用户名: 密码: 验证码:
反应型氰离子传感器的设计合成及光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对阴离子在各个领域内重要性的认识,对其的选择性识别和传感已成为研究的热点。在众多阴离子中,由于氰离子在生产实践中使用的广泛性及其剧毒的特点,尤其受到科学家的关注。传统的氰离子识别主要基于主客体间的氢键作用,即利用氢键作用方式的不同、氰离子与其它阴离子形状及电荷密度的差异实现选择性识别。然而,这种方式最大的缺点是选择性差。本论文利用氰离子有别于其它阴离子独特的化学反应性质,即它的亲核反应性,将反应位点与生色基团相结合,设计合成四类新型氰离子化学传感器:酰胺型氰离子比色传感器,水杨醛-酰腙型氰离子荧光传感器,席夫碱型氰离子比色传感器,酰胺型比率荧光氰离子传感器。通过氰离子与传感器分子发生的加成反应造成的生色团或荧光团分子性质的变化,采用荧光和紫外-可见光谱详细地研究了其传感性能,主要研究内容如下:
     利用氰离子与活化酰胺的加成机理,合成了一系列包含硝基等吸电子基团的酰胺类化合物(2-1-2-6),其中的化合物2-1-2-5能够在DMSO:H20=1:1(Ⅴ/Ⅴ)的溶液体系中高选择性的识别氰离子。化合物与氰离子通过1:1的化学计量比进行反应,氰离子与化合物中被活化的酰胺基团发生加成反应,加成后形成的烷氧负离子吸引邻近的N-H发生分子内的质子转移,增强了2,4-二硝基苯胺基团的分子内电荷转移(ICT),引起光谱的红移和颜色的变化,实现了肉眼对氰离子的检测。化合物2-1的氰离子检出限达到了0.83μM,低于世界卫生组织
     (WHO)对饮用水中氰离子最高含量的要求。因此,化合物2-1作为一个氰离子比色传感器,可以用来检测水溶液中的氰离子。
     合成了一系列水杨醛-酰腙类化合物(3-1-3-4)。在DMSO:H20= 1:1(Ⅴ/Ⅴ)的溶液体系中,氰离子与化合物3-1-3-3的亚胺基团发生加成反应,显示了高效的选择性。主客体间通过1:1的化学计量比进行反应,加成产物通过1H NMR和MS得以证实。氰离子加成后引起的分子内的质子转移导致了化合物在光谱和颜色上的变化,其中,化合物3-1的荧光由无色变为蓝色,化合物3-2的颜色由淡黄色变为红色,而化合物3-3的颜色由无色变为黄色,同时荧光由无色变为绿色。明显的颜色变化可以通过肉眼来进行氰离子的检测。三种化合物的氰离子检出限也都低于WHO对饮用水中氰离子最高含量的要求,作为一种新型的氰离子比色传感器,也可以用于水中氰离子的检测。
     利用氰离子与亚胺基团的加成原理合成了一系列结构简单的亚胺类化合物(4-1-4-3)。在DMSO:H2O=9:1(Ⅴ/Ⅴ)的溶液体系中,化合物4-1可以通过两种作用方式对氰离子和醋酸根离子进行识别和传感,并引起不同的光谱和颜色变化。化合物4-1与氰离子通过1:1的化学计量比进行反应,检出限为0.23μM。化合物4-1对氰离子的识别依靠后者在亚胺基团的加成反应,而对醋酸根离子的识别则是通过去质子的方式。氰离子的加成破坏了原主体化合物的大共轭体系,引起了吸收光谱的蓝移,并导致溶液褪色;而醋酸根离子在夺去酚羟基质子后,酚氧负离子通过分子内的电荷转移增大了原主体的共轭体系,引起了吸收光谱的红移,并导致溶液颜色由黄色变为红色。离子竞争性实验表明,醋酸根离子的存在不会影响化合物4-1对氰离子的识别和传感。因此,这种结构简单的双通道阴离子比色传感器可以用来检测水中的氰离子和醋酸根离子。
     4-氨基-1-8-萘二酰亚胺的衍生物具有较高的量子产率,容易受到不同极性溶剂的影响而产生分子内电荷转移,引起荧光的比率变化。本文利用该荧光团合成了一个含三氟乙酰基的酰胺类化合物(5-1),受吸电子基团三氟甲基的影响,酰胺基团上的N--H在不同极性的溶剂中会表现出不同的光谱性质。在极性较小的乙腈中,对化合物5-1与5种阴离子(均为四正丁基胺盐)之间的作用进行了研究。研究结果表明,具有加成性的氰离子和碱性较强的氟离子都可以引起主体分子内三氟乙酰胺基团中N-H的转移,从而实现荧光的比率测定。虽然氟离子对识别的专一性造成了一定影响,但是该化合物对今后荧光比率传感器的设计和合成有重要的指导意义。
Recognition and sensing of anions have received considerable attention for their important roles in biological, industrial, and environmental processes. In particular, cyanide ion is a detrimental anion causing poisoning in biology and the environment. Despite its toxic nature, its application in various areas as raw materials is inenitable, which releases cyanide ion into the environment as a toxic contaminant. Thus, there exists a need for an efficient sensing system for cyanide ion to monitor cyanide concentration from contaminant sources. However, the traditional cyanide receptors that relied on hydrogen-bonding have tenerally displayed weak selectivities relative to other anions. To overcome this limitation, reaction-based receptors for cyanide ion, which was taken advantage of its nucleophilic character, have been developed recently. In this dissertation, four types of reaction-based receptors for cyanide ion have been reported: colorimetric sensors based on amide, fluorescent sensors based on salicylaldehyde hydrazone, colorimetric sensors based on Schiff-base, and ratio fluorescent sensors based on amide. The reaction between cyanide and sensors would lead to signal changes, and the detailed investigations were done by UV-vis and fluorescent spectra.
