用户名: 密码: 验证码:
基于氮杂阳离子的分子识别与传感
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮杂环阳离子特别是咪唑或者吡啶阳离子的一系列衍生物近些年来得到了快速的发展。由于独特的阳离子特征,这类化合物大多应用于阴离子或者生物小分子的识别过程中。在催化领域,咪唑阳离子是氮杂环卡宾(NHCs)的前体,生成的氮杂卡宾金属有机化合物可高效的应用于均相催化反应研究领域。同时,科学家们又开始在二维的基础上衍生到三维立体结构,并形成了一系列具有应用价值的化合物。如何将功能化的单元基团(如:手性,荧光等)引入到该体系中,赋予其更加丰富的性质与应用价值,是目前十分有意义的课题。为解决这些问题本论文进行以下几方面研究:
     1.新型氨基萘酰亚胺基阳离子的三臂荧光探针:(1)合成了基于氨基萘酰亚胺功能基团的具有三条咪唑阳离子柔性臂的盘状荧光探针TIA1和TIA2。TIA1能够以荧光增强的方式高选择性地识别全部十二种RNA核苷酸中的ADP,并能够应用于在活体细胞中对核苷酸的荧光成像检测;(2)合成了探针TPA1(以苯环为盘,吡啶阳离子为桥,1,8-萘酰亚胺为发光团的三臂化合物)能够在水体系中通过荧光增强的方式在多种二糖或者单糖中高选择性地识别麦芽糖。TPA1也是首次应用于活体细胞荧光成像的天然糖类荧光探针;(3)探针TIPAl基于咪唑阳离子和哌嗪基团的1,8-萘酰亚胺三臂化合物,能够以荧光增强的方式选择性识别高氯酸铜和硝酸铜离子对。
     2.手性环状氮杂卡宾及其配合物的合成及催化研究:以(1R,2R)-(-)-1,2-环己二胺为手性源与对苯二甲醛为原料,通过最终原甲酸三乙酯关环反应合成了一种手性的含三个咪唑啉阳离子的氮杂环卡宾(NHCs)大环型化合物CNHC,并以其为配体首次合成了具有手性性质的氮杂环卡宾-AgI笼状化合物CNHC-Ag,X-射线单晶衍射数据表明,该化合物是由两个配体和三个银离子构成的圆柱状结构,并且进行了CNHC-Ag在D-A反应和胺基硅腈化反应的立体选择性催化研究。通过金属离子中心交换反应,成功的得到了该氮杂卡宾-AuI化合物,通过质谱和核磁证实该金配合物和之前的CNHC-Ag具有相类似的圆柱结构。
     3.手性共价二维环状结构衍生至三维笼状结构的设计和构筑:共价二维和三维有机笼状结构在主客体化学、催化、生物酶模拟等方面具有重要应用价值。在手性的含三个咪唑啉阳离子的氮杂环卡宾(NHCs)大环型化合物CNHC研究基础上,本论文设计合成了一系列具有更大空腔和具有良好荧光功能的二维和三维有机共价笼状化合物:(1)手性大环含咪唑啉化合物CNHC2(C63H69N6·3BF4,空腔尺寸:1.4 nm);(2)具有236 nm大斯托克斯位移的手性多面体笼状化合物CZC(以手性环己二胺为顶角,三氮唑为骨架的希夫碱笼状化合物),荧光量子产率为Φf=0.21;(3)具有荧光功能的手性多面体笼状化合物CAC(以手性环己二胺为顶角,三苯胺为骨架的希夫碱笼状化合物),荧光量子产率为Φf=0.17;(4)首类四面体笼型化合物CIZ(以Tren为顶角,三苯胺为骨架的希夫碱笼状化合物),荧光量子产率为Φf=0.15。通过核磁氢谱、碳谱以及MALDI-TOF等证明了这些化合物的存在,通过理论计算得出空腔体积分别为4200 (?)3、3600 (?)3和1600 (?)3。
Cationic host based N-heterocycle and other related derivatives especially hosts contain cations of imidazole and pyridine have developed rapidly in recent years. These compounds have been widely used in the recognition of ions or small biomolecules because of the unique characters of the cations. In the field of catalyze, imidazoline cations present as the precursor of N-heterocyclic carbenes (NHCs) and thus a large number of metal organic compounds were derived based on it. Numerous studies have been reported owing to their high effective applications in homogeneous catalyzes. Meanwhile, scientists start to do researches on three-dimensional structure derived on the basis of two-dimensional structures and synthesize a series of compounds with interest and potential value. How to design and prepare this system contain functional groups (chirality or fluorescence e.g.) is still a high research value and great importance in supermolecular chemistry. On the basis of this context, this paper contains the following aspects of contents:
     1. Tripodal luminescence chemosensors based on 1,8-naphthalimide and imidazolium: (1) We have synthesized flexible tripodal luminescence chemosensors based on functionalized naphthalimide group and three imidazolium or pyridinium cations. Probe TIA1 (preorganized tripodal receptor, imidazolium as bridge and 1,8-naphthalimide as signaling subunits) exhibits a selective "turn-on" fluorescent property for ADP over other ribonucleotide polyphosphates. Probes TIA1 and its derivatives TIA2 then successfully applied in living cells imaging for response ADP; (2) In aqueous media, probe TPA1 (preorganized tripodal receptor, pyridinium cations as bridge and 1,8-naphthalimide as signaling subunits) exhibits a selective "turn-on" fluorescent property for maltose over other saccharides. TPA1 was applied in living cells imaging for response maltose, this is the first luminescence probe sensing carbohydrate in living cells; (3) Probe TIPA1 (preorganized tripodal receptor, imidazolium as bridge, piperazine as recognition site and 1,8-naphthalimide as signaling subunits) acted as a dynamic anion-induced ion-pairs sensor and exhibits a selective "turn-on" fluorescent property for CuⅡion-pair (copper perchlorate and copper nitrate) over a wide range of tested metal ions and Cu2+salts ion pairs.
     2. The construction and catalytic performance of the chiral cyclic N-heterocyclic carbenes compounds:Synthesized a chiral N-heterocyclic carbenes (NHCs) macrocycle compound CNHC as ligand, then first assembled a novel chiral N-heterocyclic carbene silver(Ⅰ) cage CNHC-Ag. Single crystal X-ray structural analysis of this complex shows a cylinder-like structure of two ligands and three Ag+ions. CNHC-Ag could be used as a molecular mircoreactor of Diels-Alder reaction to control the enantioselectivity and asymmetric catalysis of strecker reaction. Then we synthesized an Au complex of this ligand by cation exchange reaction. ESI-MS and NMR shows the same structure as CNHC-Ag.
     3. Design and synthesis of chiral covalent cage structures derived on the basis of covalent two-dimensional macrocycle structures. Covalent two or three-dimensional organic structures have great value on host-guest chemistry, catalysis, enzyme simulation and so on. Based on the study of chiral N-heterocyclic carbenes (NHCs) macrocycle compound CNHC, this paper synthesized a series of covalent two or three-dimensional compounds, which provide larger cavity and fluorescent function. (1) Chiral imidazolium macrocycle CNHC2 (C63H69N6·3BF4, diameter:1.4 run); (2) Chiral polyhedron cage-like compound CZC (Schiff Base cage-like compound with chiral diaminocyclohexane as vertex and triazole as framework) with long wavelength stoke's shift, fluorescence quantum yieldΦf=21; (3) Chiral polyhedron cage-like compound CAC (Schiff Base cage-like compound with chiral diaminocyclohexane as vertex and triphenylamine as framework),Φf=0.17; (4) First tetrahedron covalent compound CIZ (Schiff Base cage-like compound with chiral diaminocyclohexane as vertex and Tren as framework),Φf=0.15. NMR, MALDI-TOF confirmed the formation of these compounds, the cavity volums calculated by DFT were 4200 A3,3600 A3 and 1600 A3, respectively.
引文
[1]北京大学化学系.仪器分析教程[M].北京:北京大学出版社,1990.1-30.
    [2]科恩,德里斯科.有机光化学原理[M].北京:科学出版社,1989.3-9.
