用户名: 密码: 验证码:
贵金属纳米粒子复合玻璃的制备及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科学的发展,纳米材料的制备和光电性质方面的研究变得越来越重要。贵金属纳米粒子复合玻璃(本论文中专指贵金属纳米粒子掺杂的硅酸盐玻璃)由于其中金属纳米粒子的表面等离子体共振效应使它具有超强的三阶非线性磁化系数和超快非线性响应性质,被广泛地用于光子学领域的各个方面,例如光学数据存储、光波导、全光转换开光等等。对于所有的这些应用,贵金属纳米粒子复合玻璃的光学性质强烈地依赖于体系中金属纳米粒子的尺寸、形状、密度和空间分布。在本论文中,我们成功制备了多种贵金属纳米粒子复合玻璃,利用后续的处理手段实现了对金属纳米粒子上述性质的有效控制。总结具体的细节工作如下所示:
     成功制备了多种贵金属(金和银)纳米粒子复合玻璃。使用了三种不同的材料制备方法成功制备了具有不同金属纳米粒子空间分布的复合玻璃。我们使用熔融-热处理法制备了金掺杂的硅酸盐玻璃,金纳米粒子分布在整个样品内部。使用离子溅射结合后续热处理方法,在载玻片表面制备了单分散的金纳米粒子,这些金纳米粒子部分嵌入在玻璃基体中。样品的吸收光谱反映出金纳米粒子特有的吸收峰。结合不同制备条件下样品的扫描电镜照片,讨论了这种单分散金纳米粒子的形成机理。利用银钠离子交换结合热处理的方法制备了银纳米粒子复合玻璃,样品中的银纳米粒子是分布在基体玻璃表面层。
     自行设计和制作了实验装置,实现了硅酸盐玻璃中金棒的电场辅助溶解。考虑实验过程中的多方面影响,自行设计和制作了电场辅助溶解的实验装置。并且利用这一装置实现了硅酸盐玻璃中金棒的电场辅助溶解。我们利用扫描电子显微镜观察了阳极边缘附近的样品区域的表面形貌,结果表明一些具有较大长径比的金棒溶解成准球形的纳米粒子,而另外一些仍然保持着一种椭圆形的结构。这一结果与样品在这个区域内的吸收光谱结果相符合。基于电场辅助溶解实验过程中电流-电压特性的测量,研究表明金粒子的溶解归因于电子的隧穿导电和金阳离子的导电。
     为金纳米粒子的电场辅助溶解提供了最为直接的证据,清晰地描述了金属纳米粒子的电场辅助溶解过程的物理情景。利用电场辅助溶解技术,对使用金靶溅射和后续热处理方法制备带有部分内含在玻璃内球形金纳米粒子的样品进行实验。从实验后样品表面的扫描电镜照片中可以发现,在直流电场辅助热处理下,原来球形的金纳米粒子部分溶解成类似于日蚀-月蚀的形状;有的粒子甚至被完全溶解,作为结果在样品表面上留下了纳米孔的结构。这些现象为金纳米粒子的电场辅助溶解提供了最为直接的证据。
     我们详细地讨论了整个实验过程中回路中电流随时间的演化规律。研究发现当实验中采用步进式增加电压形式的加压工艺时,在每一个电压增大的最初,回路中的电流都会出现一个非常锋利的增加过程;接下来在保持这个电压值不变的时间里,电流会经历一个缓慢衰减过程。初始时电流快速增加的现象表明了电子传输的开端,这种电子传输过程将导致金纳米粒子的极化和离子化。电流缓慢衰减过程其实是来自阴极提供的导电电子和离子化的带正电的金团簇进行中和的过程。我们特别指出,在整个回路电流中只有金阳离子传输的贡献才是导致金原子从纳米粒子上溶解到玻璃体系中的原因。
     成功制备了具有表面增强拉曼散射效应的基片。通过对溅射条件和热处理条件的控制,成功制备了具有一定表面增强拉曼散射活性的含有金纳米粒子的玻璃基片。结合样品表面的扫描电镜照片,考虑金纳米粒子特有的表面等离子体共振效应,讨论了此类基片表面拉曼散射增强效应的电磁场增强机理。
     研究了离子交换法制备的银纳米粒子复合玻璃的飞秒三阶非线性吸收性质。我们使用波长为800 nm、脉宽为120 fs的钛宝石飞秒激光脉冲,利用开孔的单光束Z扫描方法,测量了样品中银纳米粒子的三阶非线性吸收性质。从样品开孔的归一化透过率曲线的形状可以判定银纳米粒子的非线性吸收是反饱和吸收,这种反饱和吸收的产生可以由双光子吸收过程引起的带间跃迁来解释。
With the development of nanoscience, preparation of nanomaterials and the research of photoelectric properties are becoming more and more important. Noble metals nanoparticles composite glass (noble metal nanoparticles doped silicate glass) have the large third-order nonlinear susceptibility and the ultrafast nonlinear response due to surface plasmon resonance of metal nanoparticles, therefore, it has been widely used in the field of photonics, such as optical data storage, optical waveguide , all optical switches and so on. For all of these applications, the optical properties of noble metal nanoparticles composite glass strongly depend on the size, shape, density and spatial distribution of the metal nanoparticles in the glass matrix. In this thesis, varied noble metal nanoparticles composites glass have prepared successfully, and the effective control on the above characteristics of metal nanoparticles using the subsequent treatment was realized. Specific details of the work as follows:
     Varied noble metal (gold and silver) nanoparticles composite glasses have been prepared successfully. Three different materials preparation methods have been used to prepare metal nanoparticles of composite glass with different spatial distribution. The gold-doped glass was prepared by using the melting-heat treatment method, and the gold nanoparticles were distributed in the whole sample. The monodisperse gold nanoparticles have been obtained in the slide surface with the aids of ion sputtering method and subsequent heat-treatment. These gold nanoparticles partially embedded in glass matrix. The absorption spectrum of samples reflected the specific absorption peak of gold nanoparticles. Combining the scattering electron microscope (SEM) images of samples prepared under different conditions, the formation mechanism of such monodisperse gold nanoparticles was discussed concretely. The silver nanoparticles composite glass was also obtained by using the methods of silver sodium ion-exchanged and subsequent heat-treatment, and we found the silver nanoparticles just distributed in the surface of glass.
