用户名: 密码: 验证码:
MgO-Al_2O_3-SiO_2透明微晶玻璃结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MgO-Al2O3-SiO2(MAS)系统微晶玻璃具有优异的介电性能、机械性能、较好的化学稳定性、较低的热膨胀系数,使得其应用领域广阔,具有十分重要的科学研究意义。本文以MgO-Al2O3-SiO2系统微晶玻璃为研究对象,采用XRD、DSC、FE-SEM,热膨胀仪、高温旋转粘度仪、UV-Vis-NIR等测试手段,探索MAS系统透明微晶玻璃的组成——工艺——结构——性能之间的关系。首先,研究了晶核剂配比对MAS微晶玻璃结构和性能的影响,确定了合理的晶核剂组成及制备透明微晶玻璃合理的热处理制度。然后,对MAS微晶玻璃中引入一定量的碱土金属及碱金属,降低MAS微晶玻璃熔制难度,改善微晶玻璃性能。最后,通过对MAS微晶玻璃中掺杂稀土离子,探索了稀土离子对其物理性能、成核、析晶性能以及光透过性能的影响。通过上述实验,结果表明:
     使用5%TiO2+3%ZrO2(wt%,下同)是制备MAS透明微晶玻璃较为合理的晶核剂配比。该晶核剂配比的基础玻璃在800℃/4h+950℃/1.5h热处理,可得到以尖晶石为主晶相,可见光透过率达到86%的接近无色透明的微晶玻璃,其平均晶粒尺寸为34nm。单独使用8%TiO2作为晶核剂时,在800℃/4h+950℃/1.5h热处理得到的微晶玻璃含MgTi2O5、MgAl2O4两种晶相,呈蓝紫色且可见光透过率达到83%。单独使用3-8%ZrO2作为晶核剂时,仅有含8%/ZrO2的MAS玻璃在900℃/6h+1060℃/6h热处理后得到了无色透明微晶玻璃,其主晶相为堇青石,但其熔制难度很大。
     用0~4%的ZnO部分取代MAS玻璃中的MgO,采用二步法热处理制度800℃/4h+950℃/1.5h制备了透明微晶玻璃,其主晶相均为立方晶系的尖晶石晶体,随着ZnO含量增加,锌尖晶石比例逐渐增加。当ZnO取代量在0~3%时,MAS微晶玻璃在可见光区透过率均大于85%;但是当ZnO含量增加至4%时,微晶玻璃在可见光区透过率下降至79%。在紫外光波段,随着ZnO的量增加,紫外截止波长逐渐向短波方向移动。其中加入2%的ZnO就能显著细化晶粒尺寸、并使晶粒均匀分布,此时透明微晶玻璃平均晶粒尺寸仅为29.4nm,晶粒尺寸标准偏差为7.5。当ZnO取代MgO的量为2%~4%时,MAS微晶玻璃在800℃/4h+1000℃/1.5h热处理仍能保持外观透明。
     将MAS玻璃中碱金属的含量控制在2%,分别用0.5%,1.0%,1.5%及2%的Li20代替MAS玻璃中Na2O,玻璃粘度先降低后升高,在取代量为1%时,降低高温粘度效果最明显,熔制温度最低。比较含2%Na2O、1%Li2O+1%Na2O及1%K20+1%Na20三种玻璃样品的粘度及析晶性能,其粘程活化能分别为306.04kJ/mol、284.01kJ/mol、288.78kJ/mol,熔制温度为1612-C、1508℃、1573℃。与仅含2%Na2O的玻璃样品相比,1%Li20的引入使MAS玻璃晶体的生长方式由二维析晶向整体析晶转变,同时主晶相变为石英固溶体,但对析晶活化能影响较小;1%K20的引入将MAS玻璃的析晶活化能由370.1kJ mo1-1降低为275.3kJmo1-1,而对晶化指数改变较小,该组成在880℃~1000℃的晶化温度范围内均能获得以尖晶石为主晶相的透明微晶玻璃。
     在含1%Li20的MgO-Al2O3-SiO2中掺杂0-0.015mo1的Y203,随着Y203掺杂量增加,对MAS玻璃的玻璃转变温度几乎没有影响,膨胀软化温度由791℃增加至814-C,热膨胀系数由41×10-7/℃增加至45×10-7/℃,显微硬度由605kg/mm2增加至652kg/mm2。随着Y203含量的增加,对玻璃析晶的抑制作用越明显。当Y203的掺杂量为0~0.01mol时,MAS玻璃在840℃~1120℃晶化时均析出石英固溶体晶相(β-/α-quartz solid solution),在高于1000℃晶化时,主晶相p-石英固溶体在冷却过程中产生相变,成为α-石英固溶体。Y2O3掺杂量为0.015mo1的MAS玻璃样品在840℃晶化时保持为非晶态固体,在940℃-1120℃晶化时才有大量的石英固溶体晶相出现,在1060℃以上晶化开始观察到石英固溶体的相转变现象。掺杂Y203的量为0.005与0.01mol的样品在840℃晶化保温1.5h后外观透明,但透过率较低仅为41%。
Magnesium aluminosilicate (MAS) glass-ceramics containing spinel and high-/low quartz solid solution, own good chemical stability, low thermal expansion coefficient, excellent dielectrical property and good mechanical properties. In the dissertation, the compositions, processes, structure and properties of MAS glass-ceramics were investigated by XRD, DSC, horizontal dual-rod dilatometer, rotating crucible viscometer FE-SEM and UV-Vis-NIR. The results show that:
     The MAS glass with5%TiO2+3%ZrO2(wt%, the same as below) as nucleating agents is reasonable to prepare transparent glass-ceramic. When nucleated at800℃for4h and then crystallized at950℃for1.5h, the nearly colorless transparent glass-ceramic with spinel as the main crystal phase was prepared, and the transmittance in the visible spectra region reached86%. The mean particle size of the transparent glass-ceramic was about34nm. As the MAS glass using only TiO2as nucleating agent, the prepared transparent glass-ceramic, containing