用户名: 密码: 验证码:
金属零件叠层模板电沉积成形的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速原型制造技术(Rapid Prototyping Manufacture, RPM)是20世纪80年代初发展起来的一项重要的制造技术,它采用离散堆积的技术思想,以叠层制造方式成形复杂的零部件或模具。自其闻世以来,制造出具有实际功能的金属零件,一直是RPM领域研究者的关注方向。电铸是另一种通过非接触性加工的电沉积方法制造金属零件的技术,它具有加工时无切削应力变形、无热影响区、无工具损耗、加工精度高、成本经济、适用范围广等优点,因此非常适合作为各种精密、异型、复杂等难以用传统加工方法制取或加工成本很高的金属零件的制造手段。
     本文将电铸和快速原型制造技术的核心思想“叠层制造”系统地结合起来,开发了一种成形金属零件的新方法—叠层模板电沉积成形技术。它的加工原理可表述为:首先通过对目标零件进行分层切片处理,制作出一组具有特定轮廓的屏蔽模板,金属阳离子逐层、选择性地沉积至模板限定的区域内,最终形成以模板型腔为侧面边界的金属零件。该技术融合了原型制造技术和电铸技术的优点,具有适于制造复杂形状零件,成品零件机械性能较好,加工成本低廉的特点。它主要针对毫米级加工尺度上的微小型金属结构器件制造,是特种成形技术领域内新型工艺研究的一次有益的探索。
     本文进行了叠层模板电沉积法成形金属铜零件的基础试验研究,并进行了以下主要工作:
     (1)提出了将叠层制造技术与电沉积技术相结合于一体制造金属零件的成形技术,阐述了叠层模板电沉积直接成形金属零件技术的成形原理;在对有关的电化学基本理论、快速成型技术、电沉积技术和方法分析和总结的基础上,立足于现有的试验条件,设计和实现具有可行性的加工方式和工艺路线。
     (2)针对试验具体环境,开展对叠层模板电沉积设备的试验研制,整个试验系统包括三个部分:加工控制系统、电铸液系统、电沉积系统。对现有的电化学加工平台设备进行改造、完善,并在其基础上进行专有设备的设计和制造,建立符合试验要求的叠层模板电沉积加工系统。
     (3)针对叠层模板电沉积的技术特点,选择适宜的分层算法并开展相关分层软件的设计,实现了对STL格式下任意CAD模型的分层切割操作,完成分层文件与模板数控加工系统的对接和兼容;同时,基于叠层模板电沉积中的操作环境,选取合适的模板材料,设计了模板的加工流程及在加工中的配置方式。
     (4)使用有限元仿真软件建立相关电场模型,初步分析电场分布在电极尺寸、辅助阴极、模板厚度等加工参数改变时的变化规律,并对试验中可能出现的问题进行预分析,为试验的进行提供参考依据。
     (5)系统研究了叠层模板电沉积中存在的工艺问题,包括最关键的问题—单层模板电铸中由于非均匀电场分布导致的沉积金属厚度极度不均。通过改变试验环境,包括设置旋转阴极和辅助阴极,改变电流参数以及采用脉冲电流和换向脉冲电流,特别是对换向脉冲电流的参数(正负脉冲的脉宽、频率、工作时间、关断时间以及电流密度)进行反复优化,并从理论上对负脉冲电流改善沉积层均匀性的作用进行了分析,获得了平整性好的模板电沉积层。
     (6)成形了一组具有不同形状和不同厚度的铜的零件,验证了叠层模板电沉积制造小型金属零件的可行性,并对试验样品进行了性能测试和精度测试,结果表明,零件具有较好的机械性能。最后,对该技术存在的不足作了分析,并提出了相应的改进方向和措施。
Rapid Prototyping Manufacture (RPM) is an important fabrication technology using the concept of discrete-piling. It produces complicated parts or moulds in the manner of laminated fabrication. Since introduction of RPM in early 1980s, direct and economical production of metal parts satisfying market demand has been always pursued by RPM researchers worldwide. Electroforming is another widely accepted fabrication technology that employs electro-deposition, a non-contact processing method, to form metallic article, hence being advantaged in the following aspects including high accuracy to replicating sample mould, strong adaptability and solid mechanical behavior of the electroformed parts because of none of mechanical contact between tool and workpiece, therefore avoiding such defects as deformation, stress, tool-loss or heat-affected zone. Resultingly, in the engineering of small-sized and involuted metal parts, electroforming is more competent than conventional machining processes if dealing with operational difficulty and production cost.
