用户名: 密码: 验证码:
浮选气体弥散及其调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮选气泡行为及气体弥散状态直接影响着浮选的分选效果。由于对气泡运动行为缺乏认识以及气体弥散调控机制的缺失,导致经常出现气体弥散参数不稳定、调控滞后和浮选指标波动等问题。鉴于此,提出了浮选气体弥散及其调控研究,以期通过对气泡运动、系统辨识和模糊控制的研究,构建浮选过程当中的气体弥散调控机制、策略和模型,形成先进可靠的浮选气体弥散控制方法,为浮选设备和工艺的进步提供理论支撑。
     论文首先进行了三种起泡剂的性能比较及机理分析。开展了气流法和煤泥浮选试验,并利用滞留时间、动态起泡指数、泡沫衰变时间和浮选指标来比较起泡剂的性能;建立了气泡液膜厚度的光学测量系统,并从起泡剂的载水速率、分子吸附状态和气泡液膜厚度三个层面揭示了起泡剂性能差异的作用机理。研究表明:载水速率的增大使起泡剂的捕收性变好、选择性变差;在气-液界面上,正戊醇分子和MIBC分子以“斜躺”状态吸附,仲辛醇分子以“站立”状态吸附;含起泡剂的气泡液膜由内层结合水和外层自由水组成;结合水与起泡剂分子在气-液界面的吸附状态有关,“站立”状态吸附有利于形成较厚的结合水层;自由水靠水分子间的范德华力维系,厚度受起泡剂性质的影响较小。
     构建了以高速显微装置为核心的单气泡运动行为和气泡液膜流动观测系统,研究了单气泡运动过程和行为,并从气泡受力、气泡表面流动和上升终速模型三个层面探讨了其调控机理。研究表明:气泡上升过程中,气泡的速度和纵横比先升高至最大值,随后降低并围绕中心值振动;起泡剂能够抑制气泡的形变、抖动和振荡,缩短加速时间,降低气泡速度与纵横比的最大值、振动中心值和幅值,使气泡形状保持球形、运动轨迹保持直线。Marangoni作用力抑制了气泡在起泡剂溶液中上升时的形变,同时增加了气泡表面阻力,降低了气泡速度;气泡表面流动揭示了气泡表面的Marangoni效应,起泡剂使气泡表面更加粗糙、波纹更多;Clift终速模型证明了起泡剂性质和气泡表面流动对气泡速度的重要影响。
     基于高速摄像和图像处理技术建立了浮选气体弥散试验系统,分析了空间位置、表观气速、起泡剂种类和浓度对气体弥散参数的影响;对气含率与气泡尺寸、气泡间距、比表面积通量的交互关系进行了解耦,建立了气含率-比表面积通量模型、气泡间距-气泡面积百分率模型、气泡面积百分率-气泡体积百分率的均匀分散和随机分散模型。
     采用高速摄像和气泡识别跟踪手段,对气泡群运动过程进行了跟踪,捕捉和观测了气泡兼并与破裂现象,揭示了气泡群的运动行为和调控机理。研究表明:气泡群运动行为可以用气泡速度-尺寸曲线来表征,气泡速度-尺寸曲线受到空间位置、表观气速、气泡尺寸分布、起泡剂种类和浓度的影响;气泡间的相互作用使气泡群运动速度区别于单气泡运动速度,主导气泡尺寸级决定了气泡群运动速度;起泡剂降低了气泡群运动速度,使气泡群运动轨迹变直、变密集。气泡破裂以分裂成两个体积不相等气泡的形式发生;气泡兼并实为气泡接触碰撞、液膜排液至膜破裂的过程,起泡剂延长了气泡液膜的薄化时间,降低了气泡兼并概率;水中气泡碰撞弹回的缓冲时间长于起泡剂溶液,增加了由碰撞转变为兼并的概率;起泡剂主要通过抑制气泡兼并来控制气泡尺寸。
     研究了浮选气体弥散的边界条件和调控策略,得到了浮选气体弥散的状态区域图,并形成了以气含率和表观气速为测控核心,在线估计气泡尺寸和比表面积通量,实现气体弥散状态识别和报警的调控策略。
     利用阶跃信号和4级PRBS序列进行系统辨识,研究了气含率与表观气速和起泡剂浓度间的动态响应特性和传递函数,结果表明:平均气含率与表观气速和起泡剂浓度的动态响应过渡过程均为具有纯滞后的一阶惯性环节,两种辨识信号所得传递函数具有较好的一致性。
     采用机理法建模对传递函数进行了理论解析,结果表明:放大系数与溶液性质(起泡剂种类)有关,时间常数与液位高度成正比,纯滞后时间与管道长度以及管道内的流速相关,理论模型的计算结果与系统辨识试验结果相吻合。
     根据模糊控制理论,设计了气含率模糊控制器,分析了量化因子和比例因子对模糊控制器性能的影响并进行了优化,与常规PID控制的性能对比仿真试验表明:模糊控制在缩短过渡时间、降低超调量和抗干扰能力方面均具有优势,展现了更好的动态响应性能和鲁棒性,采用模糊控制器控制气含率将更加合理有效。
     提出了浮选气体弥散的模糊控制方法并对软硬件实现方案进行了设计,并采用DDC控制和MCGS组态软件相结合的方式构建了实验室系统,测试结果表明:通过运行该模糊控制方法,系统实现了对气体弥散参数的动态显示以及对气体弥散状态的识别和报警,完成了对气含率和表观气速的模糊控制以及对气泡尺寸和比表面积通量的间接调控。
Bubble motion behavior and gas dispersion directly affect the flotationperformance. Due to the ignorance of bubble motion behavior and the lack ofregulation mechanisms, it always leads to the gas dispersion parameters instability,reguation lags and flotation indexes fluctuation. For the above reasons, the study offlotation gas dispersion and regulation was raised in this paper. The bubble motion,system identification and fuzzy control were studied in this paper in order toconstruct the mechanisms, strategies and models on gas dispersion regulation inflotation process and develop an advanced control method, which could providetheory supports for the development of flotation devices and process.