MgTi2O5and MgAl2O4crystalline phases, was slight purple and with83%transmittance in visible spectra region. As using3-8%ZrO2as nucleating agent, only the ZrO2concentration reached8%, the transparent glass-ceramics could prepared by nucleated at900℃for6h and then crystallized at1060℃for6h. The glass-ceramic was absolutely colorless and with indialite as the main crystal phase. It could not be ignored that this compostion glass was difficult to melt, high temperature and long time to heat-treat.
     In the MgO-Al2O3-SiO2system glass, the0~4%ZnO was partially substituted for MgO. The transparent glass-ceramics were prepared after two-step heat-treated schedule800℃/4h+950℃/1.5h, and the main crystal phase were spinel solid solution. With the increasing of ZnO content, the proportion of gahnite in the spinel solid solution increased. Meanwhile, the prepared MAS glass-ceramics were all with over85%transmittance in visible spectra region when the substitution content below3%. However, when the ZnO content increased to4%, the transmittance of glass-cermamic decreased to79%. In the UV spectral region, the UV cut-off wavelength shifted to the short wavelength direction with the increasing ZnO content.When the ZnO content was equal or greater than2%, it was effective to refine crystal size and make the gains uniformly distribution. The mean grain size of the glass-ceramics containg2%ZnO was only29.4nm, and the Sd was7.5. And the MAS glass-ceramics kept transparent even heat-treated800℃/4h+1000℃/1.5h. As to the same composition MAS glss-ceramic, the UV cut-off wavelength moved towards long wavelength with the increasing of crystallization temperature.
     The effects of alkali metal oxide on the viscosity and crystallization properties of MAS glass-ceramics were studied. The primary MAS glass contained2%Na20, and the0.5%,1.0%,1.5%and2%Li2O were used to substitute for Na2O. The results showed that the viscosities of MAS glasses first decreased and then increased with the increasing of the Li2O-concentrations. As1%Na2O was replaced by the Li2O, the MAS glass had the lowest viscosity and melting temperature. The activation energy for viscous flow of MAS glass with2%Na2O,1%Li2O+1%Na2O,1%K20+1%Na20were306.04kJ/mol、284.01kJ/mol、288.78kJ/mol respectively, and the melting temperature were1612℃,1508℃,1573℃respectively. As compared to the glass containing2%Na2O, the introduction of Li2O changed the crystal phase precipitation mode from two-dimensional to bulk crystallization, but had little effect on the activation energy of crystallization. It also changed the main crytal phase to the quartz solid solution. The introduction of K2O decreased the activation energy of crystallization from370.1kJ mol-1to275.3kJ mol-1, but had little effect on the crystal phase precipitation mode. The MAS glass containing1%K2O+1%Na2O could prepare the transparent glass ceramic at the crystallization temperature range from880℃to1000℃.
