用户名: 密码: 验证码:
含荧光基团的杯[4]芳烃氮杂冠醚的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成能选择性结合重金属及过渡金属离子,并引起光学如发光、荧光性质的变化,从而能识别特定金属离子的荧光传感器是超分子领域的一个热门课题。杯[4]芳烃氮杂冠醚由于其与软金属离子结合能力强,活性位可选择,是构造主体分子的理想材料。本论文通过对杯[4]芳烃氮杂冠醚上仲氮原子的修饰,获得了连有荧光基团邻苯二甲酰亚胺和萘二酰亚胺单元的多个系列化合物,其中连接萘二酰亚胺的氮杂冠醚衍生物对铜离子有非常好的选择性,颜色变化明显,该类化合物可作为潜在的荧光传感器。
     采用多甘醇双对甲苯磺酸酯对杯[4]芳烃仲氮原子进行修饰,得到了氮杂穴醚,季铵盐结构和N-取代的杯[4]芳烃氮杂冠醚系列衍生物,并利用1H NMR、13C NMR、IR和MS对所合成的三个未见文献报道的新化合物进行了结构表征。结果表明均为锥式构象,且由于多甘醇链状结构空间链节长度不同,分别形成了杯[4]芳烃穴醚,含有吗啉单元的螺醚,类似准轮烷的结构。
     采用四种邻苯二甲酰亚胺化合物对杯[4]芳烃下沿进行修饰,通过硝化、还原、溴乙酰化和亲核取代等一系列反应得到了下沿含有邻苯二甲酰亚胺基杯[4]芳烃类系列衍生物,并利用1H NMR、13C NMR、IR和MS对所合成的四个未见文献报道的新化合物进行了结构表征。结果表明,所合成的化合物均为锥式构象。分别将六个邻苯二甲酰亚胺衍生物与杯[4]芳烃氮杂冠醚反应,得到了空间位置不同的两系列共六个杯[4]芳烃氮杂冠醚衍生物;再将四个萘二甲酰亚胺衍生物与杯[4]芳烃氮杂冠醚反应,得到了类似的两系列共四个杯[4]芳烃氮杂冠醚衍生物,并利用1H NMR、13C NMR、IR和MS对所合成的十个未见文献报道的新化合物进行了结构表征。结果表明,所合成的化合物均为锥式构象。对这四系列代表化合物进行与金属离子结合的荧光测定实验,结果显示连有萘二酰亚胺的杯芳烃氮杂冠醚衍生物对铜离子有很好的选择性识别能力,荧光增强,颜色变化明显,从而具备作为荧光传感器的潜在应用价值。
The synthesis of fluorescent sensors, which can selectively recognize and sensing heavy and transition metal ions through color or fluorescence changes, has received increasing interest in supramolecular chemistry. Calix[4]azacrown deriatives are good candidates as receptors of fluorescent probe molecules, due to their binding strength and selectivity toward soft-metal ions through the three-dimensional encapsulating assistance of the appended side arm on the nitrogen atom. In this paper, we report several novel series of calix[4]azacrown detivatives with phthalimide and naphthalimide groups, one of which can selectively recognize Cu2+ and the color change is visible and may be useful fluorescent sensor.
     By using three multi-oxyethyl p-methylbenzenesulfonate compounds, three novel derivatives of calix[4]azacrown connecting with the nitrogen atom have been synthesized and structurally characterized by 1H NMR、13C NMR、IR and MS. And all the three compounds adopt cone conformation. Due to different length of the chains, A novel ?tren‘type calix[4]azacrown ether and a novel ?spiro‘type calix[4]azacrown containing morpholine unit and a expected [2]pseudorotaxane was prepared.
     With introducing four phthalimide compounds into calix[4]arene on the low rim after ipso-nitration, reduction, bromo-acetamidation and substitution, we have successfully obtained four new compounds including three new intermediates. All these compouds are confirmed by 1H NMR、13C NMR、IR and MS and the data means that all of them adopt the cone conformation.