     Experimental device was designed and produced, and the electric field assisted dissolution (EFAD) of gold rods in silicate glass was realized. Considering influences in the experiment, we designed and fabricated the experimental device of EFAD. And the EFAD of gold rods in silicate glass was realized by this device. The sample surface morphology near the edge of anode region was observed by SEM, and the results show that some gold rods with large aspect ratio dissolved into quasi-spherical nanoparticles, and the others remain elliptical structure. This result is consistent with the sample absorption spectra in this region. The dissolution of the gold particles is attributed to electrons tunneling and the gold cations conductivity basing on the measurement of current-voltage characteristics in EFAD experiment.
     The directest evidence was provided for the EFAD of gold nanoparticles, and the physical process of EFAD of metal nanoparticles was described clear. With the aids of EFAD technique, the EFAD experiment of samples with gold nanopartilces partially embedded glass, it have been prepared by the gold target sputtering and subsequent heat treatment. From SEM images of the samples after the experiments, it can be seen that some of the original spherical gold nanoparticles are dissolved to lunar-eclipselike structure and even fully dissolved, which left the nano-hole structure in the sample surface. These phenomena provided directest evidence for electric field assisted dissolution of gold nanoparticles.
     The loop current evolution with time was discussed in detail during the entire experiment. It was found that when the voltage used in the experiments is increasing step-by-step, in the initial of every increase voltage, loop current has a very sharp increase in the current process; then the current will experience a very long slow process of decay maintaining the same voltage value. The initial rapid increase in current suggests that this is the beginning of the electronic transmission, and such electronic transmission of the gold nanoparticles will lead to polarization and ionization. In fact, the long process of current decay is the process of the cathode conductivity of electrons and ions with positively charged gold clusters. In particular, it was pointed out that in the loop current, the contribution of gold cations transfer is the sole cause leading to those gold atoms dissolved into the glass from nanoparticles.
     The substrates for surface enhanced Raman scattering were prepared successfully. Through controlling the conditions of the sputtering and heat treatment, the silica substrates with a certain surface-enhanced Raman scattering active gold nanoparticles was prepared successfully. Combination of the SEM photographs of the sample surface and gold nanoparticles specific surface plasmon resonance effect, the electromagnetic field enhancement mechanism of such sample surface enhanced Raman scattering was discussed.
     The femtosecond third-order nonlinear absorption properties of silver nanoparticles composite glass by ion-exchanged method were studied. The femtosecond third-order nonlinear absorption properties of silver nanoparticles were measured by Z scan method with a single beam, with the use of the Ti-sapphire femtosecond laser system with wavelength of 800 nm and pulse width of 120 fs. For the silver nanoparticles, the reverse saturable absorption can be determined from the open aperture normalized transmittance curve shape, and the emergence of reverse saturable absorption can be explained by interband transitions of electron caused by two-photon absorption process.