     The effects of Y2O3on the physical and crystallization properties of MgO-Al2O3-SiO2glass were investigated. As the Y2O3-concerntration grows from0to1.5mol%, the transformation temperature (Tg) varied slightly, the dilatometric softening temperature (Ts) increased from791℃to814℃, the CTE increased from41×10-7/℃to45×10-7/℃, and the micro hardness increased from605kg/mm2to652kg/mm2. The MAS glasses with0~0.01mol yttria precipitated the quartz solid solution when crystallized at the temperatures range from840℃to1120℃. As the glass was crystallized above1000℃, the high-to low quartz solid solution phase transformation was occured during the glass-ceramic cooling. The MAS glass doped with0.015mol Y2O3was still amorphous when heat-treated at840℃, at940℃~1120℃, the quartz solid solution phase presented, and at1060℃the phase transition of the high-to low-quartz solid solution was observed. The MAS glass doped with0.005mol and O.Olmol Y2O3were transparent with the transmittance about41%after heat-treated at840℃for1.5h.
引文
[1]Holand W, Beall G. Glass-ceramic Technology[M]. Westerville:The American Ceramic Society, 2002.
    [2]程金树,李宏,汤李缨,等.微晶玻璃[M].北京:化学工业出版社,2006.
    [3]麦克米伦PW.微晶玻璃[M].王仞千译,北京:中国建筑工业出版社,1988.
    [4]肖汉宁,赵运才,刘付胜聪.功能微晶玻璃的研究现状及发展趋势[J].材料导报,2002,16(8):39-41.
    [5]赵运才,肖汉宁,何芳魁.玻璃陶瓷材料发展的回顾与展望[J].中国陶瓷,2001,27(3):40-43.
    [6]段非,方承平,丁振亚BaO-SrO-TiO2-SiO2透明极性微晶玻璃的研究[J],硅酸盐学报,1998,26(3):395-398.
    [7]贺海燕.微晶玻璃的定向晶化[J].陶瓷工程,1999,32(1):11-13.
    [8]刘树江,张艳飞,何文.一种利用熔体冷却自发析晶的透明微晶玻璃[P].CN 102173589A.2011.
    [9]韩文爵.低温烧成微晶玻璃基板的研制和应用[J].玻璃与搪瓷.1996,24(3):1-5.
    [10]Hwang Shiang-Po,Wu Jenn-Ming. Effect of composition on microstructural development in MgO-Al2O3-SiO2 Glass-ceramics[J]. J. Am. Ceram. Soc.,2001,84(5):1108-1112.
    [11]Partridge G, Budd MI. Toughened glass-ceramics. USA, GB2172282A[P].1986.
    [12]Beall G H, Pinckney L R. Nanophase Glass-ceramics [J]. J. Am. Ceram. Soc.,1999,82(1): 5-16.
    [13]Pinckney L R, Glass-ceramics. US5968857[P].1998.
    [14]韩建军,刘继翔.透明微晶玻璃的研究[J],武汉工业大学学报,1997,19(4):78-81.
    [15]M. Clara Goncalves, Luis F. Santos, Rui M. Almeida. Rare-earth-doped transparent glass ceramics[J]. Comptes Rendum Chimie.2002,5(12):845-854.
    [16]Miiller G., Neuroth N. Glass Ceramic——a New Laser Host Material[J]. J. Appl. Phys.,1973, 44(5):2315-2318.
    [17]候朝霞,苏春辉.光功能微晶玻璃应用与研究进展[J].激光与光电子学进展,2006,43(2):17-23.
    [18]Auzel F, Pecile D, Morin D. Rare Earth Doped Vitroceramics:New Efficient Blue and Green Emitting Materials for Infrared Up-conversion[J]. J.Electrochem.Soc.,1975,122(1):101-107.
    [19]王传彬,沈强,裘慧广,张联盟.低膨胀微晶玻璃在动高压物理中的应用[J].材料导 报.2007,21(11):415-417.
    [20]Beall G H. Design and Properties of Glass-Ceramics[J]. Annu. Rev. Mater.Sci.,1992,22(8): 91-119.
    [21]Kerker M. The scattering of light[M]. NewYork:Academic Press,1969.
    [22]Hoppper R W. Stochastie theory of scattering from idealized spinodal strueture:Scattering in general and for the basic elate stage model[J]. J. Non-cryst. Solids.1985,70:111-142.
    [23]张常建,肖卓豪,卢安贤.透明微晶玻璃的研究现状与展望[J].材料导报,2009,23(7):38-43.