     The property difference of three typical frothers and its mechanism werestudied at the beginning of this paper. Air flow method and coal flotation tests werecarried out to compare the frother properties by use of retention time, dynamicfoamability index, collapse time and flotation indexes, and the mechanism ofproperty difference was revealed by water carrying rate, molecule adsorption statusand bubble film thickness with optical measurement system. Studies show that: thehigher water carrying rate, the better forther collecting capacity and the worseselectivity is, and Pentanol molecule and MIBC molecule recline on the thegas-liquid interface with Octanol molecule standing. Frother bubble film is a surfacewith an inner bound water layer surrounded by an outer free water layer. Boundwater layer is related with frother molecule adsorption status that standing status willbe thicker, while free water layer relies on van der Waals forces between watermolecules, less affected by frother.
     The single bubble motion and behavior were studied by single bubble behaviorand bubble surface motion observation system with core of high-speed digitalcamera and microscope, and the mechanism was discussed by stress analysis, surfacemotion and terminal velocity model. The results indicate that the bubble velocity andaspect ratio first increase to the maximum, then reduce and vibrate around the centralvalue. Frother can inhibit bubble deformation and oscillation, and shortenacceleration time, and reduce the maximum, vibration central value and amplitude ofbubble velocity and aspect ratio, so that bubbles tend to remain spherical, and therise paths tend to be rectilinear. Marangoni force suppresses bubble deformation andincreases bubble surface resistance reducing velocity. Bubble surface motion revealsthe Marangoni effect with the bubble surface rougher and more ripples by frother. Terminal velocity model by Clift proves an important influence of frother and bubblesurface motion on the bubble velocity.
     The effect of spatial location, superficial gas velocity and frother on gasdispersion parameters were analyzed by gas dispersion system based on high-speeddigital camera and image processing. The interaction between gas holdup, bubblesize, bubble distance and surface area flux were decoupled with the establishment ofbubble surface area flux-gas holdup model, bubble distance-area fraction model,bubble distance-volumetric fraction ideal and random dispersion model.
     The motion behavior and mechanism of bubble swarm were revealed withbubble swarm tracking and bubble coalescence and breakup observation. The bubbleswarm motion behavior can be characterized by the bubble velocity size-profile,which depends on spatial location, superficial gas velocity, bubble size distribution,frother type and concentration. Bubble swarm velocity is different from singlebubble velocity due to bubble interaction that the predominant bubble sizedetermines swarm velocity. Frother reduces bubble swarm velocity and makes thetrajectory become rectilinear and crowded. Bubble breakup occurs in the form ofsplitting into two bubbles of unequal volumes, and bubble coalescence is actually aprocess of bubble collision and film drainage to rupture. Frother lengthens bubblefilm thinning time reducing the coalescence probability, and the buffer time forbubble rebound process in water is longer than that in frother solutions increasingthe probability of collision to coalescence, so that frother controls bubble size mainlythrough preventing bubble coalescence.
     Boundary conditions and control strategies for gas dispersion were studied. Thegas dispersion status map was obtained, forming a regulation strategy that gasholdup and superficial gas velocity was the monitoring core with bubble size andsurface area flux online estimated to achieve status recognition and alarm for gasdispersion.
     Applying the step change signal and PRBS change signal respectively to systemidentification, the dynamic response properties and transfer functions between gasholdup, superficial gas velocity and frother concentration were studied. The resultsshow that the dynamic response transition processes between gas holdup, superficialgas velocity and frother concentration are one order inertial link with pure delays,and the transfer functions obtained by the two identification signal have a goodconsistency.
     By using the mechanism modeling method, the transfer functions wereanalyzed theoretically. It is indicated that the proportion parameter relies on thesolution properties (frother) with the time constant being proportional to level heightand pure delay time depending on pipe length and flow rate. The theoretical modelresults are consistent with that of system identification test.
     According to the fuzzy control theory, gas holdup fuzzy controller was designedand the effect of quantization factor and scale factor was analyzed and optimized.Simulation results compared to conventional PID control indicate that fuzzy controlhas an advantage in shortening transition time, reducing overshoot andanti-disturbance ability, which shows better dynamic performance and robustnessthat it is suitable for fuzzy controller to control gas holdup.
     The fuzzy control method of flotation gas dispersion was proposed and theimplementation scheme of software and hardware was also designed. CombiningDDC technology and MCGS configuration software, the laboratory control systemof flotation gas dispersion was developed. By running this fuzzy control method, it issuccessful to display parameters and recognize and alarm gas dispersion status withthe fuzzy control of gas holdup and superficial gas velocity and the indirect controlof bubble size and surface area flux.