     In this thesis, by systematically integrating the electroforming method with Laminated Object Manufacturing (LOM), the core concept of RPM, a novel technique to form metal part, namely laminated template electro-deposition (LTE) is presented. According to mechanism, the designated operational sequence of this technique begins with slicing of the target-part in STL format in order to make a series of patterned shielding templates. In the next step metal ion selectively deposits, layer by layer, into blank areas that templates determine and, finally, forms metal parts within templates inside-wall. LTE shares a few of properties with both RPM and electro-deposition, for instance, strong ability of producing complex metal articles, well behavior of finished products as well as low maintenance cost. As a valuable exploration into the field of metal part forming via special process, it is intentionally focused on the millimeter-scaled metallic structure production.
     In this thesis, the experimental research into producing copper parts are carried out and the major research works are as follows:
     1. The strategy combining LOM with electro-deposition method to form metal part and the mechanism of LTE were originally put forward. On the basis of understanding of the electrochemical theory, rapid prototyping technology and electrodeposition method, a set of feasible processing way and process route was drafted in line with current experimental conditions.
     2. In consideration of characteristics in LTE, an experimental system capable of fullfilling LTE requirement was constructed through updating the current electrochemical lab workbench and adding specially-built devices to this platform. This experimental system consists of three major parts: servo-control feed unit, electrolyte refreshing unit and electro-deposition unit.
     3. A slicing software that embeds an appropriately-selected hierarchical algorithm was achieved by programming tool. The software fully takes LTE requirement into account and allows any 3-d CAD model in STL-format for slicing. The study of software interface linking sliced files with NC machining system and the compatibility in data transmission were illustrated. The procedure of template-material selection, cutting process of patterned template and template configuration manner in experiment were repectively introduced.
     4. An experimentally-oriented computational model was established through finite element analysis software to estimate electric field distribution. Based on it, the dependence of experimental conditions such as electrode dimension, position of auxiliary cathode as well as template thickness on the electric field was analyzed and some potential problems were pre-analyzed to provide reference on the real operation of LTE.
     5. Studies of main technological problems in LTE experiment were demonstrated. The key obstacle was considered as how to avoid extremely uneven thickness of metal deposit layer, which is commonly generated by nonuniform electric-field distribution in planar deposition. A few of additional measures and assistant apparatus concerning the change of test environment, were tried, which includes setting rotating cathode and auxiliary cathode, variation of current parameters as well as adopting pulse current and reversing pulse current. Especially for reversing pulse current, the parameters such as pulse frequency of anodic and catholic, pulse width, the working time, off time and current density were variously modulated for optimization. The mechanism how the negative pulse current works to improve deposit uniformity was discussed. Experimental results reveal that these applied approaches favor formation of uniform and smooth deposit layer to some extent.
     6. The fabrication of a group of copper parts in varied shapes and thickness were presented to demonstrate the feasibility of using this method as an alternative small-sized metal part manufacturing technique. Mechanical tests and precision measurement were conducted on these samples, showing that the finished parts have well mechanical property. Methodology and solution for the improvement were proposed on the basis of imperfection analysis regarding this method.
引文
[1]杨继全.快速成型技术.北京:化学工业出版社, 2006.
    [2] Wohlers T. Future Potential of Prototyping and Manufacturing around the World. Rapid Prototyping Journal, 1995, 1(1): 4~10.
    [3] Chua C K, Leong K F. Rapid Prototyping in Singapore: 1988 to 1997. Rapid Prototyping Journal, 1999, 3(3): 116~119.