    [24]曹国喜,方向宇,周世圭.掺Cr3+透明莫来石微晶玻璃的光谱研究[J].玻璃与搪瓷.1998,26(2):48-52.
    [25]Zhaoxia Hou, Yongming Zhang, Huashan Zhang, et al. Study on crystallization and microstructure of Li2O-Al2O3-SiO2 glass ceramics[J]. Journal of University of Science and Technology Beijing,2006,13(6):564-569.
    [26]侯朝霞等,锌铝硅系透明玻璃陶瓷晶化行为研究[J].兵工学报,2007(02):253-256.
    [27]Zhao-xia Hou, Shao-hong Wang, Zhau-lu Xue, et.al. Crystallization and microstructural characterization of B203-Al2O3-Si02 glass[J]. J. Non-Cryst. Solids.2010,356(4-5):201-207.
    [28]Thiana Berthier, Fokin Vladimir M, Edgar Zanotto D. New large grain, highly crystalline, transparent glass-ceramics[J]. J. Non-Cryst. Solids.,2008,354(15):1721-1730.
    [29]李婧.高结晶度透明微晶玻璃的制备技术研究[D].湖南:中南大学,2011.
    [30]Hirano K, Benino Y, Komatsu T. Rare earth doping into optical nonlinear nanocrystalline phase in transparent TeO2-based glass-ceramic[J]. J Phys Chem Solids,2001,62(11):207.
    [31]姚奎,周歧发,张良莹,等.PZTS系凝胶玻璃及微晶玻璃的结构研究[J].硅酸盐通报,1995,15(3):9.
    [32]Li Chengyu, Su Qiang, Wang Shubin. Multi-color long-lasting phosphorescence in Mn2+-doped ZnO-B2O3-SiO2 glass-ceramics[J].Mater Res. Bull.2002,37(8):1443-1449.
    [33]范春梅,孙诗兵,王为等.电子束照射对BaO-SrO-TiO2-SiO2玻璃析晶性能的影响[J].硅酸盐学报,2003,31(4):410.
    [34]Stookey S D. Coming Develop New Ceramics Material [J]. Bull. Am. Ceram. Soc.1957,36: 279-281.
    [35]余丽萍.可切削微晶玻璃的研究[D].长沙:湖南大学,2006.
    [36]李庆福,黄世华.透明氟氧化物微晶玻璃研究进展[J].半导体光电,2002,23(6):87-90.
    [37]Sroda M, Paluszkiewicz Cz. The structural role of alkaline earth ions in oxyfluoride aluminosilicate glasses-Infrared spectroscopy study[J]. Vib Spectrosc,2008,48(2):246-250.
    [38]Silva M A P, Messaddeq Y, et al.Synthesis and structural investigations on TeO2-PbF2-CdF2 glasses and transparent glass-ceramics[J]. J. Phys Chem Solids,2002,63(4):605-612.
    [39]王轶敏.掺钕透明氟氧化物玻璃陶瓷激光材料的研究[D].长春:长春理工大学,2006.
    [40]金世龙,李晓红,黄云,等.激光陀螺新型槽片[J].光学学报.2006,26(2):259-263.
    [41]石成利.透明微晶玻璃的研究与应用现状及其发展趋势[J].陶瓷,2012,(8):44-49.
    [42]谢军.浮法锂铝硅系统微晶玻璃组成、结构、性能及浮抛机理的研究[D].武汉:武汉理工大学,2010.
    [43]王承遇,陈敏等.玻璃制造工艺[M].北京:化学工业出版社,2006年.
    [44]McMillan P W. The crystallization of glasses[J]. J. Non-cryst. Solids.,1982,52:67-76.
    [45]Roeherulle. J. Nucleation and growth of a lithium aluminium silicate glass studied by differential therma analysis [J]. Materials Research Bulletin,2000,35(14):2353-2361.
    [46]Guedes M, Ferro A C, Ferreira J M F. Nucleation and crystal growth in commercial LAS compostion[J] Journal of the European Ceramic Society,2001,21:1187-1194.
    [47]洪水棕.现代测试技术[M].上海:上海交通大学出版社.2002.
    [48]杨迪,杨辉其,周培贤,等.金属硬度试验[M].北京:计量出版社.1992.
    [49]Stooky S D. Journey to the Center of the Crystal Ball[M]. Westerville, Columbus. OH:Am. Ceramic. Soc.,1985:28-35.