引文
1 K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura. Optical Nonlinearities of a High Concentration of Small Metal Particles Dispersed in Glass: Copper and Silver Particles. J. Opt. Soc. Am. B. 1994, 11(7):1236-1243
    2 T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara. Subpicosecond Time Response of Third-Order Optical Nonlinearity of Small Copper Particles in Glass. Appl. Phys. Lett. 1994, 65:941-943
    3 Y. Hamanaka, A. Nakamura, S. Omi, N. Del. Fatti, F. Vallee, and C. Flytzanis. Ultrafast Response on Nonlinear Refractive Index of Silver Nanocrystals Embedded in Glass. Appl. Phys. Lett. 1999, 75:1712-1714
    4 J. Sasai and K. Hirao. Relaxation Behavior of Nonlinear Optical Response in Borate Glasses Containing Gold Nanoparticles. J. Appl. Phys. 2001, 89:4548-4553
    5 J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu, K. Hirao. Space-Selective Precipitation of Metal Nanoparticles inside Glasses. Appl. Phys. Lett. 2002, 81:3040-3042
    6 H. Zeng, J. Qiu, X. Jiang, S. Qu, C. Zhu, F. Gan. Influence of Femtosecond Laser Irradiation and Heat Treatment on Precipitation of Silver Nanoparticles in Glass. Chinese Physics Letters. 2003, 20:932–934
    7 H. Zeng, C. Zhao, J. Qiu, Y. Yang, G. Chen. Preparation and Optical Properties of Silver Nanoparticles Induced by a Femtosecond Laser Irradiation. J. Cryst. Growth. 2007, 300:519–522
    8 H. Zeng, J. Qiu, Z. Ye, C. Zhu, and F. Gan. Irradiation Assisted Fabrication of Gold Nanoparticles-Doped Glasses. J. Cryst. Growth. 2004, 207:156-160
    9 H. Zeng, G. Chen, J. Qiu, X. Jiang, C. Zhu, F. Gan. Effect of PbO on Precipitation of Laser-induced Gold Nanoparticles inside Silicate Glasses. J. Non-Cryst. Solids. 2008, 354:1155–1158
    10 H. Zeng, J. Qiu, S. Yuan, Y. Yang, G. Chen. Precipitation of MetallicNanoparticles inside Silicate Glasses by Femtosecond Laser Pulses. Ceram. Int. 2008, 34:605–608
    11 X. Hu, Q. Zhao, X. Jiang, C. Zhu and J. Qiu. Space-Selective Co-Precipitation of Silver and Gold Nanoparticles in Femtosecond Laser Pulses Irradiated Ag+, Au3+ Co-Doped Silicate Glass. Solid State Commun. 2006, 138:43-46
    12 K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou. Gold Nanoparticles Ion Implanted in Glass with Enhanced Nonlinear Optical Properties. J. Appl. Phys. 1994, 75:3075-3080
    13 F. Gonella, G. Mattei, P. Mazzoldi, C. Sada, G. Battaglin, E. Cattaruzza. Au–Cu Alloy Nanoclusters in Silica Formed by Ion Implantation and Annealing in Reducing or Oxidizing Atmosphere. Appl. Phys. Lett. 1999, 75:55-57
    14 Y. Takeda, O. A. Plaskin, H. Wang, K. Kono, N. Umeda, and N. Kishimoto. Surface Plasmon Resonance of Au Nanoparticles Fabricated by Negative Ion Implantation and Grid Structure toward Plasmonic Applications. Optical Review. 2006, 13:231-234
    15 X. Xiao, L. Guo, F. Ren, J. Wang, D. Fu, D. Chen, Z. Wu, Q. Jia, C. Liu, and C. Jiang. Formation of Metal Nanoparticles in Silica by The Sequential Implantation of Ag and Cu. Appl. Phys. A. 2007, 89:681-684
    16 M. Dubiel, H. Hofmeister, and E. Wendler. Formation of Nanoparticles in Soda-Lime Glasses by Single and Double Ion Implantation. J. Non-Cryst. Solids. 2008, 354:607-611
    17 O. Pena, U. Pal, L. Rodriguez-Fernandez, H. G. Silva-Pereyra, V. Rodriguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver. Formation of Au-Ag Core-Shell Nanostructures in Silica Matrix by Sequential Ion Implantation. J. Phys. Chem. C. 2009, 113:2296-2300
    18 S. Terauchi, N. Koshizaki, and H. Umehara. Fabrication of Au Nanoparticles by Radio-frequency Magnetron Sputtering. NanoStruct. Mater. 1995, 5:71-78
    19 T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, and S. Hirono. Characterization and Electrochemical Properties of Highly Dispersed CopperOxide/Hydroxide Nanoparticles in Graphite-Like Carbon Film Prepared by RF Sputtering Method. Electrochem. Commun. 2002, 4:468-471
    20 L. Armelao, D. Barreca, and G. Bottaro. Au/TiO2 Nanosystems: A Combined RF-Sputtering/Sol-Gel Approach. Chem. Mater. 2004, 16:3331-3338
    21 A. Caillard, P. Brault, J. Mathias, C. Charles, R. W. Boswell, and T. Sauvage. Deposition and Diffusion of Platinum Nanoparticles in Porous Carbon Assisted by Plasma Sputtering. Surf. Coat. Technol. 2005, 200:391-394