    [4] Kruth J P. Material Increase Manufacturing by Rapid Prototyping Techniques. Annals of the CIRP, 1999, 40(2): 603~604.
    [5]朱剑英.增材制造法-MIM技术.航空精密制造技术, 1993, (1): 29~32.
    [6] Kruth J P, Wang X, Laoui T, et al. Progress in Selective Laser Sintering. Annals of the CIRP, 2001, (2): 21~38.
    [7]王秀峰,罗宏杰.快速原型制造技术.北京:中国轻工业出版社, 2001.
    [8]潘海鹏.快速成型制造中分层处理技术的研究, [博士学位论文].南昌:南昌大学, 2007.
    [9]门占功,林峰.直接金属快速成形制造技术综述.机械工程学报, 2005, 41(11): 1~7.
    [10] Mutapcic E, Iovenitti P, Hayes J P. A 3D-CAM system for quick prototyping and micro fabrication using excimer laser micromachining. Microsystem Technology, 2005, 12(1~2): 1432~1858.
    [11]夏卿坤.快速成型技术.长沙大学学报, 2005, 19(5): 94~98.
    [12]杨伟东,颜永年,张人佶.基于RP直接制造金属型方法.新技术新工艺, 2002, 12(3): 29~31.
    [13]左红艳,魏镜强,楼日明等.金属粉末的直接快速成型技术.机电产品开发与创新, 2005, 18(3): 67~69.
    [14]胡增荣,周建忠,高振宇等.快速模具制造技术在砂型铸造模具上的应用.铸造设备研究, 2005, (10): 29~32.
    [15] Lu Y H. Integration of RP and explicit dynamic FEM for the visualization of the sheet metal forming process. The International Journal of Advanced Manufacturing Technology, 2006, 28(3~4): 255~261.
    [16] He Y J, Ye M, Wang C T. A method in the design and fabrication of exact-fit customized implant based on sectional medical images and rapid prototyping technology. The International Journal of Advanced Manufacturing Technology, 2006, 28(5~6): 504~508.
    [17]金杰,张安阳.人工骨快速成型制造的研究进展.浙江工业大学学报, 2005, 33(6):691~695.
    [18]何叶松,徐韬,何婧等.利用快速成型技术制造仿真人颅脑骨骼模型.中国医科大学学报, 2008, 37(6): 71~76.
    [19]李伟忠,张美超,齐向东等.计算机辅助设计快速成型三维头颅模型在颧上颌骨骨折畸形治疗中的应用.中国美容医学, 2009, 18(1): 77~79.
    [20] Fernandes R, DiPasquale J. Computer-aided surgery using3D rendering of maxillofacial pathology and trauma. The International Journal of Medical Robotics and Computer Assisted Surgery, 2007, 3(3): 203~206.
    [21]颜永年,张人佶.加快发展我国的快速成形技术.电加工与模具, 2002, (5): 1~4.
    [22]颜永年,张人桔,林峰等.快速原型技术的发展与未来.云南:快速成型与快速制造科学技术论文集, 2004: 1~5.
    [23]杨家林,王洋,陈杨.快速成型技术研究现状与发展趋势.新技术新工艺, 2003, (1), 28~29.
    [24]袁祁刚,杨继全.快速成形技术的新进展.金属成形工艺, 2003, 21(5): 12~14.
    [25]张凯,刘伟军,尚晓峰等.金属零件激光直接快速成形技术的研究(上)—国外篇.工具技术, 2005, 39(5): 3~9.
    [26]刘锦辉.选择性激光烧结间接制造金属零件研究, [博士学位论文].武汉:华中科技大学, 2006.
    [27]崔国起,张连洪,郝艳玲等. LOM激光快速成型系统及其应用.航空制造技术, 1999, (5), 27~29.
    [28]周强,伍太宾. LOM技术的比较优势及其应用前景.金属成形工艺, 2004, 22(2): 5~8.
    [29]刘洁,王从军,黄树槐.利用LOM技术快速制造大尺寸零件及薄壁零件.中国机械工程, 2000, 11(10): 1126~1128.