    [3]樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001.2-16.
    [4]宋心琦.光化学原理、技术、应用[M].北京:高等教育出版社,2001.1-40.
    [5]牛淑云,来巍.有机发光材料的进展[J].辽宁师范大学学报,2001,24:287-294.
    [6]Lehn J M. Perspectives in Supramolecular Chemistry From Molecular Recognition towards Molecular Information Processing and Self Organization [J]. Angew. Chem. Int. Ed.,1990,29:1304-1319.
    [7]Lehn J M,沈兴海.超分子化学-概念和展望[M].北京:北京大学出版社,2002.
    [8]Lourdes B D, Reinhoudt D N, Mercedes C C. Design of fluorescent materials for chemical sensing [J]. Chem. Soc. Rev.,2007,36:993-1017.
    [9]De Silva A P, Gunatatne H Q N, Gunnlauggson T, et al. Signaling rcognition event with fluorescent sensors and switches [J]. Chem. Rev.,1997,97:1515-1566.
    [10]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别和组装[M].南开大学出版社,2001年.
    [11]吴世康.超分光化学导论一基础与应用[M].北京科学出版社2005年.
    [12]Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition [J]. Coord. Chem. Rev.,2000,205:3-40.
    [13]吴世康.荧光化学传感器研究中的光化学与光物理问题[J].化学进展,2004,16:174-183.
    [14]Lakowicz J R. Principles of fluorescence spectroscopy [M].2nd. ed., Kluwer Plenum, New York,1999.
    [15]Zhang X L, Xiao Y, Qian X H, et al. A ratiometric fluorescent probe based on FRET for imaging Hg ions in living cells [J]. Angew. Chem. Int. Ed.,2008,47:8025-8029.
    [16]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京大学出版社,2001年.
    [17]Wang D H, Zhang X L, He C, et al. Aminonaphthalimide-based imidazolium podands for turn-on fluorescence sensing of nucleoside polyphosphates [J]. Org. Biomol. Chem.,2010,8:2923-2925.
    [18]Sivakova S, Rowan S J. Nucleobases as supramolecular motifs [J]. Chem. Soc. Rev.,2005,34:9-21.
    [19]Hosseini M W, Blacker A J, Lehn J M. supramolecular [J]. J. Am. Chem. Soc.,1990, 112:3896-3904.
    [20]Chen X, Jou M J, Yoon J. An Off-On type UTP,UDP selective fluorescent probe and its application to monitor glycosylation process [J]. Org. Lett.,2009,11: 2181-2184.
    [21]Wu H M, Lin Z H, He C, et al. Metallohelical triangles for selective detection of adenosine triphosphate (ATP) in aqueous media [J]. Inorg. Chem.,2009,48: 408-410.
    [22]Kwon J Y, Singh N J, Kim H N, et al. Fluorescent GTP-sensing in aqueous solution of physiological pH [J]. J. Am. Chem. Soc.,2004,126:8892-8893.
    [23]Kim S K, Moon B S, Park J H, et al. A fluorescent cavitand for the recognition of GTP [J]. Tetrahedron Letters,2005,46:6617-6620.
    [24]Neelakandan P P, Hariharan M, Ramaiah D. Synthesis of a novel cyclic donor-acceptor conjugate for selective recognition of ATP [J]. Org. Lett.,2005,26:5765-5768.
    [25]Xu Z, Singh N J, Lim J, et al. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH [J]. J. Am. Chem. Soc.,2009,131:15528-15533.
    [26]Sancenon F, Descalzo A B, Martinezmanez R, et al. A colorimetric ATP sensor based on 1,3,5-Triarylpent-2-en-1,5-diones [J]. Angew. Chem. Int. Ed.,2001,40: 2640-2643.
    [27]Zhao M, Wang M, Liu H, et al. Continuous on-Site label-free ATP fluorometric Assay based on aggregation-induced emission of silole [J]. Langmuir,2009,25,676-678.
    [28]Wu H M, Lin Z H, He C, et al. Metallohelical triangles for selective detection of adenosine triphosphate (ATP) in aqueous media [J]. Inorg. Chem.,2009,48: 408-410.