     By the reaction of phthalimide compounds and calix[4]azacrown, two series, six new calix[4]azacrown derivatives were prepared. Then with introducing naphthalimide compounds into calix[4]azacrown, four novel derivatives of calix[4]azacrown connecting with the nitrogen atom have been synthesized and structurally characterized by 1H NMR、13C NMR、IR and MS. And all the ten compounds adopt cone conformation. After fluorescent properties research of metal ions, the results showed that one of which can selectively recognize Cu2+ ,the color change is visible and may be a useful fluorescent sensor.
引文
[1] Ikeda A.; Shinkai S.; Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding, Chem. Rev., 1997, 97, 1713~1734
    [2]Molenveld P.; Engbersen J. F. J.; Reinhoudt D. N.; Dinuclear metallo- pho- sphordiesterase models: application of calix[4]arenes as molecular scaffolds, Chem. Soc. Rev, 2000, 29, 75~86
    [3] Koh, K. N.; Araki, K.; Shinkai, S.; Asfari, Z., Vicens, J.; Cation binding properties of a novel 1,3-alternate calix[4]biscrown. Formation of 1:1 and 1:2 complexes and unique cation tunneling across a calix[4]arene cavity, Tetrahedron Lett. 1995, 36, 6095–6098.
    [4] Ostaszewski, R.; Stevens, T. W.; Verboom, W.;Reinhoudt, D. N.; Kaspersen, F. M.; Calix(Aza-)crowns as Potential Ionophores for Divalent and Trivalent Cations , Recl. Trav. Chim. Pays-Bas 1991, 110, 294-298.
    [5]Aeungmaitrepirom, W.; Asfari, Z., Vicens, J.; Synthesis of two calyx[4]arenes in 1,3-alternate conformation containing hard and soft ion binding sites. Tetrahedron Lett. 1997, 38, 1907–1910.
    [6] Rojsajjakul, T.; Veravong, S.; Tumcharern, G.; Seangprasertkij-Magee, R.; Tuntulani, T.; Synthesis and Characterisation of Polyaza Crown Ether Derivatives of Calix[4]arene and Their Role as Anion Receptors, Tetrahedron, 1997, 45, 4669-4680.
    [7] Lehn J M, Atwood J L, Davies J E D, et al., Comprehensive supramolecular chemistry, Pergamon, Oxford, 1996, 6~7
    [8] Lehn J M, Perspectives in supramolecular chemistry. From molecular chemistry recognition towards molecular information processing and self-organization, Angew. Chem. Int. Ed., 1990, 29: 1304~1319.
    [9]刘育,尤长城,张衡益,超分子化学-合成受体的分子识别与组装,天津:南开大学出版社,2001
    [10] Ball P, Crystals by design, Nature, 1996, 381, 648~649.
    [11] (a) Pedersen C J, New Macrocyclic Polyethers, J. Am. Chem. Soc., 1970, 92, 391~934; (b) Pedersen C J, Macrocyclic polyether sulfides, J. Org. Chem., 1971, 36, 254~257
    [12] (a) Pringsheim H, Chemistry of the saccharides. McGraw-Hill: New York, 1932,280~282; (b) Pringsheim H, A comprehensive survey of starch chemistry; Walton, R. P., Ed.; Chemical Catalogue Co., Inc.: New York, NY, 1928, 35~37
    [13] (a) Shinkai S, Calixarenes-Third generation of suopramolecules, Tetrahedron, 1993, 49(40): 8933~8968; (b) Gutsche C D, Calixarene, Cambrige: The royal society of chemistry, England, 1989
    [14] (a) Lehm J M, Supramolecular chemistry-receptors, catalysts, Science, 1985, 227, 849~856; (b) Cram D J, Cavitands: organic hosts with enforced cavities, Science, 1983, 219, 1177~1185.
    [15] Alfieri, C.; Dradi, E.; Pochini, A.; Ungaroi, R.; Andreetti, G. D.; Synthesis, and X-ray crystal and molecular structure of a novel macro-bicyclic ligand: crowned p-t-butyl-calix[4]arene; J. Chem. Soc., Chem. Commun.;1983, 1075-1077.
    [16]Kim, J. S.; Ohki, A.; Ueki, R. Ishizuka, T.; Cesium-ion selective electrodes based on calix[4]arene dibenzocrown ethers; Talanta; 1999, 48, 705-710.