引文
[1]夏菊芳.泡沫浮选新技术的发展[J].有色矿山,1994(2):22-29.
    [2]Finch J A, Dobby G S. Column flotation[M]. Oxford: Pergamon,1990.
    [3]Pérez C A A. Measurement Techniques to Characterize Bubble Motion in Swarms[D].Montreal: McGill University,2007.
    [4]高娜.多层桨气-液搅拌槽内气泡尺寸及局部气含率研究[D].北京:北京化工大学,2010.
    [5]陈雷.热态多相搅拌反应器流体力学性能研究[D].北京:北京化工大学,2009.
    [6]吕术森,陈雪莉,于广锁,等.应用电导探针测定鼓泡塔内气泡参数[J].化学反应工程与工艺,2003,19(4):344-351.
    [7]Lu W M, Ju S J. Local gas holdup, mean liquid velocity and turbulence in an aerated stirredtank using hot-film anemometry[J]. The Chemical Engineering Journal,1987,35(1):9-17.
    [8]Greaves M, Kobbacy K A H. Measurement of bubble size distribution in turbulent gas-liquiddispersions[J]. Chemical engineering research and design,1984,62(1):3-12.
    [9]Takahashi K, McManamey W J, Nienow A W. Bubble size distributions in impeller region in agas-sparged vessel agitated by a Rushton turbine[J]. Journal of chemical engineering ofJapan,1992,25(4):427-432.
    [10]Laakkonen M, Honkanen M, Saarenrinne P, et al. Local bubble size distributions, gas-liquidinterfacial areas and gas holdups in a stirred vessel with particle image velocimetry[J].Chemical Engineering Journal,2005,109(1):37-47.
    [11]Aubin J, Le Sauze N, Bertrand J, et al. PIV measurements of flow in an aerated tank stirredby a down-and an up-pumping axial flow impeller[J]. Experimental thermal and fluidscience,2004,28(5):447-456.
    [12]Morud K E, Hjertager B H. LDA measurements and CFD modelling of gas-liquid flow in astirred vessel[J]. Chemical Engineering Science,1996,51(2):233-249.
    [13]Hori K, Fujimoto T, Kawanishi K, et al. Advanced high speed X-ray CT scanner formeasurement and visualisation of multi-phase flow[C]. Santa Barbara: Proc OECD/CSNISpecialist Meeting,1997.
    [14]Chen F, Gomez C O, Finch J A. Technical note bubble size measurement in flotationmachines[J]. Minerals Engineering,2001,14(4):427-432.
    [15]Quinn J J, Kracht W, Gomez C O, et al. Comparing the effect of salts and frother (MIBC) ongas dispersion and froth properties[J]. Minerals Engineering,2007,20(14):1296-1302.
    [16]Gomez C O, Finch J A. Gas dispersion measurements in flotation cells[J]. InternationalJournal of Mineral Processing,2007,84(1):51-58.
    [17]Gomez C O, Cortes-Lopez F, Finch J A. Industrial testing of a gas holdup sensor for flotationsystems[J]. Minerals Engineering,2003,16(6):493-501.
    [18]Tavera F J, Gomez C O, Finch J. Novel gas hold-up probe and application in flotationcolumns[J]. Transactions of the Institution of Mining and Metallurgy. Section C. MineralProcessing and Extractive Metallurgy,1996,105: C99-C104.
    [19]Hernandez. H, Gomez. C.O, Finch. J.A. Gas dispersion and de-inking in a flotationcolumn[J]. Minerals Engineering,2003,16(6):739-744.
    [20]郑开银,蒋大旭.试论气体流量计今后的发展方向[J].工业计量,2002,1:44-46.
    [21]王曙华,庄武,沈寒宵.气体流量计选型应用[J].玻璃,2009,3:46-50.
    [22]Azgomi F, Gomez C O, Finch J A. Frother persistence: A measure using gas holdup[J].Minerals engineering,2009,22(9):874-878.
    [23]Yianatos J B, Bergh L G, Sepulveda C, et al. Measurement of axial pressure profiles inlarge-size industrial flotation columns[J]. Minerals engineering,1995,8(1):101-109.
    [24]Pérez-Garibay R, Estrada-Ruiz R H, Gallegos-Acevedo P M. Relationship between thebubble surface flux that overflows and the mass flow rate of solids in the concentrate offlotation processes[J]. Minerals Engineering,2010,23(7):541-548.
    [25]Shukla S C, Kundu G, Mukherjee D. Study of gas holdup and pressure characteristics in acolumn flotation cell using coal[J]. Minerals Engineering,2010,23(8):636-642.
    [26]陈泉源.实验室规模高气泡表面积通量浮选柱的原理研制及应用[D].长沙:中南大学,2002.
    [27]Tavera F J, Escudero R, Finch J A. Gas holdup in flotation columns: laboratorymeasurements[J]. International journal of mineral processing,2001,61(1):23-40.
    [28]胡卫新.浮选柱气含率的影响机制与调控研究[D].徐州:中国矿业大学,2010.
    [29]Banisi S, Finch J A, Laplante A R, et al. Effect of solid particles on gas holdup in flotationcolumns-I. Measurement[J]. Chemical engineering science,1995,50(14):2329-2334.