    [30] Joseph J. Beaman. Machine Issues Associated with Solid Freeform. Fabrication Processing Symposium, 1992, (6): 3~5.
    [31]王天明,金烨.快速成形技术概述及当前研究热点.航空制造技术, 2005, (6): 61~65.
    [32] Song Y A. Experimental Study of the Basic Process Mechanism for Direct Selective Laser Sintering of Low-metaling Metallic Powder. Annals of the CIRP, 1997, 46(1): 127~130.
    [33] Lind J E, Kotila J, Syvaenen T, et al. Dimensionally Accurate Mold Inserts and Components by Direct Metal Laser Sintering. Materials Research Society, 2000, 625: 45~50.
    [34] Agarwala M, Bourell D, Beaman J, et al. Direct Selective Laser Sintering of Metals. Rapid Prototyping Journal, 1995, 1(1): 26~36.
    [35]潘琰峰,沈以赴,顾冬冬等.选择性激光烧结技术的发展现状.工具技术, 2004, 38(6):3~7.
    [36]颜永年,张人佶,郭海滨等.快速成型技术的功能集成研究.中国机械工程, 1997, 8(5): 16~17.
    [37] Wu G H, Langrana N A. Fabrication of Metal Componentsusing FDMet: Fused Deposition of Metals. Proceedings of SFF Symposium. University of Texas at Austin, 1999: 775~782.
    [38]罗晋.熔融沉积成型控制系统的研究, [硕士学位论文].武汉:华中科技大学, 2006.
    [39]苏发,李文双,孙洪江等.快速原型制造技术及在金属零件制造中的应用.矿山机械, 2004, (7): 71~73.
    [40]陈光霞.可摘除局部义齿支架激光快速成型技术与设备研究, [博士学位论文].武汉:华中科技大学, 2009.
    [41]白培康.选择性激光烧结快速成型技术研究及应用现状.航空制造技术, 2009, (3): 51~53.
    [42]杨森,钟敏霖,张庆茂等.金属零件的激光直接快速制造.粉末冶金技术, 2002, 20(4): 234~238.
    [43] Delef K, Chua C K, Du Z H. Rapid Prototyping Issues in the 21century. Computer in Industry, 1999, 39(3): 3~10.
    [44]美国Sandia国家实验室, laser engineered net shaping.pdf, 2000.
    [45]张海鸥,蒋疆,王桂兰.金属零件直接快速制造技术.航空制造技术, 2008, (7): 42~45.
    [46] Kruth J P, Leu M C, Nakagawa T. Progress in Additive Manufacturing and Rapid Prototyping. Annals of the CIRP, 1998, 47(2): 525~540.
    [47] Simchi A, Petzoldt F, Pohl H. On the Development of Direct Metal Laser Sintering for Rapid Tooling. Journal of Materials Processing Technology, 2003, 141(3): 319~328.
    [48]朱小蓉,任乃飞,蔡兰.选择性激光烧结快速成型技术中材料的研究和应用.上海大学学报, 2004, 8(1): 43~47.
    [49] Arcella F G, Abbott D H, House M A. Rapid laser forming of titanium structures. Proceedings of the PowderMetallurgy World Conference, Granada Spain, 1998: 18~22.
    [50] Abbott D H, Arcella F G. AeroMet implementing novel Ti process. Metal Powder Report, 1998, 53(2): 24~26.
    [51]何金江,钟敏霖,刘文今.基于激光直接制造技术的材料研究.金属热处理, 2006, 31(l): 4~7.
    [52]张剑峰,张建华,赵剑峰等.激光快速成形制造技术的应用研究进展.航空制造技术, 2002, (7): 34~37.
    [53]赵阳培,黄因慧,赵剑峰等.射流电铸快速成型基础试验研究.南京航空航天大学学报, 2004, 36(4): 458~461.
    [54] Zhang Y Z, Ming Z X, Gao S Y, et al. Characterization of Laser Direct Deposited Metallic Parts. Journal of Materials Processing Technology, 2003, 142(2): 582~585.