     A series of simple nitroaniline-based benzamide compounds (2-1-2-5) for the'naked-eye'detection of cyanide in aqueous environment with high selectivity. Cyanide was detectable by nucleophilic attack toward the activated amide carbonyl function, and then followed by fast proton transfer of the acidic amide hydrogen to the developing alkoxide anion of these compounds. The proton transfer may trigger the latent chromogenic nitroaniline group into an active state (its anionic state), thus resulting in the enhancement of the push-pull character of the intramolecular charge transfer (ICT), which induces a large enhancement in absorption intensity and a marked color changes from colorless to yellow in DMSO:H2O=1:1(V/V) at room temperature. These compounds react with CN- in a 1:1 stoichiometric manner. Furthermore, the selectivity of this system for CN-over other anions is extremely high. In addition, the detection limit of 2-1 for CN- falls below the WHO detection level. Therefore, the chemosensor 2-1 appears to be a practical system for monitoring CN- concentrations in aqueous samples.
     The adduction of cyanide to imine group was discovered for the first time. This new type of stable chemosensors (3-1-3-3) bearing a salicylaldehyde hydrazone function were designed by intramolecular proton transfer. Cyanide was expected to be detectable by nucleophilic attack toward an imine functional group, which is activated by an intramolecular hydrogen bond. Fast proton transfer of the phenol hydrogen to the developing nitrogen anion would then bring about spectroscopic and color changes. These three cyanide sensors were carefully investigated by UV-vis and fluorescent spectra. The sensors shown specific selectivity to cyanide with a detection limit lower than 1.9μM in DMSO:H2O=1:1 (V/V) system. The 1:1 binding stoichiometry for each compound was proven by Job'plots and FTICR-MS.; and the mechanism were confirmed by 1H NMR. The imine proton and phenol proton of the sensors were dramatically shifted from low shield to high shield after addition of cyanide anions. The rational mechanism of fluorescent "off-on" that happened in sensors 3-1 and 3-3 were explained and an ab initio calculation of sensor 3-1 was also carried out to comfirm our explaination.
     Some structurally simple Schiff-based compounds (4-1-4-3) were synthesized based on the adduction mechanism which was discussed in last paragraph. The sensor 4-1 could distinguish CN- and AcO- with two different mechanisms as a tow channel sensor in DMSO:H2O=9:1 (V/V) system. The sensor could give two obvious spectral changes as signals out-put, as well as color changes, which could be detected by naked-eyes. After the adduct of CN-, the conjugation of the sensor 4-1 was disturbed and a blue-shift hence happened. On the other hand, AcO- is a good hydrongen-bond receptor as a basic anion which could interact with phenol proton of the sensor to induce the process of deprotonation. The deprotoned sensor enlarged its conjugation that led a red-shift. The associated constants of sensor 4-1 to CN- and AcO- were 106 M-1 and 7.8x104M-1,respectively. Competition experiment shown that the sensor could also detect CN- in the presence of other anions including AcO-.
     4-amide derivatives of 1,8-naphthalimide has been known to display a high fluorescent quantum yield and was influenced by polar solvents that led to an intramoleclar charge transfer, which could induce a ratio fluorescent change. In the present study, the amino group was modified as trifluoroacetamide (5-1) to facilitate the dissociation of their amide proton by CN- and F- with tow different mechanisms. The spectral research was carried out in acetonitrile to inhibit the dissociation of sensor 5-1. The adduction of CN- to trifluoroacetamide and the deprotonation by F- would induce the amide proton to dissociate, resulting in a ratio fluorescent change.