    [30]Banisi S, Finch J A, Laplante A R, et al. Effect of solid particles on gas holdup in flotationcolumns-II. Investigation of mechanisms of gas holdup reduction in presence of solids[J].Chemical engineering science,1995,50(14):2335-2342.
    [31]Lee J E, Choi W S, Lee J K. A study of the bubble properties in the column flotationsystem[J]. Korean Journal of Chemical Engineering,2003,20(5):942-949.
    [32]Lee J E, Lee J K. Effect of microbubbles and particle size on the particle collection in thecolumn flotation[J]. Korean Journal of Chemical Engineering,2002,19(4):703-710.
    [33]郭梦熊.利用气水电导率差研究浮选槽内气泡分布状态[J].中国矿业学院学报,1985,2:29-36.
    [34]Widyanto M R, Utomo M B, Kawamoto K, et al. Local gas holdup measurement of a bubblecolumn using SONIA-ultrasonic non-invasive method[J]. Sensors and Actuators A: Physical,2006,126(2):447-454.
    [35]O’Keefe C, Viega J, Fernald M. Application of passive sonar technology to mineralprocessing and oil sands application[C]. Ottawa: Proceedings of the39th Annual Meeting ofthe Canadian Mineral Processors,2007.
    [36]Nesset J E, Hernandez-Aguilar J R, Acuna C, et al. Some gas dispersion characteristics ofmechanical flotation machines[J]. Minerals Engineering,2006,19(6):807-815.
    [37]Rodrigues R T, Rubio J. New basis for measuring the size distribution of bubbles[J].Minerals Engineering,2003,16(8):757-765.
    [38]Matiolo E, Testa F, Yianatos J, et al. On the gas dispersion measurements in the collectionzone of flotation columns[J]. International Journal of Mineral Processing,2011,99(1):78-83.
    [39]Grau R A, Heiskanen K. Visual technique for measuring bubble size in flotation machines[J].Minerals Engineering,2002,15(7):507-513.
    [40]黄光耀.水平充填介质浮选柱的理论与应用研究[D].长沙:中南大学,2009.
    [41]邵延海.浮选柱气泡发生器充气性能及应用研究[D].长沙:中南大学,2004.
    [42]张敏.柱浮选充填及流体动力学研究[D].徐州:中国矿业大学,2007.
    [43]张春娟.基于油水分离的浮选柱气含率调控研究[D].徐州:中国矿业大学,2010.
    [44]邓小伟.基于底部旋流的浮选柱内气泡分布规律及调控[D].徐州:中国矿业大学,2011.
    [45]李勇,邵诚.软测量技术及其应用与发展[J].工业仪表与自动化装置,2005,5:6-8.
    [46]俞金寿.软测量技术及其应用[J].自动化仪表,2008,29(1):1-7.
    [47]Yang C, Xu C, Gui W, et al. Nonparametric density estimation of bubble size distribution formonitoring mineral flotation process[C]. Shanghai: Proceedings of the48th IEEEConference on IEEE,2009.
    [48]Ityokumbul M T, Salama A I A, AI Taweel A M. Estimation of bubble size in flotationcolumns[J]. Minerals engineering,1995,8(1):77-89.
    [49]Tavera F J, Gomez C O, Finch J A. Estimation of gas holdup in froths by electricalconductivity: Application of the standard addition method[J]. Minerals engineering,1998,11(10):941-947.
    [50]Massinaei M, Doostmohammadi R. Modeling of bubble surface area flux in an industrialrougher column using artificial neural network and statistical techniques[J]. MineralsEngineering,2010,23(2):83-90.
    [51]Leiva J, Vinnett L, Contreras F, et al. Estimation of the actual bubble surface area flux inflotation[J]. Minerals Engineering,2010,23(11):888-894.
    [52]Finch J A, Xiao J, Hardie C, et al. Gas dispersion properties: bubble surface area flux andgas holdup[J]. Minerals Engineering,2000,13(4):365-372.
    [53]Guthrie R I L, Bradshaw A V. Spherical capped gas bubbles rising in aqueous media[J].Chemical Engineering Science,1973,28(1):191-203.
    [54]Tsuge H, Hibino S I. The onset conditions of oscillatory motion of single gas bubbles risingin various liquids[J]. Journal of Chemical Engineering of Japan,1977,10(1):66-68.
    [55]Tomiyama A, Celata G P, Hosokawa S, et al. Terminal velocity of single bubbles in surfacetension force dominant regime[J]. International Journal of Multiphase Flow,2002,28(9):1497-1519.
    [56]Clift R. Bubbles, drops, and particles[M]. New York: Academic Press,2005.
    [57]Maldonado M., Quinn J.J., Gomez C.O., et al. An experimental study examining therelationship between bubble shape and rise velocity[J]. Chemical Engineering Science,2013,98:7-11.
    [58]Quinn J.J., Maldonado M., Gomez C.O., et al. Experimental study on the shape-velocityrelationship of an ellipsoidal bubble in inorganic salt solutions[J]. Minerals Engineering,2014,55:5-10.
    [59]Stokes S G G. Mathematical and physical papers[M]. Cambridge: Cambridge UniversityPress,1901.
    [60]Hadamard J. Internal Circulation in Creeping Motion in a Fluid Sphere[J]. Compl. Rend.Acad. Sci., Paris,1911,152:1735-1738.