    [55]查晓蓓,赵韩.机电产品开发与创新基于快速原型的金属成型技术发展现状研究.机电产品开发与创新, 2003, 12(02): 75~77.
    [56]王华明,张述泉,汤海波.大型钛合金结构激光快速成形技术研究进展.航空精密制造技术, 2008, 44(6): 28~30.
    [57]王华明.先进航空金属结构材料及成形制备技术研究进展与发展动向.先进制造与材料应用技术, 2005, (1): 50~54.
    [58]王华明.航空高性能金属结构件激光快速成形研究进展.航空制造技术, 2005, (12): 26~28.
    [59]王华明,张凌云,李安等.金属材料快速凝固激光加工与成形.北京航空航天大学学报, 2004, 30(10): 962~967.
    [60]张海鸥,徐继彭,王桂兰.等离子熔积直接快速制造金属原型技术.中国机械工程, 2003, 14(12): 1077~1079.
    [61]杨森,钟敏霖,张庆茂等.激光快速成型金属零件的新方法.激光技术, 2001, 25(4): 254~257.
    [62]边秋梅,张玉斌,郑鸿飞等.基于数控机床分层快速成型金属零件的关键技术研究.太原师范学院学报, 2004, 3(1): 31~33.
    [63]张冬云.激光直接制造金属零件技术发展综述.中国机械工程, 2006, (2): 444~448.
    [64]安茂忠.电镀理论与技术.哈尔滨:哈尔滨工业大学出版社, 2004.
    [65]刘晋春,赵家齐.特种加工.北京:机械工业出版社, 1994.
    [66]模具制造手册编委会.模具制造手册.北京:机械工业出版社, 1982.
    [67] McGeough J A, Leu M C, Rajurkar K P. Electroforming process and application to mi-cro/macro manufacturing. Annals of CIRP, 2001, 50(2): 499~513.
    [68]王凤娥.电沉积镍基合金的研究进展.稀有金属, 1998, 22(5): 375~379.
    [69]王伊卿,赵文珍. Ni-Co合金电铸工艺及性能研究.兵器材料科学与工程, 2000, 23(3): 39~43.
    [70]陈静.电沉积镍基及其耐腐蚀性能研究.材料开发与应用, 1999, 14(2): 14~16.
    [71]杨建明,朱荻,曲宁松等.镍锰合金的纳米晶电铸.机械科学与技术, 2004, 23(1): 81~84.
    [72]赵阳培,黄因慧,刘志东等.扫描喷射电沉积纳米晶铜的试验研究.电加工与模具, 2004, 244(5): 26~28.
    [73]陈均武.电铸发展现状.电镀与精饰, 1996, 8(2): 22~26.
    [74]王文忠.电铸技术及其发展.电镀与涂饰, 1998, 17(1): 36~39.
    [75]孔祥东,张玉林,宋会英等.微机电系统的微细加工技术.微纳电子技术, 2004, 41(11): 32~38.
    [76]李冠男,黄成军,罗磊等.微电铸技术及其工艺优化进展研究.微细加工技术, 2006, (6): 1~5.
    [77]郭东明,王晓明.面向快速制造的特种加工技术.中国机械工程, 2000, 11(1): 206~211.
    [78]吴安德,黄因慧,王帮峰等.一种新的快速成型技术-选择性电铸.中国机械工程, 2000, 11(8),增刊.
    [79]黎建军,李湘生,梁天长.数控选区电化学沉积快速成型的基础试验.机械设计与研究, 2009, 25(1): 100~103.
    [80]李国兵.基于快速原型的电铸模具成形工艺研究, [硕士学位论文].株洲:湖南工业大学, 2008.
    [81]吴安德.数控喷射电铸技术研究, [博士学位论文].南京:南京航空航天大学, 2001.
    [82]赵阳培.射流电铸快速成型纳米晶铜工艺基础研究, [博士学位论文].南京:南京航空航天大学, 2005.
    [83]隋丽,石庚辰. EFAB加工技术及其在微机电系统中的应用. 2007, 23(1~2): 25~30.
    [84] Microfabrica Inc.. Going Beyond Silicon MEMS with EFAB Technology. White Paper of Microfabrica Inc., 2004.