引文
[1]PEDERSEN C J. Cyclic Polyethers and Their Complexes with Metal Salts [J]. J Am Chem Soc,1967,89(24):7017-7036.
    [2]CRAM D J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture) [J]. Angew Chem Int Ed Engl,1988,27(8):1009-1020.
    [3]LEHN J M. Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) [J]. Angew Chem Int Ed Engl,1988,27(1):89-112.
    [4]LEHN J M. Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization [J]. Angew Chem Int Ed Engl,1990,29(11):1304-1319.
    [5]刘育,尤长城,张横益,超分子化学-合成受体的分子识别与组装,天津:南开大学出版社,2001.
    [6]PARK C H, SIMMONS H E. Macrobicyclic amines. III. Encapsulation of Halide Ions by in,in-l,(k + 2)-Diazabicyclo[k.l.m.]alkane Ammonium Ions [J]. J Am Chem Soc,1968,90(9):2431-2432.
    [7]BIANCHI A, BOWMAN-JAMES K, GARCIA-ESPANA E. Supramolecular Chemistry of Anions, Wiley-VCH:New York,1997.
    [8]BEER P D, HAYES E J. Transition Metal and Organometallic Anion Complexation Agents [J]. Coord Chem Rev,2003,240:167-189.
    [9]CHRISTIANSON D W, LIPSCOMB W N. Carboxypeptidase A [J]. Acc Chem Res, 1989,22(2):62-69.
    [10]AOKI S, KIMMURA E. Recent Progress in Artificial Receptors for Phosphate Anions in Aqueous Solution [J]. Rev. Mol. Biotech,2002,90(2):129-155.
    [11]HOLLOWAY J M, DAHLGREN R A, HANSEN B, CASEY W H. Contribution of Bedrock Nitrogen to High Nitrate Concentrations in Stream Water [J]. Nature,1998, 395:785-788.
    [12]BEER P D, GALE P A. Anion Recognition and Sensing: The State of the Art and Future Perspectives [J]. Angew Chem Int Ed Engl,2001,40:486-516.
    [13]SHANNON, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides [J]. Acta Crystal Sect. A 1976, 32:751-767.
    [14]SCHMIDTCHEN F P, BERGER M. Artificial Organic Host Molecules for Anions [J]. Chem Rev,1997,97:1609-1646.
    [15]SCHMIDTCHEN F P. Dependence of the Calcium Isotope Effect upon the Electrolyte Concentration in Ion-Exchange Chromatography. Angew Chem Int Ed Engl,1977,16(10):720-721.
    [16]SCHMIDTCHEN F P. Synthese Macrotricyclischer Amine [J]. Chem Ber,1980, 113:864-874
    [17]SCHMIDTCHEN F P, MULLER G. Anion Inclusion without Auxiliary Hydrogen Bonds: X-ray Structure of the Iodide Cryptate of a Macrotricyclic Tetra-quaternary Ammonium Receptor [J]. J. Chem. Soc. Chem. Commun,1984,16:1115-1116.
    [18]LINARES J M, POWELL D, BOWMAN-JAMES K. Ammonium Based Anion Receptors [J]. Coord Chem. Rev,2003,240(1-2):57-75.
    [19]VALIYAVEETTIL S, ENGBERSEN J F J, VERBOOM W, REINHOUDT D N. Anion Binding Protein Mimic: Synthesis and Complexation Studies of Neutral Anion Receptors [J]. Angew Chem,1993,105:942-944.
    [20]VALIYAVEETTIL S, ENGBERSEN J F J, VERBOOM W, REINHOUDT D N. Synthesis and Complexation Studies of Neutral Anion Receptors [J]. Angew Chem Int Ed Engl,1993,32(6):900-901.
    [21]RAPOSO C, PEREZ N, ALMARAZ M, MUSSONS M L, CABALLERO M. C, MORAN J R. A Cyclohexane Spacer for Phosphate Receptors [J]. Tetrahedron Lett, 1995,36(18):3255-3258.
    [22]CAROLAN J V, BUTLER S J, JOLLIFFE K A. Selective Anion Binding in Water with Use of a Zinc(II) Dipicolylamino Functionalized Diketopiperazine Scaffold [J]. JOrg Chem,2009,74(8):2992-2996.
    [23]INOUE Y, HAKUSHI T, LIU Y, TONG L H, SHEN B J, JIN D S. Thermodynamics of molecular recognition by cyclodextrins.1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with .alpha.-,.beta.-, and .gamma.-cyclodextrins:enthalpy-entropy compensation [J]. J Am Chem Soc, 1993,115(2):475-481.
    [24]KIM Y K, LEE Y H, LEE H Y, KIM M K, CHA G S, AHN K H. Molecular Recognition of Anions through Hydrogen Bonding Stabilization of Anion-Ionophore Adducts: A Novel Trifluoroacetophenone-Based Binding Motif [J]. Org Lett,2003,5:4003-4006.