    [61]Rybczynski W. On the translatory motion of a fluid sphere in a viscous medium[J]. BullAcad Sci Cracow Ser A,1911,40:40-46.
    [62]Davies R M, Taylor G. The mechanics of large bubbles rising through extended liquids andthrough liquids in tubes[J]. Mathematical and Physical Sciences,1950,200(1062):375-390.
    [63]Xu M, Finch J A, Uribe-Salas A. Maximum gas and bubble surface rates in flotationcolumns[J]. International journal of mineral processing,1991,32(3):233-250.
    [64]Rafiei A A, Robbertze M, Finch J A. Gas holdup and single bubble velocity profile[J].International Journal of Mineral Processing,2011,98(1):89-93.
    [65]Zhang Y, Sam A, Finch J A. Temperature effect on single bubble velocity profile in waterand surfactant solution[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2003,223(1):45-54.
    [66]Luo H, Svendsen H F. Theoretical model for drop and bubble breakup in turbulentdispersions[J]. AIChE Journal,1996,42(5):1225-1233.
    [67]Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J].AIChE Journal,1990,36(10):1485-1499.
    [68]Azizi F, Al Taweel A M. Population balance simulation of gas-liquid contacting[J]. ChemicalEngineering Science,2007,62(24):7436-7445.
    [69]Chen P, Sanyal J, Dudukovi M P. Numerical simulation of bubble columns flows: effect ofdifferent breakup and coalescence closures[J]. Chemical Engineering Science,2005,60(4):1085-1101.
    [70]Tse K L, Martin T, McFarlane C M, et al. Small bubble formation via a coalescencedependent break-up mechanism[J]. Chemical engineering science,2003,58(2):275-286.
    [71]Navarra A, Acu a C, Finch J A. Impact of frother on the terminal velocity of smallbubbles[J]. International Journal of Mineral Processing,2009,91(3):68-73.
    [72]Tan Y.H, Rafei A.A, Elmahdy A,et al. Bubble size, gas holdup and bubble velocity profle ofsome alcohols and commercial frothers[J]. International Journal of Mineral Processing,2013,119:1-5.
    [73]Sam A, Gomez C O, Finch J A. Axial velocity profiles of single bubbles in water/frothersolutions[J]. International Journal of Mineral Processing,1996,47(3):177-196.
    [74]Ata S, Ahmed N, Jameson G J. A study of bubble coalescence in flotation froths[J].International Journal of Mineral Processing,2003,72(1):255-266.
    [75]Finch J A, Nesset J E, Acu a C. Role of frother on bubble production and behaviour inflotation[J]. Minerals Engineering,2008,21(12):949-957.
    [76]Aslan M M, Crofcheck C, Tao D, et al. Evaluation of micro-bubble size and gas hold-up intwo-phase gas–liquid columns via scattered light measurements[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer,2006,101(3):527-539.
    [77]Filippov L O, Joussemet R, Houot R. Bubble spargers in column flotation: Adaptation toprecipitate flotation[J]. Minerals engineering,2000,13(1):37-51.
    [78]Yianatos J B, Henriquez F. Boundary conditions for gas rate and bubble size at the pulp-frothinterface in flotation equipment[J]. Minerals engineering,2007,20(6):625-628.
    [79]Allix J, Zeno E, Nortier P, et al. Roles of surfactant and fibres on fibre transport in a smallflotation deinking column[J]. Chemical Engineering Journal,2011,168(2):525-534.
    [80]Tang C, Heindel T J. A gas holdup model for cocurrent air-water-fiber bubble columns[J].Chemical engineering science,2006,61(10):3299-3312.
    [81]Mouza A A, Dalakoglou G K, Paras S V. Effect of liquid properties on the performance ofbubble column reactors with fine pore spargers[J]. Chemical Engineering Science,2005,60(5):1465-1475.
    [82]Mattenella L E, Zapiola C R. Holdup models from experimental conductance data in abubble column[J]. Minerals engineering,2001,14(2):257-262.
    [83]Tang C, Heindel T J. Effect of fiber type on gas holdup in a cocurrent air-water-fiber bubblecolumn[J]. Chemical Engineering Journal,2005,111(1):21-30.
    [84]Ityokumbul M T, Kosaric N, Bulani W. Effect of fine solids and frother on gas hold-up andliquid mixing in a flotation column[J]. Minerals engineering,1995,8(11):1369-1380.
    [85]Camarasa E, Vial C, Poncin S, et al. Influence of coalescence behaviour of the liquid and ofgas sparging on hydrodynamics and bubble characteristics in a bubble column[J]. ChemicalEngineering and Processing: Process Intensification,1999,38(4):329-344.
    [86]Veera U P, Kataria K L, Joshi J B. Gas hold-up profiles in foaming liquids in bubblecolumns[J]. Chemical Engineering Journal,2001,84(3):247-256.
    [87]代敬龙,谢广元,刘姗姗,等.浮选气泡尺寸影响因素分析[J].选煤技术,2007(5):7-10.
    [88]史帅星,姚明钊,曹亮.气泡发生器的流体动力学性能研究[J].有色金属(选矿部分),2006,3:42-45.
    [89]徐志强,皇甫京华,曾鸣,等.射流浮选柱气泡发生器及其充气性能的研究[J].中国矿业大学学报,2003,32(6):615-619.