    22 D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, and S. Gialanella. Structure and Optical Properties of Silica-Supported Ag-Au Nanoparticles. Journal of Nanoscience and Nanotechnology. 2007, 7:2480-2486
    23 S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma. Synthesis of Au Nanoparticles in Partially Oxidized Si Matrix by Atom Beam Sputtering. J. Phys. D: Appl. Phys. 2007, 40:7063-7068
    24 D. Barreca, A. Gasparotto, C. Maccato, and E. Tondello. Silica-Sandwiched Au Nanoparticle Arrays by a Soft PE-CVD/RF Sputtering Approach. Nanotechnology. 2008, 19:255602
    25 Q. Chen, Y. Zhang, L. Wang, S. Chen, J. Weng, and L. Yue. Polymer Driven Covalently Bonded Decahedral-Twinning of Ag Nanoparticles Prepared by ICP Enhanced Magnetron Sputtering Method. J. Phys. Chem. C. 2009, 113:7633-7638
    26 X. Zhou, Q. Wei, K. Sun, and L. Wang. Formation of Ultrafine Uniform Gold Nanoparticles by Sputtering and Redeposition. Appl. Phys. Lett. 2009, 94:133107
    27 M. Ferrari, F. Gonella, M. Montagna, and C. Tosello. Detection and Size Determination of Ag Nanoclusters in Ion-Exchanged Soda-Lime Glasses by Waveguided Raman Spectroscopy. J. Appl. Phys. 1998, 79:2056-2059
    28 F. Gonella, F. Caccavaie, L. D. Bogomolova, F. D. Acapto, and A. Quaranta. Experimental Study of Copper-Alkali Ion-Exchange in Glass. J. Appl. Phys. 1998, 83:1200-1206
    29 A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella. Formation of Silver Nanoclusters by Excimer-Laser Interaction in Silver-Exchanged Soda-Lime Glass. Appl. Phys. Lett. 2001, 79:2456-2458
    30 D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair. Blue Shift ofPlasmon Resonance in Cu and Ag Ion-Exchanged and Annealed Soda-Lime Glass: an Optical Absorption Study. Physica. B. 2003, 325:86-91
    31 M. Suszynska, L. Krajczyk, R. Capelletti, A. Baraldi, and K. J. Berg. Microstructure and Silver Nanoparticles in Ion-Exchanged and Deformed Soda-Lime Silicate Glasses. J. Non-Cryst. Solids. 2003, 315:114-123
    32 S. E. Paje, M. A. Garcia, J. Llopis, and M. A. Villegas. Optical Spectroscopy of Silver Ion-Exchanged As-Doped Glass. J. Non-Cryst. Solids. 2003, 318:239-247
    33杨修春,杜天伦,陈爽,熊定邦,赵景泰,黄文旵.光谱学研究银纳米颗粒在玻璃中的生成规律.功能材料与器件学报. 2006, 12(3):178-181
    34杨修春,杜天伦,李志会,黄文旵.热处理条件对硅酸盐玻璃中原位形成银纳米颗粒的影响.硅酸盐学报. 2006, 34(12):1482-1490
    35 S. Sakida, T. Nanba, and Y. Miura. Optical Properties of Er3+-Doped Tungsten Tellurite Glass Waveguides by Ag+-Na+ Ion-Exchange. Opt. Mater. 2007, 30:586-593
    36 A. J. Barbosa, L. J. Q. Maia, A. M. Nascimento, R. R. Goncalves, Y. Messaddeq, and S. J. I. Ribeiro. Er3+-Doped Germanate Glasses for Active Waveguides Prepared by Ag+/K+-Na+ Ion-Exchange. J. Non-Cryst. Solids. 2008, 354:4743-4748
    37 E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta. Characterization of Silicate Glasses Doped with Gold by Solid-State Field-Assisted Ion-Exchange. Mater. Sci. Eng., B. 2008, 149:195-199
    38 J. Grelin, A. Bouchard, E. Ghibaudo, and J. Broquin. Study of Ag+/Na+ Ion-Exchange Diffusion on Germanate Glasses: Realization of Single-Mode Waveguides at the Wavelength of 1.55μm. Mater. Sci. Eng., B. 2008, 149:190-194
    39 C. Maurizio, A. Quaranta, E. Ghibaudo, F. D. Acapito, and J. E. Broquin. Ag Site in Ag-for-Na Ion-Exchanged Borosilicate and Germanate Glass Waveguides. J. Phys. Chem. C. 2009, 113:8930-8937
    40 S. Bharathi, N. Fishelson, and O. lev. Direct Synthesis and Characterization of Gold and Other Noble Metal Nanodispersions in Sol-Gel-Derived Organically Modified Silicates. Langmuir. 1999, 15:1929-1937
    41 S. Devarajan, P. Bera, and S. Sampath. Bimetallic Nanoparticles: A SingleStep Synthesis, Stabilization, and Characterization of Au-Ag, Au-Pt in Sol-Gel Derived Silicates. J. Colloid Interface Sci. 2005, 290:117-129
    42 M. Yang, Y. Yang, Y. Liu, G. Shen, and R. Yu. Platinum Nanoparticles-Doped Sol-Gel/Carbon Nanotubes Composite Electrochemical Sensors and Biosensors. Biosens. Bioelectron. 2006, 21:1125-1131
    43 V. S. Gurin, A. A. Alexeenko, S. A. Zolotovskaya, and K. V. Yumashev. Copper and Copper Selenide Nanoparticles in the Sol-Gel Matrices: Structural and Optical. Mater. Sci. Eng., C 2006, 26:952-955
    44 D. Buso, M. Guglielmi, A. Martucci, G. Mattei, P. Mazzoldi, C. Sada, and M. L. Post. Growth of Cookie-Like Au/NiO Nanoparticles in SiO2 Sol-Gel Film and Their Optical Gas Sensing Properties. Cryst. Growth Des. 2008, 8:744-749