    [25]JIANG X, VIEWEGER M C, BOLLINGER J C, DRAGNEA B, LEE D. Reactivity-Based Fluoride Detection:Evolving Design Principles for Spring-Loaded Turn-On Fluorescent Probes [J]. Org Lett,2007,9:3579-3582.
    [26]SUN Z N, LIU F Q, TAM P K H, YANG D. A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid [J]. Org Lett,2008,10: 2171-2174.
    [27]SUN Z N, WANG H L, LIU F Q, CHEN Y, TAM P K H, YANG D. BODIPY-Based Fluorescent Probe for Peroxynitrite Detection and Imaging in Living Cells [J]. Org Lett,2009,11(9):1887-1890.
    [28]Baskin S I. Brewer T G. Medical Aspects of Chemical and Biological Warfare [M], ed. Sidell F, Takafuji E T, Franz D R. TMM Publication, Washington, DC,1997, ch. 10:271-286.
    [29]Kulig K W. Cyanide Toxicity, U.S. Department of Health and Human Services, Atlanta, GA,1991.
    [30]Guidelines for Drinking-Water Quality, World Health Organization, Geneva,1996.
    [31]SUZUKI T, HIOLKI A, KURAHASHI M. Development of a Method for Estimating an Accurate Equivalence Point in Nickel Titration of Cyanide Ions [J]. Anal Chim Acta,2003,476(1):159-165.
    [32]SAFAVI A, MALEKI N, SHAHBAAZI H R. Indirect Determination of Cyanide Ion and Hydrogen Cyanide by Adsorptive Stripping Voltammetry at a Mercury Electrode [J]. Anal Chim Acta,2004,503(2):213-221.
    [33]SHAN D, MOUSTY C, COSNIER S. Subnanomolar Cyanide Detection at Polyphenol Oxidase/Clay Biosensors. Anal Chem,2004,76(1):178-183.
    [34]RAO V K, SURESH S R, RAO N B S N, RAJARAM P. An Electrochemical Sensor for Detection of Hydrogen Cyanide Gas [J]. Bull. Electrochem.1997,13(7): 327-329.
    [35]CHRISTISON T T, ROHRER J S. Direct Determination of Free Cyanide in Drinking Water by Ion Chromatography with Pulsed Amperometric Detection [J]. J ChromatogrA,2007,1155(1):31-39.
    [36]XU Z, CHEN X, KIM H N, YOON J. Sensors for the Optical Detection of Cyanide Ion [J]. Chem Soc Rev,2010,39:127-137.
    [37]YOON J, KIM S K, SINGH N J, KIM K S. Imidazolium Receptors for the Recognition of Anions [J]. Chem Soc Rev,2006,35(4):355-360.
    [38]GUNNLAUGSSON T, GLYNN M, TOCCI G M, KRUGER P E, PFEFFER F M. Anion Recognition and Sensing in Organic and Aqueous Media Using Luminescent and Colorimetric Sensors [J]. Coord Chem Rev,2006,250(23-24):3094-3117.
    [39]Gale P A. Structural and Molecular Recognition Studies with Acyclic Anion Receptors. Acc Chem Res,2006,39(7):465-475.
    [40]MARTINEZ-MANEZ R, SANCANON F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions [J]. Chem Rev,2003,103(11):4419-4476.
    [41]KIM S K, LEE D H, HONG J I, YOON J. Chemosensors for Pyrophosphate [J]. Acc Chem Res,2009,42(1):23-31.
    [42]LEE H N, XU Z, KIM S K, SWAMY K M K, KIM Y, KIM S J, YOON J. Pyrophosphate-Selective Fluorescent Chemosensor at Physiological pH: Formation of a Unique Excimer upon Addition of Pyrophosphate [J]. J Am Chem Soc,2007, 129(13):3828-3829.
    [43]SUN S S, LEES A J. Anion Recognition through Hydrogen Bonding: a Simple, yet Highly Sensitive, Luminescent Metal-Complex Receptor [J]. Chem Commun 2000, 17:1687-1688.
    [44]ANZENBACHER P JR, TYSON D S, JURSKOVA K, CASTELLANO F N. Luminescence Lifetime-Based Sensor for Cyanide and Related Anions [J] J Am Chem Soc,2002,124(22):6232-6233.
    [45]GIMENO N, LI X, DURRANT J R, VILAR R. Cyanide Sensing with Organic Dyes: Studies in Solution and on Nanostructured Al2O3 Surfaces [J]. Chem Eur J,2008, 14:3006-3012.
    [46]MIYAJI H, SESSLER J L. Off-the-Shelf Colorimetric Anion Sensors [J]. Angew Chem Int Ed Engl,2001,40:154-157.