    [90]李浙昆,张宗华,郭晟,等.微泡浮选射流气泡发生器的研究[J].矿业研究与开发,2007,27(5):55-55.
    [91]李延锋,张敏,刘炯天.浮选柱筛板充填的气含率研究[J].中国矿业大学学报,2008,37(2):255-258.
    [92]张敏,刘炯天.筛板充填浮选柱的气泡行为及其影响因素[J].中国矿业大学学报,2005,34(6):766-769.
    [93]Uribe-Salas A, Pérez-Garibay R, Nava-Alonso F. Operating parameters that affect thecarrying capacity of column flotation of a zinc sulfide mineral[J]. Minerals engineering,2007,20(7):710-715.
    [94]Uribe-Salas A, de Lira-Gomez P, Perez-Garibay R, et al. Overloading of gas bubbles incolumn flotation of coarse particles and effect upon recovery[J]. International Journal ofMineral Processing,2003,71(1):167-178.
    [95]Garibay R P, Gallegos A P M, Uribe S A, et al. Effect of collection zone height and operatingvariables on recovery of overload flotation columns[J]. Minerals engineering,2002,15(5):325-331.
    [96]Grover G S, Rode C V, Chaudhari R V. Effect of temperature on flow regimes and gashold-up in a bubble column[J]. The Canadian Journal of Chemical Engineering,1986,64(3):501-504.
    [97]Nesset J E, Finch J A, Gomez C O. Operating variables affecting the bubble size inforced-air mechanical flotation machines[C]. Fremantle:9th Mill Operators’ Conference,2007.
    [98]Richardson J F, Zaki W N. The sedimentation of a suspension of uniform spheres underconditions of viscous flow[J]. Chemical Engineering Science,1954,3(2):65-73.
    [99]Wallis G B. One-dimensional two-phase flow[M]. New York: McGraw-Hill,1969.
    [100]Banisi S, Finch J A. Technical note reconciliation of bubble size estimation methods usingdrift flux analysis[J]. Minerals Engineering,1994,7(12):1555-1559.
    [101]Dobby G S, Yianatos J B, Finch J A. Estimation of bubble diameter in flotation columnsfrom drift flux analysis[J]. Canadian Metallurgical Quarterly,1988,27(2):85-90.
    [102]Nicklin D J. Two-phase bubble flow[J]. Chemical Engineering Science,1962,17(9):693-702.
    [103]冯培悌.系统辨识[M].杭州:浙江大学出版社,2004.
    [104]潘立登等.系统辨识与建模[M].北京:化学工业出版社,2003.
    [105]徐枋同等.系统辨识理论与实践-在水电控制工程中的应用[M].北京:中国电力出版社,1999.
    [106]张伟伟.工业锅炉燃烧系统辨识与建模研究[D].上海:上海交通大学,2007.
    [107]李建军.铝合金MIG焊过程MIMO模型辨识及控制系统仿真[D].兰州:兰州理工大学,2007.
    [108]侯彦涛.水泥分解炉温度控制系统设计[D].湘潭:湖南科技大学,2009.
    [109]赵卫哲.基于虚拟仪器的挤出机压力反馈动态特性理论及实验研究[D].北京:北京化工大学,2007.
    [110]綦守荣.中储式钢球磨制粉系统的建模与优化控制研究[D].保定:华北电力大学,2008.
    [111]黄存坚.执行器气动定位系统的实验建模[D].杭州:杭州电子科技大学,2010.
    [112]于刚.伺服阀控液压马达系统的辨识与控制研究[D].济南:山东大学,2007.
    [113]韩贵生.基于PSO的CFB锅炉协调系统建模与优化[D].保定:华北电力大学,2010.
    [114]Del Villar R, Grégoire M, Pomerleau A. Automatic control of a laboratory flotationcolumn[J]. Minerals Engineering,1999,12(3):291-308.
    [115]Mohanty S. Artificial neural network based system identification and model predictivecontrol of a flotation column[J]. Journal of Process Control,2009,19(6):991-999.
    [116]Carvalho T, Dur o F, Fernandes C. Dynamic characterization of column flotation processlaboratory case study[J]. Minerals engineering,1999,12(11):1339-1346.
    [117]Persechini M A M, Jota F G, Peres A E C. Dynamic model of a flotation column[J].Minerals engineering,2000,13(14):1465-1481.
    [118]Bergh L G, Yianatos J B. Dynamic simulation of operating variables in flotation columns[J].Minerals engineering,1995,8(6):603-613.
    [119]荣国强,刘炯天,刘莉君,等.旋流-静态微泡浮选柱液位自动控制系统设计[J].金属矿山,2007,(5):62-64.
    [120]刘丹,李世厚,文书明,等.浮选柱充气量自动调节的研究[J].矿冶,2008,(1):65-67.
    [121]欧乐明,张晓峰,黄光耀.浮选柱多输入/多输出控制系统设计及应用[J].中国科技论文在线,2009,(11):788-793.
    [122]张志丰,王汝琳,胡军.浮选柱系统的变结构PID控制[J].选煤技术,2003,(1):52-54.
    [123]张志丰,张志刚,胡军.我国大型浮选柱自动控制策略的研究[J].选煤技术,1999,(3):5-7.
    [124]李玉西.模糊与PID双模控制在浮选柱液位控制系统中的应用[J].矿冶,2008,(1):73-75.