    45 B. K. Jena and C.R. Raj. Electrocatalytic Applications of Nanosized Pt Particles Self-Assembled on Sol-Gel-Derived Three-Dimensional Silicate Network. J. Phys. Chem. C. 2008, 112:3496-3502
    46 P. Kalimuthu, and S. A. John. Size Dependent Electrocatalytic Activity of Gold Nanoparticles Immobilized onto Three Dimensional Sol-Gel Network. J. Electroanal. Chem. 2008, 617:164-170
    47 H. Zhang, and G. Chen. Potent Antibacterial Activities of Ag/TiO2 Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method. Environ. Sci. Technol. 2009, 43:2905-2910
    48 A. Taheri, M. Noroozifar, and M. Khorasani-Motlagh. Investigation of a New Electrochemical Cyanide Sensor Based on Ag Nanoparticles Embedded in a Three-Dimensional Sol-Gel. J. Electroanal. Chem. 2009, 628:48-54
    49 J. Yoon, T. Sasaki, and N. Koshizaki. Photoelectrochemical Behavior of Pt/TiO2 Nanocomposite Thin Films Prepared by Pulsed Laser Deposition. Appl. Surf. Sci. 2002, 197-198:684-687
    50 J. Gonzaio, D. Babonneau, C. N. Afonso, and J. P. Bames. Optical Response of Mixed Ag-Cu Nanocrystals Produced by Pulsed Laser Deposition. J. Appl. Phys. 2004, 96:5163-5168
    51 J. Gonzalo, A. Perea, D. Babonneau, C. N. Afonso, N. Beer, J. P. Bames, A. K. Petford-Long, D. E. Hole, and P. D. Townsend. Competing Processes during the Production of Metal Nanoparticles by Pulsed Laser Deposition.Phys. Rev. B. 2005, 71:125420
    52 H. Cui, P. Liu, and G. W. Yang. Noble Metal Nanoparticle Patterning Deposition Using Pulsed-Laser Deposition in Liquid for Surface-Enhanced Raman Scattering. Appl. Phys. Lett. 2006, 89:153124
    53 Z. Konstantinovic, M. G. Muro, M. Varela, X. Batlle, and A. Labarta. Particle Growth Mechanisms in Ag-ZrO2 and Au-ZiO2 Granular Film Obtained by Pulsed Laser Deposition. Nanotechnology. 2006, 17:4106-4111
    54 Z. Yuan, N. H. Dryden, J. J. Vittal, and R. J. Puddephatt. Chemical Vapor Deposition of Silver. Chem. Mater. 1995, 7:1696-1702
    55 E. S. Hwang and J. Lee. Surfactant-Catalyzed Chemical Vapor Deposition of Copper Thin Film. Chem. Mater. 1999, 12:2076-2081
    56 M. Aktary, C. E. Lee, Y. Xing, S. H. Bergens, and M. T. Mcdermott. Surface-Directed Deposition of Platinum Nanostructures on Graphite by Chemical Vapor Deposition. Langmuir. 2000, 16:5837-5840
    57 R. G. Palgrave, and I. P. Parkin. Aerosol Assisted Chemical Vapor Deposition of Gold and Nanocomposite Thin Film from Hydrogen Tetrachloroaurate(III). Chem. Master. 2007, 19:4639-4647
    58 R. K. Joshi, M. Yoshimura, K. Tanaka, K. Ueda, A. Kumar, and N. Ramgir. Synthesis of Vertically Aligned Pd2Si Nanowires in Microwave Plasma Enhanced Chemical Vapor Deposition System. J. Phys. Chem. C. 2008, 112:13901-13904
    59 S. Link, and M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B. 1999, 103:8410–8426
    60 M. Born, and E. Wolf. Principles of Optics, 7th edition, Pergamon Press, Oxford. 1998
    61 K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003, 107:668–677
    62 S. Link, and M. A. El-Sayed. Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals, Annu. Rev. Phys. Chem. 2003, 54:331–366
    63 U. Kreibig, and M. Vollmer. Optical Properties of Metal Clusters, Springer Series in Materials Science 25, Springer, Berlin. 1995
    64西北轻工业学院.玻璃工艺学. 13.中国轻工业出版社, 2006:182-184
    65 R. A. Wood, P. D. Townsend, N. D. Skelland, D. E. Hole, and J. Barton. Annealing of Ion Implanted Silver Collolds in Glass. J. Appl. Phys. 1993, 74:5754-5756
    66 F. Gonella, G. Mattel, P. Mazzoldi, E. Cattaruzza, G. W. Amold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund. Interaction of High-Power Laser Light with Silver Nanocluster Composite Glasses. Appl. Phys. Lett. 1996, 69:3101-3103
    67 M. Kaempfe, T. Rainer, K. J. Berg, G. Seifert, and H. Graener. Ultrashort Laser Pulse Induced Deformation of Silver Nanoparticles in Glass. Appl. Phys. Lett. 1999, 74:1200-1202
    68 S. Chen, T. Akai, K. Kadono, and T. Yazawa. Reversible Control of Silver Nanoparticle Generation and Dissolution in Soda-Lima Silicate Glass through X-Ray Irradiation and Heat Treatment. Appl. Phys. Lett. 2001, 79:3687-3689
    69 S. Shibata, K. Miyajima, Y. Kimura, and T. Yano. Heat-Induced Precipitation and Light-Induced Dissolution of Metal (Ag & Au) Nanoparticles in Hybrid Film. J. Sol-Gel Sci. Technol. 2004, 31:123-130