    [29]Li C, Numata M, Takeuchi M, et al. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP [J]. Angew. Chem. Int. Ed.,2005,44,63716374.
    [30]Lindberg S E, Wallschlager D, Prestbo F M, et al. Methylated mercury species in municipal waste landfill gas sampled in florida USA atmospheric environment [J]. 2001,35(23):4011-4015.
    [31]Mallavarapu A, Sawin K, Mitchison T A. Switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe [J]. Current Biology,1999,9(23):1423-1428.
    [32]Imjun S, Lee W J, Sakamoto S, et al. Rotaxane based switch with fluorescence signaling [J]. Tetra. Lett.,2000,41(4):471-475.
    [33]Davis A P. Warehem R S. Carbohydrate recognition through Noncovalent Interactions: A challenge for biomimetic and supramolecular chemistry [J]. Angew. Chem. Int. Ed.,1999,38:2978-2996.
    [34]Wilson G S. Enzyme-based biosensors for in vivo measurements [J]. Chem. Rev.,2000, 100:2693-2704.
    [35]James T D, Samankumara K R A S, Shinkai S. Saccharide sensing with molecular rec eptors base donoronic acid [J]. Angew. Chem. Int. Ed.,1996,35:1910-1922.
    [36]James T D, Samankumara S. K R A, Shinkai S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor [J]. Nature,1995,27:345-347.
    [37]Arimori S, Bell M L, Oh C S, et al. Modular fluorescence sensors for saccharides [J]. Chem. Comm.,2001,1836-1837.
    [38]Sandanayake S K R A, James T D, Shinkai S. Two dimensional photoinduced electron transfer (PET) fluorescence sensor for saccharides [J]. Chemistry Letters,1995, 24(7):503-508.
    [39]Arimori S, Bell M L, Oh C S, et al. Modular fluorescence sensors for saccharides [J]. Chem. Comm.,2001,1836-1837.-347
    [40]Arimori S, Bell M L, Oh C S, et al. A modular fluorescence intramolecular energy transfer saccharide sensor [J]. Org. Lett.,2002,4(24):4249-4251.
    [41]Zhao J Z, Davidson M G, Mahon M F, et al. An enantioselective fluorescent sensor for sugar acids [J]. J. Am. Chem. Soc.,2004,126:16179-16186.
    [42]Davis A P, Wareham R S. A tricyclic polyamide receptor for carbohydrates in organic media [J]. Angew. Chem. Int. Ed.,1998,37:2270-2273.
    [43]Ferrand A, Klein E, Barwell N P, et al. A synthetic lectin for 0 linked b N Acetylglucosamine [J]. Angew. Chem. Int. Ed.,2009,48:1775-1779.
    [44]Ferrand Y, Crump M P, Davis A P. A synthetic lectin analog for biomimetic saccharide recognition [J]. Science,2007,318:619-622.
    [45]He C, Lin Z H, He Z, et al. Metal-tunable nanocages as artificial chemosensors [J]. Angew. Chem. Int. Ed.,2008,47:877-881.
    [46]Liu Y, Wu X, He C, et al. Self assembly of cerium based metal organic tetrahedrons for size selectively luminescent sensing natural saccharides [J]. Chem. Commun., 2009,7555-7556.
    [47]Liao J H, Chen C T, Chou H C, et al.2,7Bis( H-pyrrol-2-yl)ethynyl-1,8naphthyridine: an ultrasensitive fluorescent probe for glucopyranoside [J]. Org. Lett.,2002,4: 3107-3110.
    [48]Fang J M, Selvi S, Liao J H, et al. Fluorescent and circular dichroic detection of monosaccharides by molecular sensors:bis[(pyrrolyl)ethynyl]naphthyridine and bis[(indolyl)ethynyl]naphthyridine [J]. J. Am. Chem. Soc.,2004,126:3559-3566.
    [49]Vacca A, Nativi C, Cacciarini M, et al. A paradigm for assessing glycoside binding affinities and selectivities by 1H NMR spectroscopy [J]. J. Am. Chem. Soc.,2004, 126:16456-16465.