    [85] Evans John D, Bang Christopher. A demonstration of EFABTM as a fundamental shift in the way microdevices are manufactured. Proceedings of IMECE, New Orleans, Louisiana, USA, 2002, 351~354.
    [86] Becker E W. Modern electroforming in aerospace application. Plating and surface finishing, 1991, 78(8): 11~16.
    [87] Johansen L S, Ginnerup M, Ravankikle J T, et al. Electroforming of 3D micro-structures on highly structured surfaces. Sensors and actuators, 2000, 83: 156~160.
    [88] Maner A. Mass production of microdevices with extreme aspect ration by electroforming. Plating and surface finishing, 1997, 75(3): 60~65.
    [89]胡美些,王宁.我国电铸技术的研究进展.电镀与涂饰, 2006, 25(11): 38~41.
    [90] Becker E, Ehrfeld W, Hagmann P, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding. Microelectronic engineering, 1986, 4(1): 35~56.
    [91]梁静秋,姚劲松. LIGA技术基础研究.光学精密工程, 2000, 8(1): 38~41.
    [92] Kupk R K, Bouamrane F, Cremers C, et al. Microfabrication: LIGA-X and applications. Applied Surface Science, 2000, (164): 97~110.
    [93] Cheng Chao-Min, Chen Ren-Haw. Key issues in fabricating microstructures with high aspect ratios by using deep X-ray lithography. Microelectronic Engineering, 2004, (71): 335~342.
    [94] The W H, Liang C T, Graham M, et al. Cross-linked PMMA as a low-dimensional dielectric sacrificial layer. Journal of Micro-electromechnical System, 2003, 12(5): 641~648.
    [95]张永华,丁桂甫,李永海等. MEMS中的牺牲层技术.微纳电子技术, 2005, (2): 73~77.
    [96] Tabata O, You H, Matsuzuka N, et al. Moving mask deep X-ray lithography system with multi stage for 3-D microfabrication. Microsystem Technologies, 2002, (8): 93~98.
    [97] BLEY P. The LIGA process for fabrication of 3D microscale structures. Interdisciplinary Science Reviews, 1993, 18(4): 267~272.
    [98]刘刚,田扬超.国家同步辐射实验室的LIGA技术研究及应用.机械工程学报, 2008, 44(11): 47~52.
    [99]曾永彬.屏蔽模板随动式微细电铸技术的基础研究, [博士学位论文].南京:南京航空航天大学, 2008.
    [100]郭丽丽,森田升.机械加工的超精密化和加工机械的微型化.现代制造工程, 2006, (11): 66~68.
    [101]王玉玲.精密和超精密加工技术的发展现状与展望.机械管理开发, 2002, (3): 60~61.
    [102] Li L C, Yang J B, Vaia R, et al. Multicomponent Micropatterns or Carbon Nanotubes. Synthetic Metals, 2005, 154(1~3): 225~228.
    [103]施奇惠,杨海峰,程岩等.以介孔氧化硅薄膜为模板电沉积合成新型纳米结构.化学学报, 2004, 62(20): 2021~2024.
    [104] Schwarzacher W, Kasyutich O I, Evans P R, et al. Metal nanostructures prepared by template Electrodeposition. Journal of Magnetism and Magnetic Materials, 1999, 198~199(1~3): 185~190.
    [105] Romankiw L T. A path from electroplating through lithographic masks in electronics to LIGA in MEMS. Electrochimica Acta, 1997, 42(20~22): 2985~3005.
    [106]李荻.电化学原理.北京:北京航空航天大学出版社, 1999.
    [107]周绍民.金属电沉积原理与研究方法.上海:上海科学技术出版社, 1987.
    [108] Choo R T C, Toguri J M, Sherik A M E, et al. Mass Transfer and Eletrocrystallization Analyses of Nanocrystalline Nickel Production by Pulse Plating. Journal of Applied Electrochemistry, 1995, 25(4): 384~403.