    [47]KIM Y H, HONG J I. Ion Pair Recognition by Zn-porphyrin/crown Ether Conjugates: Visible Sensing of Sodium Cyanide [J]. Chem Commun,2002,24(5): 512-513
    [48]LIU H, SHAO X, JIA M, JIANG X, LI Z, CHEN G. Selective Recognition of Sodium Cyanide and Potassium Cyanide by Diaza-crown Ether-Capped Zn-Porphyrin Receptors in Polar Solvents [J]. Tetrahedron 2005,61:8095-8100.
    [49]GANESH V, SANZ M P C, MAREQUE-RIVAS J C. Effective Anion Sensing Based on the Ability of Copper to Affect Electron Transport across Self-assembled Monolayers [J]. Chem Commun,2007,47:5010-5012.
    [50]ZENG Q, CAI P, LI Z, QIN J, TANG B. An Imidazole-Functionalized Polyacetylene: Convenient Synthesis and Selective Chemosensor for Metal Ions and Cyanide [J]. Chem Commun,2008,9:1094-1096.
    [51]LI Z, LOU X, YU H, LI Z, QIN J. An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide [J]. Macromolecules 2008,41(20):7433-7439.
    [52]TOUCEDA-VARELA A, STEVENSON E I, GALVE-GASION J A, DRYDEN D T F, MAREQUE-RIVAS J C. Selective Turn-on Fluorescence Detection of Cyanide in Water using Hydrophobic CdSe Quantum Dots [J]. Chem Commun,2008 17: 1998-2000.
    [53]LOU X, ZHANG L, QIN J, LI Z. An Alternative Approach to Develop a Highly Sensitive and Selective Chemosensor for the Colorimetric Sensing of Cyanide in Water [J]. Chem Commun,2008,44:5848-5850.
    [54]LOU X, QIANG L, QIN J, LI Z. A New Rhodamine-Based Colorimetric Cyanide Chemosensor: Convenient Detecting Procedure and High Sensitivity and Selectivity [J]. ACSAppl Mater & Interfaces,2010,1(11):2529-2535.
    [55]CHUNG S Y, NAM S W, LIM J, PARK S, YOON J. A Highly Selective Cyanide Sensing in Water via Fluorescence Change and Its Application to in vivo Imaging [J]. Chem Commun,2009,20:2866-2868.
    [56]XU Z, PAN J, SPRING D R, CUI J, YOON J. Ratiometric Fluorescent and Colorimetric Sensors for Cu2+ Based on 4,5-disubstituted-1,8-naphthalimide and Sensing Cyanide via Cu2+ Displacement Approach [J]. Tetrahedron,2010,66: 1678-1683.
    [57]GULIYEV R, BUYUKCAKIR O, SOZMEN F, BOZDEMIR 0 A. Cyanide Sensing via Metal Ion Removal from a Fluorogenic BODIPY Complex [J]. Tetrahedron Lett, 2009,50:5139-5141.
    [58]ZELDER F H. Specific Colorimetric Detection of Cyanide Triggered by a Conformational Switch in Vitamin B12 [J]. Inorg Chem,2008,47:1264-1266.
    [59]MANNEL-CROISE C, ZELDER F. Side Chains of Cobalt Corrinoids Control the Sensitivity and Selectivity in the Colorimetric Detection of Cyanide [J]. Inorg Chem, 2009,48,1272-1274.
    [60]LEE J H, JEONG A R, SHIN I S, KIM H J, HONG J I. Fluorescence Turn-On Sensor for Cyanide Based on a Cobalt(II)-Coumarinylsalen Complex [J]. Org Lett, 2010.12(4):764-767.
    [61]SHANG, L.; JIN, L.; DONG, S. Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles [J]. Chem. Commun.2009,21:3077-3079.
    [62]CHUNG Y M, RAMAN B, KIM D S, AHN K H. Fluorescence Modulation in Anion Sensing by Introducing Intramolecular H-bonding Interactions in Host-Guest Adducts [J]. Chem Commun,2006,2:186-188.
    [63]MIYAJI H, KIM D S, CHANG B Y, PARK E, PARK S M, AHN K H. Highly Cooperative Ion-pair Recognition of Potassium Cyanide Using a Heteroditopic Ferrocene-Based Crown Ether-Trifluoroacetylcarboxanilide Receptor [J]. Chem Commun,2008,6:753-755.
    [64]LEE H, CHUNG Y M, AHN K H. Selective Fluorescence Sensing of Cyanide with an o-(carboxamido) Trifluoroacetophenone Fused with A Cyano-1,2-Diphenylethylene Fluorophore [J]. Tetrahedron Lett,2008,49:5544-5547.
