemic chickens in Galicia (northwest Spain). Vet Microbiol, 1998, 61(3): 229-235
    [11] Dozois CM, Fairbrother JM, Harel J, et al. Pap- and pil- related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun, 1992, 60(7): 2648-2656
    [12] Allan BJ, van den Hurk JV, Potter AA. Characterization of Escherichia coli isolated fromcases of avian colibacillosis. Can J Vet Res, 1993, 57(3): 146-151
    [13] Barbour EK, Nabbut NH, Al-Nakhli HM. Use of epidemiologic markers to identify the source of Escherichia coli infections in poultry. Am J Vet Res, 1985, 46(4): 989-991
    [14] Cloud SS, Rosenberger JK, Fries PA, et al. In vitro and in vivo characterization of avian Escherichia coli.I. Serotypes, metabolic activity, and antibiotic sensitivity. Avi Dis, 1985, 29(4): 1084-1093
    [15] Harry EG, Chubb LG. Relationships between certain biochemical characteristics and pathological activity in avian strains of E.coli. J Comp Pathol, 1964, 74: 180-187
    [16] Heller ED, Drabkin N. Some characteristics of pathogenic E.coli strains. Br Vet J, 1977, 133(6): 572-578
    [17] Whittam TS, Wilson RA. Genetic relationships among pathogenic strains of avian Escherichia coli. Infect Immun, 1988, 56(9): 2458-2466
    [18] Dho-Moulin M, van den Bosch JF, Girardeau JP, et al. Surface antigens from Escherichia coli O2 and O78 strains of avian origin. Infect Immun, 1990, 58(3): 740-745
    [19] Naveh MW, Zusman T, Skutelsky E, et al. Adherence pili in avian strains of Escherichia coli: Effect on pathogenicity. Avi Dis, 1984, 28: 651-661
    [20] Pourbakhsh SA, Boulianne M, Martineau-Doize B, et al. Virulence mechanisms of avian fimbriated Escherichia coli in experimentally inoculated chickens. Vet Microbiol, 1997, 58(24): 195-213
    [21] Pourbakhsh SA, Dho-Moulin M, Bree A, et al. Localization of the in vivo expression of P and F1 fimbriae in chickens experimentally inoculated with pathogenic Escherichia coli. Microbiol Pathog, 1997, 22(6): 331-341
    [22] van den Bosch JF, Hendriks JH, Gladigau I, et al. Identification of F11 fimbriae on chicken Escherichia coli strains. Infect Immun, 1993, 61(3): 800-806
    [23] Maurer JJ, Brown TP, Steffens WL, et al. The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avi Dis, 1998, 42(1): 106-118
    [24] Provence DL, Curtiss RIII. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun, 1994, 62: 1369-1380
    [25] Lafont JP, Dho M, D'Hauteville HM, et al. Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun, 1987, 55(1): 193-197
    [26] Valvano MA. Diphenylamine increases cloacin DF13 sensitivity in avian septicemic strains of Escherichia coli. Vet Microbiol, 1992, 32(2): 149-161
    [27] Foley SL, Horne SM, Giddings CW, et al. Iss from a virulent avian Escherichia coli. Avi Dis, 2000, 44(1): 185-191
    [28] Ellis MG, Arp LH, Lamont SJ. Serum resistance and virulence of Escherichia coli isolated from turkeys. Am J Vet Res, 1988, 49(12): 2034-2037
    [29] Pfaff-McDonough SJ, Horne SM, Giddings CW, et al. Complement resistance-related traits among Escherichia coli isolates from apparently healthy birds and birds with colibacillosis.Avi Dis, 2000, 44(1): 23-33
    [30] Wooley RE, Nolan LK, Brown J, et al. Association of K-1 capsule, smooth lipopolysaccharides, traT gene, and Colicin V production with complement resistance and virulence of avian Escherichia coli. Avi Dis, 1993, 37(4): 1092-1096
    [31] Blanco M, Blanco JE, Alonso MP, et al. Detection of pap, sfa and afa adhesin-encoding operons in uropathogenic Escherichia coli strains: relationship with expression of adhesins and production of toxins. Res Microbiol, 1997, 148(9): 745-755