    70 X. Jiang, J. Qiu, H. Zeng, C. Zhu, and K. Hirao. Laser-Controlled Dissolution of Gold Nanoparticles in Glass. Chem. Phys. Lett. 2004, 391:91-94
    71 J. Massera, J. Choi, L. Petit, M. Richardson, Y. Obeng, K. Richardson. Formation and Dissolution of Copper-Based Nanoparticles in SiO2 Sol-Gel Film Using Heat Treatment and/or UV Light Exposure. Mater. Res. Bull. 2008, 43:3130-3139
    72 O. Depairs, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener. Poling-assisted Bleaching of Metal-doped Nanocomposite Glass. Appl. Phys. Lett. 2004, 85(6): 872-874
    73 R. A. Myers, N. Mukherjee, and S. R. J. Brueck. Large Second-order Nonlinearity in Poled Fused Silica. Opt. Lett. 1991, 16:1732-1734
    74 P. G. Kazansky, and P. St. J. Russel. Thermally Poled glass: Frozen-in Electric Field or Oriented Dipoles? Opt. Commun. 1994, 110:611-614
    75 J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi. Polingof Silica with Silver-containing Electrodes. Electron. Lett. 2000, 36:1635-1636
    76 A. Podlipensky, A. Abdolvand, G. Seifert, O. Depairs, and P. G. Kazansky. Dissolution of Silver Nanoparticles in Glass through an Intense DC Electric Field. J. Phys. Chem. B. 2004, 108: 17699-17702
    77 A. Abdolvand, A. Podlipensky, G. Seifert, H. Greaner, O. Depairs, and P. G. Kazansky. Electric Field-assisted Formation of Perolated Silver Nanolayers inside Glass. Opt. Express. 2005, 13(4): 1266-1274
    78 A. Podlipensky, A. Abdolvand, G. Seifert, H. Greaner. Femtosecond Laser Assisted Production of Dichroitic 3D Structures in Composite Glass Containing Ag Nanoparticles. Appl. Phys. A. 2005, 80(8):1647-1652
    79 G. Xu, M. Tazawa, P. Jin, S. Nakao. Surface Plasmon Resonance of Sputtered Ag Film: Substrate and Mass Thickness Dependence. Appl. Phys. A. 2005, 80(7): 1535-1540
    80 A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. G?sele, G. Seifert, and H. Graener. Metallodielectric Two-Dimensional Photonic Structures Made by Electric-Field Microstructuring of Nanocomposite Glasses. Adv. Mater. 2005, 17: 2983-2987
    81 O. Deparis, P. G. Kazansky, A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener. Evolution of Poling-assisted Bleaching of Metal-doped Nanocomposite Glass with Poling Conditions. Appl. Phys. Lett. 2005, 86: 261109
    82 O. Depairs, P. G. Kazansky, A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener. Poling-assisted Bleaching of Soda-lime Float Glasses Containing Silver Nanoparticles with a Decreasing Filling Factor Across the Depth. J. Appl. Phys. 2006, 100:044318
    83 D. A. G. Bruggeman. Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. I. Dielektrizit?ts Konstanten und Leitf?higkeiten der Mischk?rper aus Isotropen Substanzen. Ann. Phys. 1935, 416:665-679
    84 J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka. Modeling of Optical Properties of Silver-doped Nanocomposite Glasses Modified by Electric-Field-Assisted-Dissolution ofNanoparticles. Appl. Opt. 2006, 45(35):8874-8881
    85 F. P. Mezzapesa, Isabel C. S. Carvalho, P. G. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi. Bleaching of Sol-Gel Glass Film with Embedded Gold Nanoparticles by Thermal Poling. Appl. Phys. Lett. 2006, 89:183121
    86 A. A. Lipovskii, V. G. Melehin, and V. D. Petrikov. Electric-Field-Induced Bleaching of Ion-Exchanged Glasses Containing Copper Nanoparticles. Tech. Phys. Lett. 2006, 32:275-277
    87 I. C. S. Carvalho, F. P. Mezzapesa, P. G. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi. Dissolution of Embedded Gold Nanoparticles in Sol-Gel Glass Film. Mater. Sci. Eng., C. 2007, 27:1313-1316
    88 J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zonc, and F. Peiro. Electric Field Assisted Dissolution of Metal Clusters in Metal Island Film for Photonic Hererostructures. Appl. Phys. Lett. 2008, 92:163108
    89 A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko. Electric Field Imprinting of Sub-Micronpatterns in Glass-Metal nanoparticles. Nanotechnology. 2008, 19: 415304
    90西北轻工业学院.玻璃工艺学. 13.中国轻工业出版社, 2006:191-214
    91曾惠丹,曲士良,姜雄伟,邱建荣,朱从善,干福熹.飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究.物理学报. 2003, 52 (10):2525-2529
    92曲士良,赵崇军,高亚臣,宋瑛林,刘树田,邱建荣,朱从善.飞秒激光所致金纳米粒子析出的玻璃非线性吸收.物理学报. 2005, 54 (1):139-143