    [50]Nativi C, Cacciarini M, Francesconu O, et al. Pyrrolic tripodal receptors effectively recognizing monosaccharides affinity assessment through a generalized binding descriptor [J]. J. Am. Chem. Soc.,2007,129:4377-4385.
    [51]Arda A, Venturi C, Nativi C, et al. A chiral pyrrolic tripodal receptor recognizes b mannose and b Mannosides [J]. Chem. Eur. J.,2010,16,414-418.
    [52]Kim S K, Sessler J L, Gross D E, et al. A calix[4]arene strapped calix[4]pyrrole: an Ion-pair receptor displaying three different cesiumcation recognition modes [J]. J. Am. Chem. Soc.,2010, DOI.101021/ja100715e.
    [53]Lankshear M D, Cowley A R, Beer P D. Cooperative AND receptor for ion-pairs [J]. Chem. Commun.,2006,612-614.
    [54]Mahoney J M, Stucker K A, Jiang H, et al. Molecular recognition of trigonal oxyanions using a ditopic salt receptor:evidence for anisotropic shielding surface around nitrate anion [J]. J. Am. Chem. Soc.,2005,127:2922-2928.
    [55]Homon M, Menand M, Legac S, et al. Calix6tristhioureas:heteroditopic receptors for the cooperative binding of organic ion pairs [J]. J. Org. Chem.,2008,73: 7067-7071.
    [56]Legac S, Menand M, Jabin I. Second generation of calix6aza cryptands:synthesis of receptors for organic ion pairs [J]. Org. Lett.,2008 22:5195-5198.
    [57]Aydogan A, Coady D J, Kim S K, et al. Poly(methyl methacrylate)s with pendant calixpyrroles and crown ethers:polymeric extractants for potassium halides [J]. Angew. Chem. Int. Ed.,2008,47:9648-9652.
    [58]Filby M H, Dickson S J, Zaccheroni N, et al. Induced fit interanion discrimination by binding induced excimer formation [J]. J. Am. Chem. Soc.,2008,130:4105-4113.
    [59]Wallace K J, Belcher W J, Turner D R, et al. Slow anion exchange, conformational equilibria and fluorescent sensing in venus flytrap aminopyridinium-based anion hosts [J]. J. AM. CHEM. SOC.,2003,125:9699-9715.
    [60]Steed J W, Wallace K J. In advances in supramolecular chemistry, Gokel, G. W. Ed.,Cerberus:New York,2003,9:221-262.
    [61]Wanzlick H W, Schonher H J. Direct synthesis of a mercury salt carben complex [J]. Angew. Chem. Int. Ed.,1968,7:141-142.
    [62]Arduengo A J, Harlow R L, Kline M. A stable crystalline carbine [J]. J. Am. Chem. Soc.,1991,113:361-363.
    [63]Hindi K M, Panzner M J, Tessier C A, et al. The medicinal applications of imidazolium carbene-metal complexes [J]. Chem. Rev.,2009,109,3859-3884.
    [64]Lin I J B, Vasam C S. Preparation and application of N-heterocyclic carbene complexes of Ag(I) [J]. Coordination Chemistry Reviews,2007,251:642-670.
    [65]Mata J A, Poyatos M, Peris E. Structural and catalytic properties of chelating bis and tris N heterocyclic carbenes [J]. Coordination Chemistry Reviews,2007, 251:841-859.
    [66]Willans C E, Anderson K M, Junk P C, et al. A small tris imidazolium cage forms an N heterocyclic carbene complex with silver [J]. Chem. Commun.,2007,3634-3636.
    [67]Hahn F E, Radloff C, Pape T, et al. Synthesis of Silver(I) and Gold(I) Complexes with Cyclic Tetraand Hexacarbene Ligands [J]. Chem. Eur. J.,2008,14,10900-10904.
    [68]Wanniarachci Y A, Khan M A, Slaughter L M. An unusually static, sterically hindered silver bis N heterocyclic carbine complex and its use in transmetalation [J]. Organometallics,2004,23:5881-5886.