    [32] Blanco JE, Blanco M, Mora A, et al. Production of toxins (enterotoxins, verotoxins, and necrotoxins) and colicins by Escherichia coli strains isolated from septicemic and healthy chickens: relationship with in vivo pathogenicity. J Clin Microbiol, 1997, 35(11): 2953-2957
    [33] Emery DA, Nagaraja KV, Shaw DP, et al. Virulence factors of Escherichia coli associated with colisepticemia in chickens and turkeys. Avi Dis, 1992, 36(3): 504-511
    [34] Parreira VR, Yano T. Cytotoxin produced by Escherichia coli isolated from chickens with swollen head syndrome (SHS). Vet Microbiol, 1998, 62(2): 111-119
    [35] Iman C, Pierre G, Annie B, et al. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol, 2006, 188(3): 977-987
    [36] Germon P, Chen YH, He L, et al. ibeA, a virulence factor of avian pathogenic Escherichia coli. Microbiol, 2005, 151:1179-1186
    [37] Lamarche MG, Dozois CM, Daigle F, et al. Inactivation of the Pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun, 2005, 73(7): 4138-4145
    [38] Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res, 1999, 30(2-3): 299-316
    [39] Ewers C, Janssen T, Wieler LH. Avian pathogenic Escherichia coli (APEC). Berl Munch Tierarztl Wochenschr, 2003, 116(9-10): 381-395
    [40] Sojka WJ. Escherichia coli in domestic animals and poultry. Commonwealth Agricultural Bureau, Farnham Royal, Engliang, 1965
    [41] Sojka WJ, Garnaghan RBA. Escherichia coli infection in poultry. Res Vet Sci, 1961, 2: 340-353
    [42] Jindal N, Rana N, Narang G, et al. Characterization and antibiogram of Escherichia coli isolates from poultry in some parts of Haryana. Indian Vet J, 1999, 76: 367-368
    [43] 张春荣, 苏亚拉图. 我国流行的鸡致病性大肠杆菌血清型. 中国动物检疫, 1996, 13(1): 27
    [44] 高 崧, 刘秀梵, 张如宽, 等. 我国部分地区禽病原性大肠杆菌的分离与鉴定. 畜牧兽医学报, 1999, 30: 164-171
    [45] Heinrichs DE, Yethon JA, Whitfield C. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol, 1998, 30(2): 221-232.
    [46] 吴朝栋. 内毒素诱生的细胞因子及其作用研究进展. 国外医学免疫学分册, 1995, 1:11-14
    [47] Fabian TC, Croce MA, Fabian MJ, et al. Reduced tumor necrosis factor production in endotoxin-spiked whole blood after trauma: experimental results and clinical correlation. Surgery, 1995, 118(1):63-72
    [48] Katiyar AK, Vegad JL, Awadhiya RP. Increased vascular permeability and leucocyte emigration in Escherichia coli endotoxin injury in the chicken skin. Res Vet Sci, 1992, 52(2): 154-161
    [49] Weebadda WK, Hoover GJ, Hunter DB, et al. Avian air sac and plasma proteins that bind surface polysaccharides of Escherichia coli O2. Comp Biochem Physiol B Biochem Mol Biol, 2001, 130(3):299-312
    [50] Dozois CM, Daigle F, Curtiss RIII. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acid Sci USA, 2003, 100(1): 247-252
    [51] Mellata M, Dho-Moulin M, Dozois CM, et al. Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and pathogenicity. Infect Immun, 2003, 71(1): 536-540
    [52] Mellata M, Dho-Moulin M, Dozois CM, et al. Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun, 2003, 71(1): 494-503
    [53] Joiner KA. Complement evasion by bacteria and parasites. Annu Rev Microbiol, 1988, 42: 201-230
    [54] Orskov F, Orskov I. Escherichia coli serotyping and disease in man and animals. Can J Microbiol, 1992, 38(7): 699-704
    [55] Robbins JB, McCracken GH, Gotschlich EC, et al. Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N Engl J Med, 1974, 290(22): 1216-1220