    [65]KIM D S, CHUNG Y M, JUN M, AHN K H. Selective Colorimetric Sensing of Anions in Aqueous Media through Reversible Covalent Bonding [J]. J Org Chem, 2009,74:4849-4854.
    [66]KIM D S, AHN K H. Fluorescence "Turn-On" Sensing of Carboxylate Anions with Oligothiophene-Based o-(Carboxamido)trifluoroacetophenones [J]. J Org Chem, 2008,73:6831-6834.
    [67]EKMEKCI Z, YILMAZ M D, AKKAYA E U. A Monostyryl-Boradiazaindacene (BODIPY) Derivative as Colorimetric and Fluorescent Probe for Cyanide Ions [J]. Org Lett,2008,10(3):461-464.
    [68]NIU H T, SU D, JIANG X, YANG W, YIN Z, HE J. CHENG J P. A simple yet Highly Selective Colorimetric Sensor for Cyanide Anion in an Aqueous Environment [J]. Org Biomol Chem,2008,6:3038-3040.
    [69]NIU H T, JIANG X, YANG W, HE J, CHENG J P. A highly Selective and Synthetically Facile Aqueous-Phase Cyanide Probe [J]. Tetrahedron Lett,2008,49: 6521-6524.
    [70]PENG L, WANG M, ZHANG G, ZHANG D, ZHU D. A Fluorescence Turn-on Detection of Cyanide in Aqueous Solution Based on the Aggregation-Induced Emission [J]. Org Lett,2009,11(9):1943-1946.
    [71]LEE K S, LEE J T, HONG J I, KIM H J. Visual Detection of Cyanide through Intramolecular Hydrogen Bond [J]. Chem Lett,2007,36:816-817.
    [72]LEE K S, KIM H J, KIM G H, SHIN I, HONG J I. Fluorescent Chemodosimeter for Selective Detection of Cyanide in Water [J]. Org Lett,2008,10:49-51.
    [73]KWON S K, KOU S, KIM H N, CHEN X, HWANG H, NAM S W, KIM S H, SWAMY K M K, PARK S, YOON J. Sensing Cyanide Ion via Fluorescent Change and Its Application to the Microfluidic System [J]. Tetrahedron Lett,2008,49: 4102-4105.
    [74]CHUNG Y, LEE H, AHN K H. N-Acyl Triazenes as Tunable and Selective Chemodosimeters Toward Cyanide Ion [J]. J Org Chem,2006,71:9470-9474.
    [75]CHO D G, KIM J H, SESSLER J L. The Benzil-Cyanide Reaction and Its Application to the Development of a Selective Cyanide Anion Indicator [J]. J Am Chem Soc,2008,130:12163-12167.
    [76]SESSLER J L, CHO D G. The Benzil Rearrangement Reaction: Trapping of a Hitherto Minor Product and Its Application to the Development of a Selective Cyanide Anion Indicator [J]. Org Lett,2008,10,73-75.
    [77]CHEN C L, CHEN Y H, CHEN C Y, SUN S S. Dipyrrole Carboxamide Derived Selective Ratiometric Probes for Cyanide Ion [J]. Org Lett,2006,8:5053-5056.
    [78]TOMASULO M, SORTINO S, RAYMO F M. A Fast and Stable Photochromic Switch Based on the Opening and Closing of an Oxazine Ring [J]. Org Lett,2005,7: 1109-1112.
    [79]TOMASULO M, RAYMO F M. Colorimetric Detection of Cyanide with a Chromogenic Oxazine [J]. Org Lett,2005,7:4633-4636.
    [80]TOMASULO M, SORTINO S, WHITE A J P, RAYMO F M. Chromogenic Oxazines for Cyanide Detection [J]. J Org Chem,2006,71:744-753.
    [81]REN J, ZHU W, TIAN H. A Highly Sensitive and Selective Chemosensor for Cyanide [J]. Talanta,2008,75:760-764.
    [82]HONG S J, YOO J, KIM S H, KIM J S, YOON J, LEE C H. β-Vinyl Substituted Calix[4]pyrrole as a Selective Ratiometric Sensor for Cyanide anion [J]. Chem. Commun.,2009,2:189-191.
    [83]Garcia F, Garcia J M, Garcia-Acosta B, Martinez-Manez R, Sancenon F, Soto J Pyrylium-containing Polymers as Sensory Materials for the Colorimetric Sensing of Cyanide in Water [J]. Chem Commun,2005,22:2790-2792.
    [84]ROS-LIS J V, MARTINEZ-MANEZ R, SOTO J. A Selective Chromogenic Reagent for Cyanide Determination [J]. Chem Commun,2002,19:2248-2249.
    [85]ZHANG X, LI C, CHENG X, WANG X, ZHANG B. A Near-Infrared Croconium Dye-Based Colorimetric Chemodosimeter for Biological Thiols and Cyanide Anion [J]. Sens Actuators B,2008,129:152-157.