    [109] Morgan K L, Ahmed Z, Ebrahimi F. The Effect of Deposition Parameters on Tensile Properties of Pulse-plated Nanocrystalline Nickel. Materials Research Society Symposium-Proceedings, Boston, MA, USA, 2001.
    [110] Landolt D. Fundamental Aspects of Alloy. Plating and Surface Finishing, 2001, 88(9): 70~79.
    [111]朱瑞安,郭振常.脉冲电镀.北京:国防工业出版社, 1993.
    [112]李青,吴尧.精密模具电铸Ni-Co工艺的研究.功能材料, 1993, 24(5): 461~467.
    [113] Gyftou P, Stroumbouli M, Pavlatou E A, et al. Electrodeposition of Ni/SiC Composites by Pulse Electrolysis. TranSactions of the Institute of Metal Finishing, 2002, 80(3): 88~91.
    [114]刘小兵,王徐承,陈煜等.复合电沉积的最新研究动态.电化学, 2003, 9(2): 117~125.
    [115] Li J, Jiang J, He H, et al. Synthesis, Microstructure, and Mechanical Properties of TiO2/Ni Nanocomposite Coatings. Journal of Materials Science Letters, 2002, 21(12): 939~941.
    [116]王清滨,田秋,宿辉等.纳米复合镀层的研究进展.材料工程, 2004, (6): 45~48.
    [117]研华股份有限公司, PCL-839+数字控制卡的中文使用手册, 2002.
    [118]北京四通电机技术有限公司,两相混合式步进电机产品说明书, 2002.
    [119]耿香月.工程材料学.天津:天津大学出版社, 2002.
    [120]邓书山.石墨-铜(银)复合材料组分设计与性能研究, [硕士学位论文].合肥:合肥工业大学, 2007.
    [121] Mani K, Kulkarni P, Dutta D. Region-based adaptive slicing. Computer-Aided Design, 1999, 31: 317~333.
    [122] Lee S H, Ahn D G, Yang D Y. Surface reconstruction for mid-slice generation variable lamination manufacturing. Journal of Materials Processing Technology, 2002, 130~131: 384~389.
    [123] Koc B, Lee Y S. Non-uniform offsetting and hollowing objects by using biarcs fitting for rapid prototyping processes. Computers in Industry, 2002, 47(1): 1~23.
    [124] Zhang L C, Han M, Huang S H. CS File-An Improved Interface between CAD and Rapid Prototyping Systems. The International Journal of Advanced Manufacturing Technology, 2003, 21(1): 15~19.
    [125]任乃飞,万俊,胡汝霞.基于拓扑关系的STL文件格式研究.农业机械学报, 2005, 36(11): 143~145.
    [126]王国俊.基于选区激光烧结快速成形技术的软件系统设计与实现, [硕士学位论文].南京:南京航空航天大学, 2005.
    [127]李小刚. J2EE的快速成形软件系统的实现及应用, [硕士学位论文].南京:南京航空航天大学, 2005.
    [128]赵吉宾,刘伟军.快速成形技术中基于STL模型的分层算法研究.应用基础与工程科学学报, 2008, 16(2): 11~21.
    [129]赵剑锋,李悦,张建华等.基于SLS技术的金属零件快速制造研究.特种铸造及有色合金,2000, (5): 9~11.
    [130]张建华.选择性激光烧结技术应用研究, [博士学位论文],南京:南京航空航天大学, 2001.
    [131]史玉升,黄树槐,陈绪兵等.三维CAD模型直接切片技术及其在快速成型中的应用.计算机辅助设计与图形学学报, 2002, 14(12 ): 1172~1179.
    [132]田宗军.激光烧结快速成型计算机控制系统的研究和应用, [博士学位论文].南京:南京航空航天大学, 2000.
    [133] Neider J, Davies T, Woo M. OpenGL Programming Guide. Addison-Wesley, 1999.
    [134]宋丹路,金恒瑞.基于OpenGL的STL文件显示核心技术与实现.北京:原子能出版社, 2004: 171~175.
    [135] Dolenc A, Makela I. Slicing Procedures for Layered Manufacturing Techniques, Computer Aided Design, 1995, 26(2): 119~126.