    [56] Orndorff PE, Bloch CA. The role of type 1 pili in the pathogenesis of Escherichia coli infections: a short review and some new ideas. Microbiol Pathog, 1990, 9(2): 75-79
    [57] Jones CH, Pinkner JS, Roth R, et al. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA, 1995, 92(6): 2081-2085
    [58] Russell PW, Orndorff PE. Lesions in two Escherichia coli type 1 pilus genes alter pilus number and length without affecting receptor binding. J Bacteriol, 1992, 174(18): 5923-5935
    [59] Suwanichkul A, Panigrahy B, Wagner RM. Antigenic relatedness and partial amino acid sequences of pili of Escherichia coli serotypes O1, O2 and O78 pathogenic to poultry. Avi Dis, 1987, 31: 809-813
    [60] Suwanichkul A, Panigrahy B. Biological and Immunological characterization of pili of Escherichia coli serotypes O1, O2 and O78 pathogenic to poultry. Avi Dis, 1986, 30: 781-787
    [61] Suwanichkul A, Panigrahy B. Diversity of pilus subunits of Escherichia coli isolated from avian species. Avi Dis, 1988, 32: 822-825
    [62] Dozois CM, Pourbakhsh SA, Fairbrother JM. Expression of P and type 1 (F1) fimbriae in pathogenic Escherichia coli from poultry. Vet Microbiol, 1995, 45(4): 297-309
    [63] Dozois CM, Chanteloup N, Dho-Moulin M, et al. Bacterial colonization and in vivoexpression of F 1 (type 1) fimbrial antigens in chickens experimentally infected with pathogenic Escherichia coli. Avi Dis, 1994, 38 (2): 231-239
    [64] Gyimah JE. Immunogenicity of an Escherichia coli (serotype O1) pili vaccine in chickens. Avi Dis, 1985, 29: 1078-1083
    [65] Gyimah JE, Panigrahy B. Immunogenicity of an Escherichia coli multivalent pilus vaccine in chickens. Avi Dis, 1986, 30: 687-689
    [66] Arp LH, Robinson IM, Jensen AE. Pathology of liver granulomas in turkeys. Vet Pathol, 1983, 20(1): 80-89
    [67] Marc D, Arne P, Bree A, et al. Colonization ability and pathogenic properties of a fim- mutant of an avian strain of Escherichia coli. Res Microbiol, 1998, 149: 473-485
    [68] Marklund BI. Horizontal gene transfer of the Escherichia coli pap and prs pili operons as a mechanism for the development of tissue specific adhesive properties. Mol Microbiol, 1992, 6: 2225-2242
    [69] Lund B. The papG protein is the α-D-galactopyranosyl-(1, 4)-β-D-galactopy ranose binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci USA, 1987, 84: 5898-5902
    [70] Lund B. Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Mol Microbiol, 1988, 2: 255-263
    [71] Moore D, Sowa BA, Ippen-Ihler K. Location of an F-pilin pool in the inner membrane. J Bacteriol, 1981, 146(1): 251-259
    [72] Uhlin BE. Adhesion to human cells by Escherichia coli lacking the major subunit of digalatoside specific pilus adhesion. Proc Natl Acad Sci USA, 1985, 82: 1800-1804
    [73] Denich K. DNA sequences of three papA genes from uropathogenic Escherichia coli strains, evidence of structural and serological conservation. Infect Immun, 1991, 59(11): 3849-3858
    [74]Dress DT, Waxler GL. Enteric colibacillosis in gnotobiotic swine: An electron microscope study. Am J Vet Res, 1970, 31(7): 1159-1171
    [75] La Ragione RM, Sayers AR, Woodward MJ. The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78: K80 in the day-old-chicken model. Epidemiol Infect, 2000, 124: 351-363
    [76] Kariyawasam S, Wilkie BN, Gyles CL. Resistance of broiler chickens to Escherichia coli respiratory tract infection induced by passively transferred egg-yolk antibodies. Vet Microbiol, 2004, 98: 273-284
    [77] Kostakioti M, Stathopoulos C. Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun, 2004, 72(10): 5548-5554