    [125]Bouchard J, Desbiens A, del Villar R, et al. Column flotation simulation and control: Anoverview[J]. Minerals Engineering,2009,22(6):519-529.
    [126]徐洪亮.基于模糊控制的初馏塔底泵流量系统仿真研究[D].哈尔滨:哈尔滨工业大学,2007.
    [127]马月川.球磨机控制系统的设计及其控制策略研究[D].太原:太原理工大学,2010.
    [128]李何.模糊控制在回转窑燃烧系统的应用研究[D].太原:太原理工大学,2007.
    [129]王力.模糊控制在磨矿分级系统中的应用[D].长春:吉林大学,2009.
    [130]李中宁.基于MATLAB的锅炉水位模糊控制系统的设计和分析[D].长春:长春理工大学,2008.
    [131]刘曙光等.模糊控制技术[M].北京:中国纺织出版社,2001.
    [132]Bergh L G, Yianatos J B. Flotation column automation: state of the art[J]. Controlengineering practice,2003,11(1):67-72.
    [133]Bergh L G, Yianatos J B, León A. Multivariate projection methods applied to flotationcolumns[J]. Minerals engineering,2005,18(7):721-723.
    [134]Bergh L G, Yianatos J B, Leiva C A. Fuzzy supervisory control of flotation columns[J].Minerals engineering,1998,11(8):739-748.
    [135]Bergh L G, Yianatos J B, Acuna C A, et al. Supervisory control at Salvador flotationcolumns[J]. Minerals engineering,1999,12(7):733-744.
    [136]Bergh L G, Yianatos J B. The long way toward multivariate predictive control of flotationprocesses[J]. Journal of Process Control,2011,21(2):226-234.
    [137]Vieira S M, Sousa J M C, Durao F O. Fuzzy modelling strategies applied to a columnflotation process[J]. Minerals engineering,2005,18(7):725-729.
    [138]Carvalho M T, Dur o F. Control of a flotation column using fuzzy logic inference[J]. Fuzzysets and systems,2002,125(1):121-133.
    [139]Nú ez F, Tapia L, Cipriano A. Hierarchical hybrid fuzzy strategy for column flotationcontrol[J]. Minerals Engineering,2010,23(2):117-124.
    [140]Maldonado M, Desbiens A, Del Villar R. Potential use of model predictive control foroptimizing the column flotation process[J]. International Journal of Mineral Processing,2009,93(1):26-33.
    [141]Pu M, Gupta Y P, Al Taweel A M. Model predictive control of flotation columns[J].Proceedings of the Column Sudbury,1991:467-479.
    [142]马英喆.磨矿分级控制系统中的模糊模型研究[D].长春:吉林大学,2009.
    [143]Chuk O D, Ciribeni V, Gutierrez L V. Froth collapse in column flotation: a preventionmethod using froth density estimation and fuzzy expert systems[J]. Minerals engineering,2005,18(5):495-504.
    [144] Finch J A, Dobby G S. Column flotation[M]. Oxford: Pergamon Press,1990.
    [145]Aldrich C, Marais C, Shean B J, et al. Online monitoring and control of froth flotationsystems with machine vision: A review[J]. International Journal of Mineral Processing,2010,96(1):1-13.
    [146]Symonds, P.J, De Jager, G. A technique for automatically segmenting images of the surfacefroth structures that are prevalent in fotation cells[C]. Rondebosch: Proceedings of the1992South African Symposium on Communications and Signal Processing,1992.
    [147]Moolman D W, Aldrich C, Van Deventer J S J, et al. Digital image processing as a tool foron-line monitoring of froth in flotation plants[J]. Minerals Engineering,1994,7(9):1149-1164.
    [148]Bergh L G, Yianatos J B, Acu a C P. Hierarchical control strategy for flotation columns[J].Minerals engineering,1995,8(12):1583-1591.
    [149]Kosick G A, Dobby G S. Advanced control for column flotation[C]. Ottawa: Proceedings ofCanadian Mineral Processors Annual Operators’Conference,1990.
    [150]Karr C L. Adaptive process control using biologic paradigms[C]. Adelaide: Proceedings ofElectronic Technology Directions to the Year2000,1995.
    [151]卢晓.浮选设备自动控制技术的发展[J].铜业工程,2008,(3):38-39.
    [152]宣乐信,曾云南.选矿厂选别作业自动控制的进展[J].金属矿山,2008,(1):7-11.
    [153]李振兴,文书明,罗良烽.选矿过程自动检测与自动化综述[J].云南冶金,2008,(3):20-23.
    [154]葛之辉,曾云南,赵宝坤.选矿过程自动检测与自动化综述[J].中国矿山工程,2006,(6):37-42.
    [155]孙忠仁,孙靖彪.浮选机械设备的自动化技术[J].煤炭技术,2005,(6):65-66.
    [156]陈子鸣.模糊控制及其在选矿中的应用[J].江西有色金属,1994,(2):30-36.
    [157]张国忠.智能控制系统及应用[M].北京:中国电力出版社,2007.
    [158]Kosick G A,黄孔宣.浮选柱浮选的先进控制技术[J].国外金属矿选矿,1991,(6):32-39.
    [159]朱湘翼,陶洛成.浮选柱生产参数的智能检测[J].选煤技术,1996,(2):25-27.