    93 M. I. Blanca, V. D. Zande, M. R. Bhmer, G. J. Fokkink, C. Schnenberger. Aqueous Gold Sols of Rod-Shaped Particles. J. Phys. Chem. B. 1997, 101:852-854
    94 Y. Yu, S-S. Chang, C-L. Lee, and C. R. C. Wang. Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B. 1997, 101:6661-6664
    95 M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed. Thermal Reshaping of Gold Nanorods in Micelles. J. Phys. Chem. B. 1998, 102:9370-9374
    96 S. Link, M. B. Mohamed, and M. A. El-Sayed. Simulation of The OpticalAbsorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and The Effect of The Medium Dielectric Constant. J. Phys. Chem. B. 1999, 103:3073-3077
    97 X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu. Characterization of Erasable Ionrganic Photochromic Media for Optical Disk Data Storage. J. Appl. Phys. 1998, 83:3795-3799
    98 A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate. Optical Doping of Waveguide Materials by MeV Er Implantation. J. Appl. Phys. 1991, 70:3778-3784
    99 S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla. Theory of the Linear and Nonlinear Optical Properties of Semiconductor Microcrystallites. Phys. Rev. B. 1987, 35:8113-8125
    100 G. C. Papavassiliou. Optical Properties of Small Inorganic and Organic Metal Particles. Prog. Solid State Chem. 1980, 12:185-206
    101 T. Oonishi, S. Sato, H. Yao, and K. Kimura. Three-Dimensional Gold Nanoparticles Superlattices: Structures and Optical Absorption Characteristics. J. Appl. Phys. 2007, 101:114314
    102 R. Gans. The Form of Ultramicroscopic Silver Particles. Ann. Physik. 1915, 47:270-284
    103 A. W. Snow, H. Wohltjen. Size-Induced Metal to Semiconductor Transition in a Stabilized Gold Cluster Ensemble. Chem. Mater. 1998, 10:947-949
    104 R. C. Doty, H. Yu, C. K. Shih, B. A. Korgel. Temperature-Dependent Electron Transport though Silver Nanocrystal Superlattices. J. Phys. Chem. B. 2001, 105:8291-8296
    105 H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng. Large Third-Order Optical Nonlinearity in Au:SiO2 Composite Films near the percolation Threshold. Appl. Phys. Lett. 1997, 70:1-3
    106 P. Sheng. Theory for the Dielectric Function of Granular Composite Media. Phys. Rev. Lett. 1980, 45:60-63
    107 M. Raffi, J. I. Akhter, and M. M. Hasan. Effect of Annealing Temperature on Ag Nano-Composite Synthesized by Sol-Gel. Mater. Chem. Phys. 2006, 99:405-409
    108 A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy. ASurface Phase Transition of Supported Gold Nanoparticles. Nano Lett. 2007, 7:1026-1031
    109 C. V. Raman and K. S. Krishnan. A New Type of Secondary Radiation. Nature. 1928, 121:501-502
    110 M. Fleischmann, P. J. Hendra, and A. J. McQuillan. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26:163– 165
    111 D. L. Jeanmaire, R. P. Van Duyne, A. P. Sloan. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84:1-20
    112 C. G. Blatchford, J. R. Campbell, and J. A. Creighton. Raman Excitation Profiles of Adsorbates at Roughened Silver Surfaces. Surf. Sci. 1981, 108(2):411-420
    113 P. Cao, Y. Sun, J. Yao, B. Ren, R. Gu, and Z. Tian. Adsorption and Electro-Oxidation of Carbon Monoxide at the Platinum-Acetonitrile Interface as Probed by Surface-Enhanced Raman Spectroscopy. Langmuir, 2002, 18:2737-2742
    114 P. Cao, Y. Sun, and R. Gu. Surface-Enhanced Raman Spectroscopy Studies on the Adsorption and Electrooxidation of Carbon Monoxide at the Platinum-Formic Acid Interface. J. Phys. Chem. B. 2004, 108:4716-4722
    115 S. R. Emory, W. E. Haskins, and S. Nie. Direct Observation of Size-Dependent Optical Enhancement in Single Metal Nanoparticles. J. Am. Chem. Soc. 1998. 120:8009-8010
    116 A. M. Michaels, M. Nirmal, and L. E. Brus. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. J. Am. Chem. Soc. 1999, 121:9932-9939
    117 J. T. Krug, II, G. D. Wang, S. R. Emory, and S. Nie. Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals. J. Am. Chem. Soc. 1999, 121:9208-9214
    118 D. J. Maxwell, S. R. Emory, and S. Nie. Nanostructured Thin-Film Materials with Surface-Enhanced Optical Properties. Chem. Mater. 2001, 13:1082- 1088
    119 W. E. Doering and S. Nie. Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B. 2002, 106:311-317
    120 D. Pristinski, S. Ten, M. Erol, H. Du, and S. Sukhishvili. In stitu SERS Study of Rhodamine 6G Adsorbed on Individually Immobilized Ag Nanoparticles. J. Raman Spectrosc. 2006, 37:762-770