    [78] Otto BR, van Dooren SJ, Dozois CM, et al. Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect Immun, 2002, 70(1): 5-10
    [79] Otto E, Forster G, Kuhlemann K, et al. TSH receptor in endocrine autoimmunity. Clin Exp Rheumatol, 1996, 14(Sup15): 77-84
    [80] Dozois CM, Dho-Moulin M, Bree A, et al. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the tsh genetic region.Infect Immun, 2000, 68(7): 4145-4154
    [81] Stathopoulos C, Provence DL, Curtiss RIII. Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun, 1999, 67(2): 772-781
    [82] Ngeleka M, Brereton L, Brown G, et al. Pathotypes of avian Escherichia coli as related to tsh-, pap-, pil-, and iuc- DNA sequences, and antibiotic sensitivity of isolates from internal tissues and the cloacae of broilers. Avi Dis, 2002, 46: 143-152
    [83] Janben T, Schwarz C, Preikschat P, et al. Virulence-associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. Int J Med Microbiol, 2001, 291(5): 371-378
    [84] Delicato ER, de Brito BG, Konopatzki AP, et al. Occurrence of the temperature-sensitive hemagglutinin among avian Escherichia coli. Avi Dis, 2002, 46(3): 713-716
    [85] Ewers C, Janssen T, Kiessling S, et al. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet Microbiol, 2004, 104(1-2): 91-101
    [86] Parreira VR, Gyles CL. A novel pathogenicity island integrated adjacent to the thrW tRNA gene of avian pathogenic Escherichia coli encodes a vacuolating autotransporter toxin. Infect Immun, 2003, 71(9): 5087-5096
    [87] Neilands JB. Mechanism and regulation of synthesis of aerobactin in Escherichia coli K12 (pColV-K30). Can J Microbiol, 1992, 38(7): 728-733.
    [88] Waters VL, Crosa JH. Colicin V virulence plasmids. Microbiol Rev, 1991, 55(3): 437-450
    [89] Wayne R, Frick K, Neilands JB. Siderophore protection against colicins M, B, V, and Ia in Escherichia coli. J Bacteriol, 1976, 126(1): 7-12
    [90] Linggood MA, Roberts M, Ford S, et al. Incidence of the aerobactin iron uptake system among Escherichia coli isolates from infections of farm animals. J Gen Microbiol, 1987, 133(4): 835-842
    [91] Goes CR, Gaziri LC, Vidotto MC. Cloned genes of the aerobactin system of virulent avian Escherichia coli do not confer virulence to recombinant strains. Braz J Med Biol Res, 1993, 26(3): 261-275
    [92] B?umler AJ, Norris TL, Lasco T, et al. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J Bacteriol, 1998, 180: 1446-1453
    [93] Russo TA, Carlino UB, Mong A, et al. Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect Immun, 1999, 67: 5306-5314
    [94] Dobrindt U, Blum-Oehler G, Nagy G, et al. Genetic structure and distribution of four pathogenicity islands (PAI I536 to PAI IV536) of uropathogenic Escherichia coli strain 536. Infect Immun, 2002, 70 (11): 6365-6372
    [95] Russo TA, McFadden CD, Carlino-MacDonald UB, et al. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun, 2002, 70: 7156-7160
    [96] Karch H, Schubert S, Zhang D, et al. A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect Immun, 1999, 67(11): 5994-6001
    [97] Carniel E, Guilvout I, Prentice M. Characterization of a large chromosomal “high- pathogenicity island” in biotype 1B Yersinia enterocolitica. J Bacteriol, 1996, 178: 6743-6751
    [98] Perry RD, Pendrak ML, Schuetze P. Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol, 1990, 172: 5929-5937
    [99] Schubert S, Rakin A, Karch H, et al. Prevalence of the “high pathogenicity island”of Yersinia species among Escherichia coli strains that are pathogenic to human. Infect Immun, 1998, 66(2): 480-485