    [69]Wang X, Liu S, Weng L, et al. A trinuclear silver(I) functionalized N heterocyclic carbene complex and its use in transmetalation:structure and catalytic activity for olefin polymerization [J]. Organometallics,2006,25:3565-356.
    [70]Wan X, Xu F, Li Q, et al. Synthesis and structures of binuclear metallocyclophane with carbene linkage by the stacking interaction [J]. Organometallics,2005,24:6066-6068.
    [71]Van veldhuizen J J, Gillingham D G, Garber S B, et al. Chiral Ru-based complexes for asymmetric olefin metathesis:enhancement of catalyst activity through steric and electronic modifications [J]. J. Am. Chem. Soc.,2003,125:12502-12508.
    [72]Trnka T M, Grubbs R H. The development of olefin metathesis catalysts:an success story [J]. Acc. Chem. Res.,2001,34:18-29.
    [73]Grubbs R H. Olefin metathesis [J]. Tetrahedron,200460:7117-7140.
    [74]Costabile C, Cavallo 0. Origin of Enantioselectivity in the asymmetric Ru catalyzed metathesis of olefins [J]. J. Am. Chem. Soc.,2004,126:9592-9600.
    [75]Deshmukh P H, Blechert S. Alkene metathesis:the search for better catalysts [J]. Dalton Trans.,2007,2479-2491.
    [76]Cavell K. N Heterocyclic carbenes imidazolium salts as substrates in catalysis: the catalytic 2 substitution and annulation of heterocyclic compounds [J]. Dalton Trans.,2008,6676-6685.
    [77]Fructos M R, Belderrain T R, Nicasio N, et al. Control of the chemoselectivity in carbene transfer reactions from ethyl diazoacetate:an N Heterocyclic carbine Cu system that suppresses diazo coupling [J]. J. Am. Chem. Soc.,2004,126:10846-10847.
    [78]Chaulagain M R, Sormunen G R, Montgomery J. New N heterocyclic carbene ligand and its application in asymmetric nickelcatalyzed aldehyde alkyne reductive couplings [J]. J. Am. Chem. Soc.,2007,129:9568-9569.
    [79]Ray S, Mohan R, Singh J K, et al. Anticancer and antimicrobial metallpharmaceutical agents based on palladium, gold and silver N heterocyclic carbene complexes [J]. J. Am. Chem. Soc.,2007,129:15042-15053.
    [80]Marion N, Carlqvist P, Gealageas R, et al. [(NHC)AuI]-Catalyzed Formation of ConjugatedEnones andEnals:An Experimental andComputational Study [J]. Chem. Eur. J.,2007,13:6437-6451.
    [81]Rit A, Pape T, Hahn E. Self-Assembly of Molecular Cylinders from Polycarbene Ligands and AgI or AuI [J]. J. Am. Chem. Soc.,2010,132:4572-4573.
    [82]Marion N, Navarro O, Mei J, et al. Modified NHC Pdally 1C1 NHCN Heterocyclic carbene complexes for Room Temperature suzuki miyaura and buchwald hartwig reactions [J]. J. Am. Chem. Soc.,2006,128:4101-4111.
    [83]Turkmen H, Pape T, Hahn F E, et al. Annulated N heterocyclic carbene ligands derived from 2 methylaminopiperidine their complexes and catalytic applications [J]. Organometallics,2008,27:571-575.
    [84]Mardiana S, Bahruddin S, Ismail A, et al. Extraction of biogenic amines using sorbent materials containing immobilized rown ethers [J].Talanta,2010,80: 1183-1190.
    [85]Zhao J, Kim H, Oh J, et al. Cucurbit n uril derivatives soluble in water and organic solvents [J]. Angew. Chem. Int. Ed.,2001,40:4233-4235.
    [86]Amabilino D B, Stoddart J F. Interlocked and intertwined structures and structures [J]. Chem. Rev.,1995,95:2725-2828.
    [87]Klajn R, Stoddart J F, Grzybowski B A. Nanoparticles functionalised with reversible molecular and supramolecular switches [J]. Chem. Soc. Rev.,2010,39:2203-2237.