    [17] Kim, J. S.; Pang, J. H.;Yu, I. Y.; Lee, W. K.; Suh, I. H.; Kim, J. K.; Cho, M. H.; Kim, E. T.; Ra, D. Y.; Calix[4]arene dibenzocrown ethers as caesium selective extractants; J. Chem. Soc., Perkin Trans. 2, 1999, 837– 846.
    [18] Kim, J. S.; Shon, O. J.; Ko, J. W.; Cho, M. H.; Yu, I. Y.; Vicens, J.; Synthesis and metal ion complexation studies of proton-ionizable calix; J. Org. Chem.;2000, 86, 2386-2392.
    [19] Chen, Y.; Chen, Y.; Synthesis of doubly bridged p-tert-butyl-calix[6]arene containing hard and soft ion binding sites, Tetrahedron Letters, 2000, 41, 9079-9082.
    [20] Rogers, J. S.; Gutsche, C. D.; Calixarene 28. Synthesis, structures and conformations of aroylates of calix[6]arenes, J. Org. Chem., 1992, 57, 3152-3159.
    [21] Kanamathareddy, S.; Gutsche, C. D.; Calixarene 29. Aroylation and arylmethylation of calix[6]arenes, J. Org. Chem., 1992, 57, 3160-3166.
    [22] Bitter, I.; Grün, A.; Tóth, G.; Balázs, B.; T?ke, L.; Studies on calix(aza)crowns, I. Synthesis, alkylation reactions and comprehensive NMR investigation of capped calix[4]arenes; Tetrahedron, 1997, 53, 9799-9812.
    [23] B?hmer, V.; Ferguson, G.; Gallagher, J. F.; Lough, A. J.; McKervey, M. A.; Madigan, E.; Moran, M. B.; Phillips, J.; Williams, G.; Synthesis and X-ray molecular structures of p-tert-butylcalix[4]arenes with diamide bridges spanning the 1,3-(distal) positions on the lower rim; J. Chem. Soc., Perkin Trans. 1, 1993, 1521– 1527.
    [24] Wu, Y.; Shen, X.-P.; Duan, C.-Y.; Liu, Y.-J.; Xu, Z.; New double-1,2-amide-bridged calix[4]arenes by aminolysis of calix[4]arene esters, Tetrahedron Letters, 1999, 40, 5749-5752.
    [25] Abidi, R.; Oueslati, I.; Amri, H.; Thuéry, P.; Nierlich, M.; Asfari, Z.; Vicens, J. Synthesis, structure and complexing properties of new calix[4](aza)crowns, Tetrahedron Letters, 2001, 42, 1685-1689.
    [26]Kim, J. S.; Lee, W. K.; No, K.; Asfari, Z.; Vicens, J.; Two novel 1,3-calix[4]azacrowns, Tetrahedron Letters, 2000, 41, 3345-3348.
    [27] Bitter, I.; Grün, A.; Tóth, G.; Balázs, B.; Horváth, G.; T?ke, L. Studies on calix(aza)crowns, II. Synthesis of novel proximal doubly bridged calix[4]arenes by intramolecular ring closure of syn 1,3-and 1,2-ω-chloroalkylamides, Tetrahedron, 1998, 54, 3857-3870.
    [28] Beer, P. D.; Drew, M. G.; Knubley, R. J.; Ogden, M. I.; Synthesis and co-ordination chemistry of a novel bis(benzo crown ether) substituted calix[4]arene that can simultaneously complex cations and anions, J. Chem. Soc., Dalton Trans., 1995, 3117-3132.
    [29] Arduini, A.; McGregor, W. M.; Paganuzzi, D.; Pochini, A.; Secchi, A.; Ugozzoli, F.; Ungaro, R. Rigid cone calix[4]arenes as -donor systems: complexation of organic molecules and ammonium ions in organic media, J. Chem. Soc., Perkin Trans. 2, 1996, 839-846.
    [30] Saadioui, M.; Asfari, Z.; Vicens, J. Synthesis and characterization of two azobenzene modified 1,3-calix[4]-bis-crowns as artificial potential allosteric systems, Tetrahedron Letters, 1997, 38, 1187-1190.