    121 J. Fang, C. Zhong, R. Mu, J. Shi, and C. Ge. Fabrication, Characterization, and Surface-Enhanced Raman Activity Study of Silver Coated Gold Nanoparticulate Films. Chin. J. Chem. 2007, 25:609-615
    122 Y. Maruyama, M. Futamata. Anion Induced SERS Activation and Quenching for R6G Adsorbed on Ag Nanoparticles. Chem. Phys. Lett. 2007, 448:93-98
    123 C. Shen, C. Hui, Z. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding, and H. Gao. Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties. Chem. Mater. 2008, 20:6939-6944
    124 J. Chen, T. M?rtenssion, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. Xu. Surface-Enhanced Raman Scattering of Rhodamine 6G on Nanowire Arrays Decorated with Gold Nanoparticles. Nanotechnology. 2008, 19: 275712
    125 J. Zhang, X. Li, X. Sun, and Y. Li. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes. J. Phys. Chem. B. 2005, 109:12544-12548
    126 A. Otto. The‘Chemical’(Electronic) Contribution to Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2005, 36:497–509
    127 A. Otto, T. Bornemann,ü. Ertürk, I. Mrozeka, and C. Pettenkofer. Model of Electronically Enhanced Raman Scattering from Adsorbates on Cold-Deposited Silver. Surf. Sci. 1989, 210(3):363-386
    128 N. Engheta. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials. Science. 2007, 317:1698-1702
    129 R. Charbonneau, P. Berini, E. Berolo and E. Lisicka-Shrzek. Experimental Observation of Plasmon-Polariton Waves Supported by a Thin Metal Film of Finite Width. Opt. Lett. 2000, 25:844-846
    130 N. Pin?on-Roetzinger, D. Prot, B. Palpant, E. Charron and S. Debrus. Large Optical Kerr Effect in Matrix–Embedded Metal Nanoparticles. Mater. Sci.Eng., C. 2002, 19:51-54
    131 M. J. Bloemer, and J. W. Haus. Broadband Waveguide Polarizers Based on the Anisotropic Optical Constants of Nanocomposite Film. J. Lightwave Technol. 1996, 14:1534-1540
    132 R. G. Forbes, C. J. Edgcombe, and U. Valdre. Some Comments on Models for Field Enhancement. Ultramicroscopy. 2003, 95:57-65
    133 A. Wolf, B. Terherden, and R. Brendel. Light Scattering and Diffuse Light Propagation in Sintered Porous Silicon. J. Appl. Phys. 2008, 104:033106
    134 J. G. J. Peelen, and R. Metselaar. Light Scattering by Pores in Polycrystalline Materials: Transmission Properties of Alumina. J. Appl. Phys. 1974, 45:216-220
    135杨修春,李志会,李伟捷,杜天伦,黄文旵.银纳米颗粒-玻璃复合材料的光学性能.功能材料与器件学报. 2007, 13(6):554-560
    136 G. R. Olbright, and N. Peyghambarian. Interferometric Measurement of the Nonlinear Index of Refraction n2 of CdSxSe1-x-doped Glasses. Appl. Phys. Lett. 1986, 48:1184-1188
    137 R. Adair, L. L. Chase, and S. A. Payne. Nonlinear Refractive-Index Measurements of Glasses Using Three-Wave Frequency Mixing. J. Opt. Soc. Am. B. 1987, 4:875-881
    138 W. E. Williams, M. J. Soileau, and E. W. Van Stryland. Optical Switching and n2 Measurements in CS2. Opt. Commun. 1984, 50:256-259
    139 A. Owyoung. Ellipse Rotation Studies in Laser Host Materials. IEEE J. Quantum Electron. 1973, 9:1064-1068
    140 M. A. Kramer, W. R. Tompkin, and R. W. Boyd. Nonlinear Optical Interactions in Fluorescein-Doped Boric Acid Glass. Phys. Rev. A. 1986, 34:2026-2031
    141 F. Shimizn, and B. P. Stoichef. Study of the Duration and Birefringence of Self-Trapped Filaments in CS2. IEEE J. Quantum Electron. 1969, 5:544-549
    142 S. R. Friberg, and P. W. Smith. Nonlinear Optical Glasses for Ultrafast Optical Switches. IEEE J. Quantum Electron. 1987, 23:2089-2093
    143 T. Fehn, and T. Vogtmann. Anisotropy of the Nonlinear Optical Susceptibilityχ(3) in Polydiacetylene Single Crystals. Appl. Phys. B. 1994, 59:203-208
    144 M. Sheik-Bahae, A. A. Said, E. W Van Stryland. High-sensitive Single Beam n2 Measurement. Opt. Lett. 1989, 14(17):955-958
    145 M. Sheik-Bahae, A. Said, T. Wei, D. J. Hagan. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Electron. 1990, 26:760-765
    146 M. Sheik-Bahae, Wang J, De Salvo R. Measurement of Nondegenerate Optical Nonlinearity Using a Two-Color Z-Scan. Opt. Lett. 1992, 17:258-262
    147 S. Qu, Y. Zhang, H. Li, J. Qiu, C. Zhu. Nanosecond Nonlinear Absorption in Au and Ag Nanoparticles Precipitated Glasses Induced by a Femtosecond Laser. Opt. Mater. 2006, 28:259-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700