    [100] Rakin A, Noelting C, Schubert S, et al. Common and specific characteristics of the High-Pathogenicity Island of Yersinia enterocolitica. Infect Immun, 1999, 67(10): 5265-5274
    [101] Buchrieser C, Rusniok C, Frangeul L, et al. The 102-Kilobase pgm Locus of Yersinia pestis: Sequence Analysis and Comparison of Selected Regions among Different Yersinia pestis and Yersinia pseudotuberculosis Strains. Infect Immun, 1999, 67(9): 4851-4861
    [102] Gophna U, Oelschlaeger TA, Hacker J, et al. Yersinia HPI in septicemic Escherichia coli strains isolated from diverse hosts. FEMS Microbiol Lett, 2001, 196(1): 57-60
    [103] 高 崧, 刘秀梵, 张如宽. 禽病原性大肠杆菌O2、O78外膜蛋白(OMP)型的初步研究. 江苏农学院学报, 1995, 14(1): 3-4
    [104] 高 崧, 刘秀梵, 张如宽. 禽源大肠杆菌 O2、O78 分离株外膜蛋白型的研究. 中国兽医学报, 1996, 16(3): 239-242
    [105] 高 崧, 刘秀梵, 张如宽. 禽源性大肠杆菌 O1、O2 和 O78 分离株外膜蛋白型的研究. 微生物学报, 1997, 37(6): 463-467
    [106] 高 崧, 刘秀梵. 禽病原性大肠杆菌外膜蛋白的研究进展. 微生物学通报, 1997, 24(2): 121-124
    [107] 高 崧, 滕 峰, 芦银华, 等. 16省市区禽源性大肠杆菌O18和O78的外膜蛋白型. 江苏农业研究, 1999, 20(2): 5-9
    [108] 高 崧, 刘秀梵, 张如宽, 等. 我国部分地区禽源性大肠杆菌的外膜蛋白型. 微生物学报, 1999, 39(3): 226-233
    [109] Korn A, Rajabi Z, Wassum B, et al. Enhancement of uptake of lipopolysaccharide in macrophages by the major outer membrane protein OmpA of Gram-negative bacteria. Infect Immun, 1995, 63(7):2697-2705
    [110] Bolin CA, Gensen AE. Passive immunization with antibodies against iron-regulated outer membrane proteins protects turkeys from Escherichia coli septicemia. Infect Immun, 1987, 55(5): 1239-1242
    [111] Chaffer M, Heller ED, Schwartsburd B. Relationship between resistance to complement, virulence and outer membrane protein patterns in pathogenic Escherichia coli O2 isolates. Vet Microbiol, 1999, 64(4): 323-332
    [112] Fantiatti F, Silveriva WD, Castro AF. Characterisrics associatal with pathogenicity of Avian septicaemic Escherichia coli strains. Vet Microbiol, 1994, 41(1-2): 75-86
    [113] Vordermeier HM, Hoffmann P, Gombert FO, et al. Synthetic peptide segments from the Escherichia coli porin OmpF constitute leukocyte activators. Infect Immun, 1990, 58(8): 2719-2724
    [114] Weiser JN, Gotschlich EC. Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun, 1991, 59(7): 2252-2258
    [115] Nolan LK, Wooley RE, Giddings CW, et al. Characterization of an avirulent mutant of a virulent avian Escherichia coli isolate. Avi Dis, 1994, 38(1): 146-150
    [116] Moll A, Manning PA, Timis KN. Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT product, is responsible for plasmid-specified serum resistance in E.coli. Infect Immun, 1980, 28: 359-367
    [117] Ngeleka M, Kwaga JKP, White DG, et al. Escherichia coli cellulitis in broiler chickens: clonal relationships among strains and analysis of virulence-associated factors of isolates from diseased birds. Infect Immun, 1996, 64(8): 3118-3126
    [118] Nolan LK, Wooley RE, Brown J, et al. Comparison of a complement resistance test, a chicken embryo lethality test, and the chicken lethality test for determining virulence of avian Escherichia coli. Avi Dis, 1992, 36(2): 395-397
    [119] Sukupolvi S. Biological and immunological characterization of Escherichia coli O1, O2 and O78 pathogenic in poultry. Microbiol Rev, 1990, 54(4):331-341
    [120] Johnson TJ, Giddings CW, Horne SM, et al. Location of increased serum survival gene and selected virulence traits on a conjugative R plasmid in an avian Escherichia coli isolate. Avi Dis, 2002, 46(2):342-352