    [31]Lee, J. Y.; Kim, S. K.; Jung, J.H.; Kim, J. S.; Bifunctional Fluorescent Calix[4]arene Chemosensor for Both a Cation and an Anion, J. Org. Chem., 2005, 70, 1463-1466.
    [32]Oueslati, I.; Thuery, P.; Shkurenko, O.; Suwinska, K.; Harrowfield, J. M.; Abidi, R.; Vicens, J.; Calix[4]azacrowns: self-assembly and effect of chain length and O-alkylation on their metal ion-binding properties, Tetrahedron, 2007, 63, 62-70.
    [33] Oueslati, I.; Abidi, R.; Thuery, P.; Nierlich, M.; Asfari, Z.; Harrowfield, J.; Vicens, J.; Synthesis and complexing properties of methylated calix[4](aza)crown derivatives, Tetrahedron Letters, 2000, 41, 8263-8267.
    [34]Kim, J. H.; Hwang, A. R.; Chang, S. K.; Hg2+-selective fluoroionophore of p-tert-butylcalix[4]arene arenediaza-crown ether having pyrenylacetamidesubunits, Tetrahedron Letters, 2004, 45, 7557-7561.
    [35] Banthia, S.; Samanta, A.; Calix[4]azacrown and 4-aminophthalimide-appended calix[4]azacrown: synthesis, structure, complexation and fluorescence signaling behaviour, Org. Biomol. Chem., 2005, 3, 1428–1434.
    [36]He, Y. B.; Xiao, Y. J.; Meng, L. Z.; Zeng, Z. Y.; Wu, X. J.; Wu, C. T.; New type chiral calix[4](aza)crowns: synthesis and chiral recognition, Tetrahedron Letters, 2002, 43, 6249-6253.
    [37]Lee, S. H.; Kim, S. H.; Kim, S. K.; Jung, J. H.; Kim, J. S.; Fluorescence Ratiometry of Monomer/Excimer Emissions in a Space-Through PET System, J. Org. Chem.; 2005, 70, 9288-9295.
    [38] Kim, J. S.; Noh, K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J. Y.; Molecular Taekwondo. 2. A New Calix[4]azacrown Bearing Two Different Binding Sites as a New Fluorescent Ionophore, J. Org. Chem.; 2003, 68, 597-600.
    [39] Kim, J. H.; Hwang, A. R.; Chang, S. K.; Hg2+-selective fluoroionophore of p-tert-butylcalix[4]arene arenediaza-crown ether having pyrenylacetamide subunits, Tetrahedron Letters, 2004, 45, 7557-7561.
    [40]Chen, Q. Y.; Chen, C. F.; A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown, Tetrahedron Letters, 2005, 46, 165-168.
    [41] Kim, J. S.; Shon, O. J.; Yang, S. H.; Kim, J. Y.; Kim, M. J.; Chromogenic Indoaniline Armed-Calix[4]azacrowns, J. Org. Chem.; 2002, 67, 6514-6518.
    [42] Aoki, I.; Sakaki, T.; Shinkai, S.; A new metal sensory system based on intramolecular fluorescence quenching on the ionophoric calix[4]arene ring; J. Chem. Soc., Chem. Commun.; 1992, 730-732.
    [43] Jin, T.; Ichikawa, K.; Koyama, T.; A fluorescent calix[4]arene as an intramolecular excimer-forming Na+ sensor in nonaqueous solution; J. Chem. Soc., Chem. Commun.; 1992, 499-501.
    [44] (a)Ji, H. F.; Brown, G. M.; Dabestani, R.; Calix[4]arene-based Cs+ selective optical sensor; Chem. Commun.; 1999, 609-610.(b) Ji, H. F.; Dabestani, R.; Brown, G. M.; Sachleben, R. A.; A new highly selective calix[4]crown-6 fluorescent caesium probe; Chem. Commun.; 2000, 833-835.
    [45] Kalyanasundaram, K.; Photochemistry in microheterogeneous systems [M]., New York: Academic Press, 1987.
    [46] Lakowicz, J. R.; Principles of fluorescence spectroscopy [M]., New York: Plenum Press, 1983.
    [47] Kalyanasundaram K.; Photochemistry in organized and constrained media [M]., New York: VCH, P39, 1991.