    [50]Kresimir Furic,Leszek Stoch, Jan Dutkiewicz. Raman study of TiO2 role in SiO2-Al2O3-MgO-TiO2-ZnO glass crystallization[J]. Spectrochimica Acta Part A,2005, 61:1653-1659.
    [51]Pinckney L R. Tansparent, high strain point spinel glass-ceramics [J]. Journal of Non-Crystalline Solids,1999,255(2):171-177.
    [52]王艳丽,沈菊云,陈学贤等.TiO2对堇青石基微晶玻璃的分相与晶化的影响[J].玻璃与搪瓷,2000,28(2):21-25.
    [53]齐亚范,方敬忠,谢才清.高能粒子辐照对零膨胀微晶玻璃光学性质和面形光学稳定性的影响[J].光电工程,1996,23(1):36-39
    [54]Nordmanm A, Cheng Y B. Crystallization behaviour and microstructural evolution of a Li2O-Al2O3-SiO2 glass derived from spodumene mineral[J]. J. Mater. Sci.,1997,32:83-90.
    [55]Dittmer M, Russel C. Colorless and high strenth MgO-Al2O3-SiO2 glass-ceramic dental material using zirconia as nulcating agent [J]. Journal of biomedical materials research part B applied biomaterials.2011,100(2):463-470.
    [56]Zdaniewski W. Crystallization and structure of a MgO-Al2O3-SiO2-TiO2 glass-ceramic[J]. Journal of materials science,1973,8:192-202.
    [57]Holand W, Beall G H. Glass Ceramic Technology[M]. American:John Wiley & Sons.2012.
    [58]郑国培.有色光学玻璃及其应用[M].轻工业出版社,1990.
    [59]邵晶.稀土掺杂ZnO-Al2O3-SiO2系透明玻璃陶瓷的制备与表征[D].长春:长春理工大学,2008.
    [60]Jing Wang, Jinshu Cheng, Liying Tang, Peijing Tian. Effect of nucleating agents and heat treatments on the crystallization of magnesium aluminosilicate transparent glass-ceramics [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.2013,28(l):69-72.
    [61]Doherty P E, Lee D W, Davis R S. Direct observation of the crystallization of Li2O-Al2O3-SiO2 glasses containing TiO2[J]. J. Am. Ceram. Soc.,1967,50:77-81.
    [62]Tick, P.A., N.F. Borrelli and I.M. Reaney, The relationship between structure and transparency in glass-ceramic materials. Optical Materials,2000.15(1):81-91.
    [63]Edgar A, Williams G V M, Hamelin J. Optical scattering in glass ceramics[C]//Current Applied PhysicsAMN-2 Second International Conference on Advanced Materials and Nanotechnology,2006.6(3):355-358.
    [64]West A R, Basic Solid State Chemistry[M], J. Wiley & Sons, Chichester,1984.
    [65]W.福格尔著.玻璃化学[M].轻工业出版社,1988年.
    [66]Hunger A, Carl G, Riissel C, Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses[J]. Solid State Sci.,2010,12(9):1570-1574.
    [67]Ray C S, Day D E. Nucleation and crystallization in glasses as determined by DTA [J]. Ceramic Transactions,1993,30:207-224.
    [68]苏春辉.透明陶瓷材料的研究[D].沈阳:东北大学,2005.
    [69]蒲永平,陈寿田,朱振峰.分形理论在陶瓷材料研究中的应用[J].中国陶瓷工业,2002,9(6):60-62.
    [70]彭瑞东,谢和平,鞠杨.二维数字图像分形维数的计算方法[J].中国矿业大学学报,2004,33(1):19-24.
    [71]高安秀树.分维数[M].沈步明,等译.北京:地震出版社,1989.
    [72]苏春辉,温学恒,端木庆铎,王艳.微晶材料结构的分形研究[J].人工晶体学报,1997,26(3):355.
    [73]田培静.稀土掺杂钙镁铝硅系微晶玻璃结构及发光性能的研究[D].武汉:武汉理工大学.2010.
    [74]Shao Hua, Liang Kai-ming. Crystallization kinetics of MgO-Al2O3-SiO2 glass-ceramics [J]. Ceramics International,2004,30(10):927-930.
    [75]Sohn S B, Choi S Y. Crystallization behavior in the glass system MgO-Al2O3-SiO2:influence of CeO2 addition [J]. J. Non-Cryst. Solids.2001,282:221-227.
    [76]James P F. Glass ceramics:new composition and uses. J. Non-Cryst.Solids.1995,181:1-15.