    [136]李广慧,王丽萍,于平等. SLS激光快速成形烧结层厚的选取.煤矿机械, 2003, (3): 27~29.
    [137]李国锋,王翔,何冀军等.微细电铸电流密度的有限元分析.微细加工技术, 2007, (6): 35~39.
    [138]王生洪.有限元法基础及应用.长沙:国防科技大学出版社, 1990.
    [139]王富耻,张朝晖. ANSYS10.0有限元分析理论与工程应用.北京:电子工业出版社, 2006.
    [140]阎照文. ANSYS10.0工程电磁分析技术与实例详解.北京:中国水利水电出版社, 2006.
    [141]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解.北京:电子工业出版社, 2003.
    [142]解西锋,朱荻.高频脉冲电铸的试验研究.航空精密制造技术, 2003, 4(2): 11~13.
    [143]王涛,于峰,李慕勤.阴极旋转电沉积生物陶瓷涂层的工艺研究.表面技术, 2005, 34(5): 50~52.
    [144]孙建军,谢步高,阴文辉.旋转对流下铜在微沟道中的电沉积.电化学, 2004, 10(2): 210~214.
    [145]刘海军.微电铸器件均匀性的研究, [硕士学位论文].大连:大连理工大学, 2006.
    [146]赵品.材料科学基础.哈尔滨:哈尔滨工业大学出版社, 2003.
    [147] Yang H H, Kang S W. Improvement of thickness uniformity in nickel electroforming for the LIGA process. International Journal of Machine Tool Design and Research, 2003, 40(7): 1065~1072.
    [148] Oh Y J, Chung S H, Lee M S. Optimization of Thickness Uniformity in Electrodeposition onto a Patterned Substrate. Materials Transactions, 2004, 45(10): 3005~3010.
    [149]汤俊,汪红,刘瑞换. MEMS微结构电沉积层均匀性的有限元模拟.微细加工技术, 2008,10(5): 45~49.
    [150] Reid D, Contolini J, Patton E, et al. Method of Electro-plating Semiconductor Wafer Using Variable Currents and Mass Transfer to Obtain Uniform Plated Layer. US: 006100346, 2000-08-291.
    [151]程凡雄,宋景勇,黄伟.提高电镀均匀性的方法. P1CN: 101054701A, 2007-10-101.
    [152] Toshikazu O, Tamie K, Kazuo Kondo. Patterned copper plating layer thickness made uniform by placement of auxiliary grid electrode about ball grid arrays. Chemical Engineering Communications, 2006, 193: 1503~1513.
    [153]韩国东.换向电流电镀的应用.表面技术. 1999, 28(1): 43~45.
    [154]赵阳培,黄因慧,张君伟.脉冲射流电铸纳米晶铜的组织与性能.机械工程材料, 2006, 30(6): 87~90.
    [155] Chandrasekar M S, Pushpavanam M. Pulse and pulse reverse plating-conceptual, advantages and applications. Electrochimica Acta, 2008, 53(8): 3313~3322.
    [156] Qu N S, Chan K C, Zhu D. Surface roughening in pulse current and pulse reverse current electroforming of nickel. Surface and Coatings Technology. 1997, 91(5): 220~224.
    [157]比利时Materialise公司, Magics corporate 2006 LR.pdf, 2006.
    [158]比利时Materialise公司, Magics RP Tutorial, 2007.
    [159]刘美华,李鸿琦,计宏伟等.压痕硬度测试法的主要研究内容及其应用.理化检验, 2008, 44(9): 584~587.
    [160]刘美华,王静,王东爱.对压痕硬度试验方法的分析研究.工程塑料应用, 2005, 33(7): 38~42.
    [161]刘孝敏.工程材料的微细观结构和力学性能.合肥,中国科技大学出版社, 2003.
    [162]刘鸿文,吕荣坤.材料力学实验.北京:高等教育出版社, 1998.
    [163]中方科技股份有限公司, PROTECH2.5D多功能精密影像量测软件中文操作说明书, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700