    [48] Karmakar, R.; Samanta, A.; Phase-Transfer Catalyst-Induced Changes in the Absorption and Fluorescence Behavior of Some Electron Donor-Acceptor Molecules; J. Am. Chem. Soc.; 2001, 123, 3809-3817.
    [49] Saroja, G.,Soujanya, T., Ramachandram, B.; Samanta, A.; 4-aminophthalimide derivatives as environment-sensitive probe, J. fluores.; 1998, 8, 405-410.
    [50] Bhattacharyya, K.; Solvation dynamics and proton transfer in supramolecular assemblie, Ace.Chem.Res., 2003, 36, 95-101.
    [51] Banthia S., Samanta A.; Photophysical and transition-metal ion signaling behavior of a three-component system comprising a cryptand moiety as the receptor; J. Phys. Chem. B. 2002, 106, 5572-5577.
    [52] Ramachandram, B.; Samanta, A.; Modulation of metal-fluorophore communication to develop structurally simple fluorescent sensors for transition metal ions, Chem. Commun.; 1997, 1037-1038.
    [53] De S.; Pal A, Pal T.; Molecular photonic switches employing ions and nanoparticles of coinage and platinum metals, Langmuir., 2000, 16, 6855-6861.
    [54] Saito I.; Takayama M.; Suyiyama H.; Photoactivatable DNA-Cleaving Amino Acids: highly sequence-selective DNA Photocleavage by Novel L-Lysine Derivatives, J. Am. Chem. Soc., 1995, 117, 5590-5591.
    [55] Aveline, B. M.; Matsugo, S.; Redmond, R. W.; Photochemical mechanisms responsible for the versatile application of naphthalimides and naphthaldiimides in Biological Systems, J. Am. Chem. Soc.; 1997, 119, 11785-11795.
    [56] Wintgens, V.; Valat, P.; Kossanyi, J.; Spectroscopic properties of aromatic dicarboximides. Part1.—N—H and N-methyl-substituted naphthalimides, J. Chem. Soc., Faraday Trans., 1994, 90, 411– 421.
    [57] Cosnard, F.; Wintgens, V.; A new fluoroionophore derived from 4-amino-N-methyl-1,8-naphthamide, Tetrahedron Letters, 1998, 39, 2751-2754.
    [58] Guo, X. F.; Zhu, B. C.; Liu, Y. Y., et al.; Synthesis and properties of N-butyl-4-(aza-15-crown-5)-1,8-naphthalimide as a fluorescent probe, Chinese Journal of Organic Chemistry, 2006, 26, 504-507.
    [59] Arimori, S.; Davidson, M. G.; Fyles, T. M.; Hibbert, T. G.; James T. D.; Kociok-K?hn, G. I.; Synthesis and structural characterisation of the first bis(bora)calixarene: a selective, bidentate, fluorescent fluoride sensor, Chem.Commun.; 2004, 1640-1641.
    [60] Sole, S.; Gabbai, F. P.; A bidentate borane as colorimetric fluoride ion sensor, Chem. Commun.; 2004, 1284-1285.
    [61] Xu, G.; Tarr, M. A.; A novel fluoride sensor based on fluorescence enhancement, Chem. Commun.; 2004, 1050-1051.
    [62]Tian, H.; Liu, B.; A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism, J. Mater. Chem.; 2005, 15, 2681-2685.
    [63]Li H. Q.; Jiang, Z. Q.; Wang, X.; Pan, Y.; Wang, F.; Yu, S. Q.; Electron Transfer Laser Flash Photolysis Between Nucleosides and Probe Triplet N-(2 -Hydroxyethy1)-1,8-naphthalimide, Chemical Journal of chinese universities, 2004, 25, 2134-2136.
    [64] Ashton, P. R.; Ballardini, R.; Balzani, V.; A photochemically driven molecular -level abacus, Chem. Eur. J. 2000, 6, 3558-3574.
    [65]Qu, D. H.; Wang, Q. C. A light-driven rotaxane molecular shuttle with dual fluorescence addresses, Org. Lett. 2004, 6, 2085-2088.
    [66]Wang, Q. C.; Qu, D. H.; A lockable light-driven molecular shuttle with a fluorescent signal, Angew. Chem. Int. Ed. 2004, 43, 2661-2665.