    [160]李振兴.基于模糊控制器实现的浮选柱液面控制系统设计与研究[D].昆明:昆明理工大学,2008.
    [161]荣国强,崔雯.浮选柱液位自动控制系统设计探讨[J].矿业工程,2007,(6):35-37.
    [162]余龙舟.基于组态软件的浮选柱矿浆液位检测控制系统[D].昆明:昆明理工大学,2007.
    [163]余龙舟,李世厚.基于组态软件的浮选柱矿浆液位检测控制系统[J].有色金属,2007,(5):38-41.
    [164]章晓林,张文彬.浮选柱的PC计算机监控系统设计[J].矿冶工程,2005,(4):39-41.
    [165]李小川,邓建军,罗书豪,等.浮选柱DDC系统设计[J].选煤技术,2008,(5):58-61.
    [166]蒋曙光,欧泽深,李延锋,等.FCMC-3000旋流微泡浮选柱计算机监控系统的研制[J].中国矿业大学学报,2001,30(6):613-616.
    [167]胡业林,张斌.浮选柱的检测与控制系统设计[J].中国煤炭,2000,(5):25-27.
    [168]Persechini M A M, Peres A E C, Jota F G. Control strategy for a column flotation process[J].Control engineering practice,2004,12(8):963-976.
    [169]张晓峰.浮选柱多变量控制系统的设计及应用[D].长沙:中南大学,2010.
    [170]Gupta A K, Banerjee P K, Mishra A, et al. Effect of alcohol and polyglycol ether frothers onfoam stability, bubble size and coal flotation[J]. International Journal of Mineral Processing,2007,82(3):126-137.
    [171]Moyo P, Gomez C O, Finch J A. Characterizing frothers using water carrying rate[J].Canadian Metallurgical Quarterly,2007,46(3):215-220.
    [172]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社,1990.
    [173]李国胜.浮选泡沫的稳定性调控及粉煤灰脱炭研究[D].徐州:中国矿业大学,2013.
    [174]Kuan S H, Finch J A. Impact of talc on pulp and froth properties in F150and1-pentanolfrother systems[J]. Minerals Engineering,2010,23(11):1003-1009.
    [175]Azgomi F, Gomez C O, Finch J A. Correspondence of gas holdup and bubble size inpresence of different frothers[J]. International Journal of Mineral Processing,2007,83(1):1-11.
    [176]Comley B A, Harris P J, Bradshaw D J, et al. Frother characterisation using dynamicsurface tension measurements[J]. International journal of mineral processing,2002,64(2):81-100.
    [177]夏守之.实际薄膜干涉的若干问题讨论[J].武汉化工学院学报,2001,23(1):87-90.
    [178]杨鹏,徐志凌,徐雷.反射干涉光谱法测量固体薄膜的光学常数和厚度[J].光谱学与光谱分析,2000,20(3):283-285.
    [179]Finch J A, Gelinas S, Moyo P. Frother-related research at McGill University[J]. Mineralsengineering,2006,19(6):726-733.
    [180]Gélinas S, Finch J A, Gouet-Kaplan M. Comparative real-time characterization of frotherbubble thin films[J]. Journal of colloid and interface science,2005,291(1):187-191.
    [181]Tarkan H M, Gelinas S, Finch J A. Measurement of thickness and composition of a solventfilm on a bubble[J]. Journal of colloid and interface science,2006,297(2):732-737.
    [182]葛哲学,沙威.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [183]Chattopadhyay A. Time-Dependent Changes in a Shampoo Bubble[J]. Journal of ChemicalEducation,2000,77:1339.
    [184]Kracht W, Finch J A. Effect of frother on initial bubble shape and velocity[J]. InternationalJournal of Mineral Processing,2010,94(3):115-120.
    [185]Wang L, Yoon R H. Effects of surface forces and film elasticity on foam stability[J].International Journal of Mineral Processing,2008,85(4):101-110.
    [186]Takahashi T, Miyahara T, Mochizuki H. Fundamental study of bubble formation indissolved air pressure flotation[J]. Journal of Chemical Engineering of Japan,1979,12(4):275-280.
    [187]Capart H, Young D L, Zech Y. Vorono imaging methods for the measurement of granularflows[J]. Experiments in Fluids,2002,32(1):121-135.
    [188]系统辨识基础[M].北京:中国水利水电出版社,2006.
    [189]MATLAB控制工程工具箱技术手册[M].北京:国防工业出版社,2004.
    [190]刘宏才.系统辨识与参数估计[M].北京:冶金工业出版社,1996.
    [191]廉小亲.模糊控制技术[M].北京:中国电力出版社,2003.
    [192]席爱民等.模糊控制技术[M].西安:西安电子科技大学出版社,2008.
    [193]Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.
    [194]李国勇.神经模糊控制理论及应用[M].北京:电子工业出版社,2009.
    [195]户丹,于军琪,郭春燕.选矿分级泵池液位的模糊控制算法研究[J].金属矿山,2007(9):97-100.
    [196]梁蕾,李振国.选矿过程矿浆液位的模糊控制算法研究[J].金属矿山,2009(7):103-105.
    [197]米热,古丽,艾孜孜.基于MCGS的过程控制系统模糊算法的研究[D].乌鲁木齐:新疆大学,2006.
    [198]王浩为.旋流静态微泡浮选柱液位和气含率测控技术研究[D].徐州:中国矿业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700