    [86]YANG Y K, TAE J. Acridinium Salt Based Fluorescent and Colorimetric Chemosensor for the Detection of Cyanide in Water [J]. Org Lett,2006,8: 5721-5723.
    [87]AFKHAMI A, SARLAK N. A Novel Cyanide Sensing Phase Based on Immobilization of Methyl Violet on a Triacetylcellulose Membrane [J]. Sens Actuators B,2007,122:437-441.
    [88]KAUR P, SAREEN D, KAUR S, SINGH K. An Efficacious "Naked-Eye" Selective Sensing of Cyanide from Aqueous Solutions using a Triarylmethane Leuconitrile [J]. Inorg Chem Commun,2009,12:272-275.
    [89]NIU H T, JIANG X, HE J, CHENG J P. Cyanine Dye-Based Chromofluorescent Probe for Highly Sensitive and Selective Detection of Cyanide in Water [J]. Tetrahedron Lett,2009,50:6668-6671.
    [90]KUMAR S KUMAR S. 1-(4-Nitrophenyl)-benzimidazolium-based Ratiometric Chromogenic Probes for Cyanide Ion [J]. Tetrahedron Lett,2009,50:4463-4466.
    [91]YOSHINO J, KANO N, KAWASHIMA T. Fluorescence Properties of Simple N-Substituted Aldimines with a B-N Interaction and Their Fluorescence Quenching by a Cyanide Ion [J]. J Org Chem,2009,74(19):7496-7503.
    [92]QIAN G, LI X, WANG Z Y. Visible and Near-Infrared Chemosensor for Colorimetric and Ratiometric Detection of Cyanide [J]. J Mater Chem,2009,19: 522-530.
    [93]ROS-LIS J V, MARTINEZ-MANEZ R, SOTO J. Subphthalocyanines as Fluoro-chromogenic Probes for Anions and Their Application to the Highly Selective and Sensitive Cyanide Detection [J]. Chem Commun,2005,42: 5260-5262.
    [94]PALOMARES E, MARTINEZ-DIAZ M V, TORRES T, CORONADO E. A Highly Sensitive Hybrid Colorimetric and Fluorometric Molecular Probe for Cyanide Sensing Based on a Subphthalocyanine Dye [J]. Adv Funct Mater,2006,16(9): 1166-1170.
    [95]HUH J O, DO Y, LEE M H. A BODIPY-Borane Dyad for the Selective Complexation of Cyanide Ion [J]. Organometallics,2008,27:1022-1025.
    [96]HUDNALL T W, GABBAI F P. Ammonium Boranes for the Selective Complexation of Cyanide or Fluoride Ions in Water [J]. J Am Chem Soc,2007, 129(39):11978-11986
    [97]KIM Y, ZHAO H, GABBAI F P. Sulfonium Boranes for the Selective Capture of Cyanide Ions in Water [J]. Angew Chem Int Ed Engl,2009,48:4957-4960.
    [98]BROOMSGROVE A E J, ADDY D A, BRESNER C, FALLIS I A, THOMPSON A L. ALDRIDGE S. AND/NOT Sensing of Fluoride and Cyanide Ions by Ferrocene-Derivatised Lewis Acids [J]. Chem Eur J,2008,14(25):7525-7529.
    [99]AGOU T, SEKINE M, KOBAYASHI J, KAWASHIMA T. Detection of Biologically Important Anions in Aqueous Media by Dicationic Azaborines Bearing Ammonio or Phosphonio Groups [J]. Chem Eur J,2009,15(20):5056-5062.
    [100]BADUGU R, LAKOWICZ J R, GEDDES C D. Enhanced Fluorescence Cyanide Detection at Physiologically Lethal Levels: Reduced ICT-Based Signal Transduction [J]. J Am Chem Soc,2005,127:3635-3641.
    [101]JAMKRATOKE M, RUANGPORNVISUTI V, TUMCHAREN G, TUNTULANI T, TOMAPATANAGET B. A-D-A Sensors Based on Naphthoimidazoledione and Boronic Acid as Turn-On Cyanide Probes in Water [J]. J Org Chem,2009,74: 3919-3922.
    [102]JOB A. Liebigs. Formation and Stabitity of Inorganic Complexes in Solution [J]. Ann Chem,1928,9:113-203.
    [103]INOUE Y, YAMAMOTO K, WADA T, EVERITT S, GAO X M, HOU Z J, JIANG S K, WU H M. Inclusion Complexation of (Cyclo) alkanes and (cyclo) Alkanols with 6-O-modified Cyclodextrins [J]. J. Chem. Soc. Perkin Trans.1998, 2(8):1807-1816.