    [67] Cunningham, I. D.; Woolfall, M.; Deprotonation of Calixarenes in Acetonitrile, J. Org. Chem., 2005, 70, 9248-9256.
    [68] Gutsche C D, Lin L G, Calixarenes 12: the synthesis of founctionalized calixarenes, Tetrahedron, 1986, 42(6), 1633~1640.
    [69]项斌,史鸿鑫,姜一飞,陈华,陈展志,刘秋平,4-硝基邻苯二甲酰亚胺的合成,浙江工业大学学报,2003,31,512-515.
    [70] Williams, F. J.; Donahue, P. E.; Nitration of N–alkylphthalimides. J. Org. Chem.; 1978, 43, 1608-1610.
    [71]史大昕,冯亚青,李倩,N-取代-4-氨基邻苯二甲酰亚胺的合成研究,精细石油化工进展,2003,4,18-21.
    [72] Dondoni A, Ghiglione C, Marra A, et al., Synthesis and characterization of bisphenol-A copolyethers and copolyesters carrying calix[4]arene units in the main chains and their binding properties towards silver cations, Macromol Chem. Phys., 1999, 200, 77~86.
    [73] Pitarch M, Browne J K, McKervey, M A, Conformational control in the synthesis of mixed tetraethers of calix[4]arene, Tetrahedron Lett., 1997, 53, 10503~10512
    [74] Dozol, H.; Asfari, Z.; Vicens, J.; Thuery, P.; Nierlich, M.; Dozol, J. F.; Nitroderivatives of 1,3-calix[4]arene bis-crown-6.Synthesis, structure and complexing properties. Tetrahedron Letters, 2001, 42, 8285-8287.
    [75] Koh, K. N.; Araki, K.; Shinkai, S.; Asfari, Z.; Vicens, J.; Cation Binding Properties of a Novel 1,3-Alternate Calix[4]biscrown. Formation of 1:1 and 1:2 Complexes and Unique Cation Tunneling across a Calix[4]arene Cavity. Tetrahedron Letters, 1995, 36, 6095-6098.
    [76] Lee, S. H.; Kim, J. Y.; Kim, S. K.; Lee, J. H.; Kim, J. S.; Pyrene-appended calix[4]crowned logic gates involving normal and reverse PET: NOR, XNOR and INHIBIT. Tetrahedron, 2004, 60, 5171-5176.
    [77] Gattuso, G.; Pappalardo, A.; Parisi, M.; F.; Pisagatti, I.; et al.; Dipyridinocalixcrown/diiodoperfluorocarbon binary host systems for CsI: structural studies and fluorous phase extraction of caesium.; Tetrahedron, 2007, 4951-4958.
    [78] Matsumoto, H.; Shinkai, S.; Metal-induced Conformationai Change in Pyrene-appended Calix[4]crown-4 Which Is Useful for Metal Sensing and Guest Tweezing.; Tetrahedron, 1996, 37, 77-80.
    [79] Tabakci, M.; Memon, S.; Yilmaz, M.; Roundhill, D. M.; Synthesis and evaluation of extraction ability of calix[4]-crown-6 cone conformer and its oligomeric analogue.; Reactive & Functional Polymers, 2004, 58, 27-34.
    [80] Leray, I.; Asfari, Z.; Vicens, J.; Vareur, B.; Photophysics of Calix[4]biscrown-Based Ditopic Receptors of Caesium Containing One or Two Dioxocoumarin Fluorophores.; Jounal of Fluorescence, 2004, 14, 451-458.
    [81] Casnati, A.; Nicola, D. C.; Sansone, F.; Ugozzoli, F.; Ungaro, R.; Enlarging the size of calix[4]arene-crowns-6 to improve Cs+/K+ selectivity: a theoretical and experimental study.; Tetrahedron, 2004, 60, 7869-7876.
    [82] Talanov, V. S.; Talanova, G. G.; Gorbunova, M. G.; Bartsch, R. A.; Calix[4]arene-bis(dibenzocrown-6-ethers) with one proton-ionizable group. Tetrahedron Letters, 2002, 43, 1629-1631.