    [77]Alexander Fluegel. Glass viscosity calculation based on a global statistical modelling approach[J]. Glass Technol. Eur. J. Glass Sci. Technol. A,2007,48(1):13-30.
    [78]Takeuchi A, Kato H, Inoue A. Vogel-Fulcher-Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states[J]. Intermetallics,2010,18(4):406-411.
    [79]西北轻工业学院.玻璃工艺学[M].中国轻工业出版社,北京,2006.
    [80]Hrma P, Arrhenius model for high-temperature glass-viscosity with a constant pre-exponential factor[J], J. Non-Cryst. Solids,2008,35:1962-1968.
    [81]Wang Mitang, Cheng Jin-shu, Viscosity and thermal expansion of rare earth containing soda-lime-silicate glass[J], J. Alloys Compds.,2010,504:273-276.
    [82]Wurth R, Mu-noz F, Muller F, Russel C. Crystal growth in a multicomponent lithia aluminosilicate glass[J]. Materials Chemistry and Physics,2009,116:433-437.
    [83]Anja Hunger, Gunter Carl, Andreas Gebhardt, Ultra-high thermal expansion glass-ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristoalite[J], J. Non-Cryst. Solids,2008,354:5402-5407.
    [84]Kim S, Kim Y C, Using isothermal kinetic results to estimate the kinetic triplet of the paralysis of high density polyethylene[J]. J. Anal Appl Pyrolysis,2005,73(1):117-121.
    [85]胡丽丽,姜中宏.玻璃析晶难易的一种新判据[J].硅酸盐学报,1990,18(4):315-321.
    [86]Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal Chem,1957, 29(11):1702-1706.
    [87]Augis I A, Bennett J E. Calculation of the aroma parameters for heterogeneous solid state reactions using a modification of the Kissinger method[J]. J Therm Analy,1978,13(11):283-292.
    [88]刘光华.稀士材料应用技术[M].北京:化学工业出版社,2005.
    [89]Stuart Hampshire, Michael J Pomeroy. Effect of composition on viscosities of rare earth oxynitride glasses[J]. Journal of Non-Crystalline Solids,2004,344(1-2):1-7.
    [90]Stuart Hampshire. Oxynitride glasses[J], Journal of the European Ceramic Society,2008,28 (7):1475-1483.
    [91]王敬轩.镧系元素离子在玻璃中的着色作用[J].玻璃与搪瓷,1982,(3):38-42.
    [92]李宏,郑勇,程金树.稀土掺杂对LAS系统微晶玻璃粘度的影响[J].武汉理工大学学报,2007(7):10-14.
    [93]郑伟宏.掺杂对Li2O-Al2O3-SiO2系统微晶玻璃结构和性能的影响[D].武汉:武汉理工大 学,2007.
    [94]罗志伟,卢安贤.Y203含量对SiO2-Al2O3-B2O3-K2O-Li2O系统微晶玻璃的析晶及性能的影响[J].2009,7(19):1264-1269.
    [95]Schaller T, Stebbins J F. The structural role of lanthanum and yttrium in aluminosilicate glasses:a 27A1 and 17O NMR study. J. Phys. Chem. B,1998,102:10690-10697.
    [96]Shelby J E. Rare Elements in Glasses[J]. KeyEng. Mater.,1994,94,1-6..
    [97]Makishima A, Tamura Y, Sakaino T. Elastic moduli and refractive indices of aluminosillicate glasses containing Y2O3, La2O3 and TiO2[J]. J. Am. Ceram. Soc.1978,61: 247-249.
    [98]Iftekhar S, Grins J, Eden M. Composition-property relationships of the La2O3-Al2O3-SiO2 glass system[J]. J.Non-Cryst. Solids.2010,356:1043-1048.
    [99]M. Dittmer, M. Muller, C. Russel, Self-organized nanocrystallinity in MgO-Al2O3-SiO2 glasses with ZrO2 as nucleating agent[J]. Mater. Chem. Phys.2010,124:1083-1088.
    [100]P Wange, T Hoche, C Riissel, J F Schnapp, Microstructure-property relationship in high-strength MgO-Al2O3-SiO2-TiO2 glass-ceramics[J]. J.Non-Cryst. Solid.2002,298:137-145.
    [101]Marc Dittmer, CintiaFumi Yamamoto, Christian Bocker, Christian Riissel. Crystallization and mechanic al properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramicswith and without the addition of yttria[J]. Solid State Sciences,2011,13:2146-2153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700