    [88]Mastalerz M. Shape-persistent organic cage compounds by dynamic covalent bond formation [J]. Angew. Chem. Int. Ed.,2010,49:5042-5053.
    [89]Caulder D L, Raymond K N. Supermolecules by design [J]. Acc. Chem. Res.,1999,32: 975-982.
    [90]Fujita M. Metal-directed self-assembly of two-and three-dimensional synthetic receptors [J]. Chem. Soc. Rev.,1998,27:417-425.
    [91]Mal P, Breiner B, Rissanen K, et al. White phosphorus is air-stable within a self assembled tetrahedral capsule [J]. Science,2009,324:1697-1699.
    [92]Stang P J, Olenyuk B. Self molecular architecture:coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra [J]. Acc. Chem. Res.,1997,30:502-518.
    [93]Bisson A P, Lynch V M, Monahan M K C, et al. Recognition of anions through NH-pi hydrogen bonds in a bicyclic cyclophane selectivity for nitrate [J]. Angew. Chem. Int. Ed.,1997,36:2340-2342.
    [94]Schneider S E, Oneil S N, Anslyn E R. Coupling rational design with libraries leads to the production of an ATP selective chemosensor [J]. J. Am. Chem. Soc.,2000, 122:542-543.
    [95]Ojida A, Takashima I, Kohira T, et al. Turn-On fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor [J]. J. Am. Chem. Soc.,2008,130:12095-12101.
    [96]Wang S, Chang Y. Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP selective fluorescent chemosensors [J]. J. Am. Chem. Soc.,2006,128:10380-10381.
    [97]Edward N Y, Sager T W, McDevitt J T, et al. Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an Application in real-life samples [J]. J. Am. Chem. Soc.,2007,129:13575-13583.
    [98]Davis A P. Synthetic lectins [J]. Org. Biomol. Chem.,2009,7:3629-3638.
    [99]Fischer M, Georges J, Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry [J]. Chem. Phys. Lett., 1996,260:115-118.
    [100]Connors K A. Binding Contants [M]. John Wiley, New York,1987.
    [101]Liu H K, Sun W Y, Zhu H L, et al. A two dimensional network constructed via 72 membered heart shaped macrocycles a copper complex with 1,3,5trisimidazollylmethyl 2,4,6trimethylbenzene and diethylenetriamine ligands [J]. Inorganica Chimica Acta,1999,295:129-135.
    [102]Mu H L, Gong R, Ma Q, et al. A novel colorimetric and fluorescent chemosensor: synthesis and selective detection for Cu and Hg [J].Tetra Lett.,2007,48: 5525-5529.
    [103]Pietrangelo A, MacLachlan M J, Wolf M 0, et al. Synthesis and structures of novel luminescent bent acenedithiophenes [J]. Org Lett.,2007,9:3571-3573.
    [104]Lu W, Mi B, Chan M C W, et al. Light emitting tridentate cyclometalated platinum complexes containing alkynyl auxiliaries:tuning of photo electrophosphorescence [J]. J. Am. Chem. Soc.,2004,126:4958-4971.
    [105]Xu Z C, Yoon J, Spring D. Fluorescent chemosensors for Zn2+[J]. Chem. Soc. Rev. 2010,39:1996-2006.
    [106]Xu Z, Beak K H, Kim H N, et al. Zn2+triggered amide tautomerization produces a highly Zn2+selective, cell-permeable, and ratiometric fluorescent sensor [J]. J. Am. Chem. Soc.,2010,132:601-610.
    [107]Xu Z, Xiao Y, Qian X H, et al. Ratiometric and selective fluorescent sensor for Cu based on internal charge transfer [J]. Org. Lett.,2005,5:889-892.
    [108]Qian X H, Xiao Y, Xu Y, et al. Alive dyes as fluorescent sensors:fluorophore, mechanism, receptor and images in living cells [J]. Chem. Commun.,2010, DOI: 10.1039/c0cc00686f.
    [109]Zhang B G, Cai P, Duan C Y, et al. Imidazolidinium-based robust crypt with unique selectivity for fluoride anion [J]. Chem. Commun.,2004,2206-2207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700