    [83]Cillins, E. M.; McKervey, M. A.; Madigan, E.; Moran, M. B.; Owens, M.; Ferguson, G.; Harris, H. G.; Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile, J. Chem. Soc., Perkin Trans. 1, 1991, 3137- 3142.
    [84]No, K.; Lee, H. Y.; Park, K. M.; Lee, S. S.; Noh, K. H.; Kim, S. K.; Lee, J. Y.;Kim, J. S.; Synthesis and crystal structures of novel calix[4]azacrown, J. Heterocyclic Chem.; 2004, 41, 211-219.
    [85] Krakowiak, K. E.; Bradshaw, J. S.; Huszthy, P.; 2 New methods to form substituted oligoethylene glycols, Tetrahedron Letters, 35, 2853-2856.
    [86] Vandenberge, L.; Vandamme, S.; Anteunis, M.; The Preparation of alpha-hydro-omega-hydroxypoly(oxyethane-1,2-diyl) ditosylate (peg(ots)2) revisited, Bulletin des Societies Chimiques Belges, 1991, 100, 115-119.
    [87] Van Loon, J. D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt D. N.; Selective Functionalization of Calix[4]arenes at the Upper Rim, J. Org. Chem.; 1990, 55, 5639-5646.
    [88]Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M. J.; Egberink, R. J. M.; Jong, F. D.; Reinhoudt D. N.; Synthesis, Complexation, and Membrane Transport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of Cesium Selective Ionophores, J. Am. Chem. Soc.; 1995, 117, 2767-2777.
    [89] Zhao, B.; Feng, Y. Q.; Zhang, S. S.; Synthesis and Characterization of Heterocyclic Ring Derivatives of 5,17-Di-tert-butyl-11,23-diamido-25,27-diprotected Calix[4]arene, Synthetic Communications, 2007, 37, 3479-3484.
    [90] Cunningham, I. D.; Woolfall, M.; Deprotonation of Calixarenes in Acetonitrile, J. Org. Chem.; 2005, 70, 9248-9256.
    [91] Gutsche, C. D. In Calixarenes Revisited, Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, U.K., 1998.
    [92]Pitarch, M.; Browne, J. K.; McKervey, M. A.; Conformational Control in the Synthesis of Mixed Tetraethers of Calix[4]arene, Tetrahedron, 1997, 53, 10503-10512.
    [93] Pitarch, M.; Browne, J. K.; McKervey, M. A.; Conformational Control in the Synthesis of Mixed Tetraethers of Calix[4]arene. Part 2.; Tetrahedron, 1997, 53, 16195-16204.
    [94] Ishihara, Y.; Kato, K.; Goto, G.; Central cholinergic agents. I. Potent acetylcholinesterase inhibitors, 2-[ω-[N-alkyl-N-(ω-phenyl-alkyl)amino]alkyl]-1H -isoindole-1,3(2H)-diones, based on a new hypothesis of the enzyme‘s active site, Chem. Pharm. Bull.; 1991, 39, 3225-3235.
    [95] (a) Chang, S.-C.; Utecht, R. E.; Lewis, D. E.; Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides, Dyes Pigm., 1999, 43, 83-94.
    [96]Tian, H.; Xu, T.; Zhao, Y.; Chen, K.; Two-path photo-induced electron transfer in naphthalimide-based model compound, J. Chem. Soc., Perkin Trans. 2, 1999, 545-550.
    [97] Liu, J. W.; Lu, Y.; A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity, J. Am. Chem. Soc.; 2007, 129, 9838-9839.
    [98]Peng, X. J.; Du, J. J.; Fan, J. L.; Wang, J. Y.; Wu, Y. K.; Zhao, J. Z.; Sun, S. G.; Xu, T.; A selective fluorescent sensor for imaging Cd2+ in living cells, J. Am. Chem. Soc.; 2007, 129, 1500.
    [99] Zucchero, A. J.; Wilson, J. N.; Bunz, U. H. F.; Cruciforms as functional fluorophores: Response to protons and selected metal ions, J. Am. Chem. Soc.; 2006, 128, 11872-11811.
    [100]叶大年,艾德生,金属半径和阳离子半径与电子构型的定量关系,中国科学地质研究所,中国科学B辑,1999,29,4,303~310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700