    [104]BRAUN D, RETTIG W, DELMOND S, LETARD J F, LAPOUYADE R. Amide Derivatives of DMABN: A New Class of Dual Fluorescent Compounds [J]. J Phys Chem A,1997,101:6836-6841.
    [105]WEN Z C, YANG R, HE H, JIANG Y B. A Highly Selective Charge Transfer Fluoroionophore for Cu2+ [J]. Chem Commun,2006,1:106-108.
    [106]BARDEZ E, DEVOL I, LARREY B, VALEUR B. Excited-State Processes in 8-Hydroxyquinoline: Photoinduced Tautomerization and Solvation Effects [J]. J. Phys. Chem. B,1997,101:7786-7793.
    [107]樊能廷,有机合成事典,北京,北京理工大学出版社,1995,205.
    [108]樊能廷,有机合成事典,北京,北京理工大学出版社,1995,259.
    [109]DE SILVA A P, GUNARATNE H Q N, GUNNIAUGSSON T, HUXIEY A J M, MCCOY C P, RADEMACHER J T, RICE T E. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem Rev,1997,97:1515-1566.
    [110]WU F Y, LI Z, WEN Z C, ZHOU N, ZHAO Y F, JIANG Y B. A Novel Thiourea-Based Dual Fluorescent Anion Receptor with a Rigid Hydrazine Spacer [J]. Org Lett,2002,4:3203-3205.
    [111]RYU D, PARK E, KIM D S, YAN S, LEE J Y, CHANG B Y, AHN K H. A Rational Approach to Fluorescence Turn-on Sensing of a-amino-carboxylates [J]. J Am Chem Soc,2008,130:2094-2095.
    [112]Solntsev, K.M.; Huppert, D. Solvatochromism of p-Naphthol [J].J. Phys. Chem. A 1998,102(47):9599-9606.
    [113]YUAN M, ZHOU W, LIU X, ZHU M, LI J, YIN X, ZHENG H, ZUO Z, OUYANG C, LIU H, LI Y, ZHU D A. Multianalyte Chemosensor on a Single Molecule: Promising Structure for an Integrated Logic Gate [J]. J Org Chem,2008, 73(13):5008-5014.
    [114]XUE L, LIU C, JIANG H. Highly Sensitive and Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions in Aqueous Media [J]. Org Lett,2009, 11(7):1655-1658.
    [115]WU Y, PENG X, FAN J, GAO S, TIAN M, ZHAO J, SUN S. Fluorescence Sensing of Anions Based on Inhibition of Excited-State Intramolecular Proton Transfer [J]. J Org Chem,2007,72:62-70.
    [116]TSIEN R Y, POENIE M. Fluorescence Ratio Imaging: a New Window into Intracellular Ionic Signaling [J]. Trends Biochem Sci,1986,11:450-455.
    [117]NIE L, LI Z, HAN J, ZHANG X, YANG R, LIU W X, WU F Y, XIE J W, ZHAO Y F, JIANG Y B. Development of N-Benzamidothioureas as a New Generation of Thiourea-Based Receptors for Anion Recognition and Sensing [J]. J Org Chem, 2004,69(19):6449-6454.
    [118]TONG H, WANG L, JING X, WANG F. "Turn-On" Conjugated Polymer Fluorescent Chemosensor for Fluoride Ion [J]. Macromolecules,2003,36(8): 2584-2586.
    [119]ZHANG X, GUO L, WU F Y, JIANG Y B. Development of Fluorescent Sensing of Anions under Excited-State Intermolecular Proton Transfer Signaling Mechanism [J]. Org Lett,2003,5(15):2667-2670.
    [120]CHOI, K.; HAMILTON, A. D. A Dual Channel Fluorescence Chemosensor for Anions Involving Intermolecular Excited State Proton Transfer [J]. Angew Chem Int Ed Engl,2001,40:3912-3915.
    [121]ROSS S R, FINKELSTEIN M, PETERSEN R C. Solvent Effects in the Reactions of N-Bromosuccinimide with Toluene, Fluorene and Acenaphthene; Evidence for a Polar Mechanism in Propylene Carbonate [J]. J Am Chem Soc 1985,80:4327-4330.
    [122]KHOSRAVI A, MORADIAN S, GHARANJIG K, TAROMI A F. Synthesis and Spectroscopic Studies of Some Naphthalimide Based Disperse Azo Dyestuffs for the Dyeing of Polyester Fibres [J]. Dyes and Pigments,2006,69:79-92.
    [123]Okamoto H, Satake K, Kimura M. Fluorescence Properties of 3- and 4-trifluoroacetylamino-1,8- Naphthalimides: Solvent-Controlled Switching of Fluorescence Color and Response to Metal-cations [J]. ARKIVOC,2007,8: 112-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700