    [121] Nolan LK, Giddings CW, Horne SM, et al. Complement resistance, as determined by viable count and flow cytometric methods, and its association with the presence of iss and the virulence of avian Escherichia coli. Avi Dis, 2002, 46(2): 386-392
    [122] Doetkott DM, Nolan LK, Giddings CW, et al. Large plasmids of avian Escherichia coli isolates. Avi Dis, 1996, 40(4): 927-930
    [123] Wooley RE, Spears KR, Brown J, et al. Characteristics of conjugative R-plasmids from pathogenic avian Escherichia coli. Avi Dis, 1992, 36(2): 348-352
    [124] Knobl T, Baccaro MR, Moreno AM, et al. Virulence properties of Escherichia coli isolated from ostriches with respiratory disease. Vet Microbiol, 2001, 83(1): 71-80
    [125] Vidotto MC, Muller EE, de Freitas JC, et al. Virulence factors of avian Escherichia coli. Avi Dis, 1990, 34: 531-538
    [126] Salvadori MR, Yano T, Carvalho HE, et al. Vacuolating cytotoxin produced by avian pathogenic Escherichia coli. Avi Dis, 2001, 45(1): 43-51
    [127] Welch RA, Burland V, Plunkett G, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA, 2002, 99: 17020-17024
    [128] Babai R, Blum-Oehler G, Stern BE, et al. Virulence patterns from septicemic Escherichia coli O78 strains. FEMS Microbiol Lett, 1997, 149(1): 99-105
    [129] Quackenbush RL, Falkow S. Relationship between colicin V activity and virulence inEscherichia coli. Infect Immun, 1979, 24(2): 562-564
    [130] Smith HW, Huggins MB. Further observations on the association of the colicin V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol, 1976, 92: 335-350
    [131] Ozanne G, Mathieu LG, Baril JP. Production of colicin V in vitro and in vivo and observations on its effects in experimental animals. Infect Immun, 1977, 17(3): 497-503
    [132] Ramirez SRM, Moreno SA, Almanza MY. Avian Escherichia coli virulence factors associated with coli septicemia in broiler chickens. Rev Argent Microbiol, 2001, 33(1): 52-57
    [133] Gross WB. The development of “air sac disease”. Avi Dis, 1961, 5: 431-439
    [134] Nakamura K, Ueda H, Tanimura T, et al. Effect of mixed live vaccine (Newcastle disease and infectious bronchitis), Mycoplasma gallisepticum on the chicken respiratory tract and on Escherichia coli infection. J Comp Pathol, 1994, 111: 33-42
    [135] Newberry LA, Skeeles JK, Kreider DL, et al. Use of virulent hemorrhagic enteritis virus for the induction of colibacillosis in turkeys. Avi Dis, 1993, 37: 1-5
    [136] 高 崧, 彭大新, 焦新安, 等. 几种病毒与禽病原性大肠杆菌的人工联合感染. 中国兽医学报, 2001, 21(4): 334-337
    [137] 高 崧, 彭大新, 焦新安, 等. 低致病性禽流感病毒与禽病原性大肠杆菌的联合感染试验. 中国农业科技导报, 2000, 2(5): 71-73
    [138] 高 崧, 彭大新, 甘军纪, 等. 致病性禽源E.coli的联合感染试验. 动物医学进展, 2001, 22(4): 72-74
    [139] 石火英, 高 崧, 许益民, 等. 实验性鸡大肠杆菌病的超微动态病理变化. 中国兽医学报, 2002, 22: 171-174
    [140] Barnes HJ, Gross WB. Colibacillosis. In: Calnek BW, Barnes HJ, Beard CW, et al (Eds.), Disease of Poultry. 10th edn (pp. 131-141). Ames, IA: Iowa State University Press. 1997
    [141]彭孝先, 高 崧, 刘秀梵. 某大型鸡场鸡大肠杆菌病流行病学调查. 中国家禽, 2003, 25(13): 12-15
    [142] Aguero ME, Aron L, DeLuca AG, et al. A plasmid-encoded outer membrane protein, TraT, enhances resistance of Escherichia coli to phagocytosis. Infect Immun, 1984, 46(3): 740-746
    [143] Ratledge C, Dover LG.. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol, 2000, 54: 881-941
    [144] Dozois CM, Curtiss RIII. Pathogenic diversity of Escherichia coli and the emergence of 'exotic' islands in the gene stream. Vet Res. 1999, 30(2-3): 157-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700