用户名: 密码: 验证码:
川赤芍化学成分与芍药质量控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芍药为传统中药,历有赤、白之分。《中国药典》2005年版规定白芍为毛茛科植物芍药Paeonia Lactiflora Pall.的干燥根,置沸水中煮后除去外皮或去皮后再煮,晒干;赤芍为毛茛科植物芍药Paeonia Lactiflora Pall.或川赤芍Paeonia veitchii Lynchde的干燥根,直接晒干。此外,杂芍药Paeonia hybrida Pall.的干燥纺锤状块根直接晒干后称为赤芍或新疆赤芍在新疆地区应用。本文对川赤芍的化学成分与芍药的质量控制方法进行了系统研究。
     从川赤芍(P.veitchii)中分离并鉴定了28个化合物,其中1个新化合物,为2-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside]-Benzaldehyde(BH);18个首次从该种植物中分离得到的化合物,分别为β-谷甾醇亚油酸酯、胡萝卜苷亚油酸酯、亚油酸、棕榈酸、豆甾醇、菠甾醇、stigmast-7-en-3β-ol、木栓酮、表木栓醇、没食子酰芍药苷(GPF)、芍药内酯苷(AF)、水杨醇、异水杨苷、水杨苷、没食子酸甲酯(MG)、1,2,3,4,6-五没食子酰基葡萄糖(PG)、丹皮酚(PN)、熊果苷;其他已知化合物分别为β-谷甾醇、胡萝卜苷、芍药苷(PF)、苯甲酰芍药苷(BPF)、氧化芍药苷、没食子酸(GA)、苯甲酸(BA)、d-儿茶素、蔗糖。
     采用高效液相色谱法,建立对芍药样品中GA、MG、BH、AF、PF、GPF、BA、PG、BPF、PN等10个化学成分同时进行含量测定的方法,线性关系良好,回归方程的相关系数为0.9995~0.9999;平均回收率为96.9~104.0%,RSD<3.3%。结果表明(川)赤芍(P.veitchii,具皮)的总成分含量高,其次是赤芍(P.lactiflora,具皮),总成分含量最低的为新疆赤芍(P.hybrida,具皮)。芍药苷类化合物是芍药的主要成分之一,其中又以芍药苷含量最高。(川)赤芍(P.veitchii,具皮)和新疆赤芍(P.hybrida,具皮)中还含有较多的没食子酸类化合物。BH是(川)赤芍(P.veitchii,具皮)特征性成分,可以作为其专属性指标,具有分类学和鉴别意义。白芍(P.lactiflora,去皮,水煮)和赤芍(P.lactiflora,具皮)来源于同一植物的同一入药部位,但产地加工方法不同。药材经去皮、水煮后得到的白芍,其总成分含量明显下降,芍药内酯苷的含量明显上升。去皮、水煮这种传统加工方法对赤、白芍功效的影响可能大于赤、白芍药材种间差异的影响。所建立的含量测定方法简便,重复性好,可以在同一色谱条件下对白芍和赤芍中化学成分的含量进行比较研究,为评价芍药质量提供了一个定量指标。
     对芍药样品进行色谱指纹图谱研究。采用薄层色谱法对芍药进行指纹图谱研究,可在同一薄层板上同时对多个样品进行可见光色谱及荧光猝灭色谱图像平行分析比较,扫描轮廓图谱结合薄层色谱图像观察信息更加丰富,操作简便,可辨认性强。同种样品显示高度的相似性,不同种样品在具有各自的共性特征的同时,个体之间有显著差异。采用高效液相色谱法对芍药进行指纹图谱研究,获取反映药材整体特征的化学数据,将所获得的化学数据进行化学模式识别研究,建立统计学识别模型。通过系统聚类分析将芍药样品分为3类:第Ⅰ类为白芍(P.lactiflora,去皮,水煮),第Ⅱ类为赤芍(P.lactiflora,具皮),第Ⅲ类为(川)赤芍(P.veitchii,具皮)和新疆赤芍(P.hybrida,具皮)。用逐步判别分析对样品的分类结果建立判别函数,通过判别函数对芍药样品进行区别、鉴定,判别分类与真实分类的判别符合率达100%。采用“中药色谱指纹图谱相似度评价系统”进行相似度计算,对芍药样品进行鉴定、分类和评价。在分析未知样品时,只需计算判别函数或计算未知样品与共有模式间的相似度,即可对未知样品进行鉴定、分类和评价。在此基础上,以13个未知芍药样品为研究对象,进行指纹图谱分析,结果表明采用系统聚类分析法、逐步判别分析法和相似度计算法三种方法分类结果基本一致,得到了相互认证。为鉴别白芍和赤芍提供了新方法
     采用液相色谱与多级质谱联用(HPLC-PDA-MS~n)技术,研究5个芍药苷类和3个没食子酸类化合物的特征碎片离子和特征紫外吸收,推测其电喷雾质谱裂解规律,并对白芍和赤芍中这8个化合物进行鉴定和色谱峰的归属。根据样品的选择离子(SIM)色谱图,进一步证明BH是(川)赤芍(P.veitchii,具皮)的特征化学成分之一,具有鉴别意义。
     对(川)赤芍(P.veitchii,具皮)和白芍(P.lactiflora,去皮,水煮)的80%乙醇提取物及其脂溶性成分和水溶性成分进行初步药理活性比较研究,以二甲苯致小鼠耳廓肿胀和醋酸诱发小鼠毛细血管通透性增高观察提取物的抗炎作用;以提取物对小鼠凝血酶原时间(PT)、部分凝血活酶时间(KPTT)和对大鼠血小板聚集的影响,考察提取物的活血化瘀作用。旨在为进一步探讨白芍与赤芍的药理活性奠定基础。
     本研究在中医药理论和实践的指导下,将中药学、分析化学、药理学、化学统计学和计算机技术相结合,研究了川赤芍的化学成分;初步建立了白芍和赤芍的质量评价方法,对评价中药材质量的方法进行了有益的尝试;探讨了芍药苷类和没食子酸类化合物的电喷雾质谱裂解规律及其在芍药中的分布,并初步比较了白芍和赤芍的药理活性,为白芍和赤芍的更深入研究奠定了基础,为中药现代化做了有意义的探索。
Radix Paeoniae Alba (white peony root) and Radix Paeoniae Rubra (red peony root) are commonly used traditional Chinese herbal drug for analgesia, anti-inflammation and activating blood circulation to dissipate blood stasis. According to the Pharmacopoeia of the PRC (edition 2005), white peony root is the dried root of Paeonia lactiflora Pall.(peeled and boiled before drying) and red peony root is the dried root of Paeonia lactiflora Pall.or P. veitchii Lynch (directly dried). Furthermore, the dried root of Paeonia hybrida Pall is used as a substitute for red peony root in Xinjiang locally, and called as Xinjiang red peony root or red peony root.In this dissertation, the chemical components of Paeonia veitchii and method of quality assessment of Radix Paeoniae were studied systematically.From the roots of P. veitchii, 28 compounds were isolated and structurally elucidated by chemical and spectroscopic methods (~1H NMR, ~(13)C NMR, HMBC, HMQC, NOESY, EI-MS, ESI-MS, HRESI-MS, IR, UV). One of them was a new compound, 2-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside]-Benzaldehyde (BH), and eighteen of them were isolated from this plant for the first time:β-sitosterol linoleate, daucosterol linoleate, linoleic acid, palmitic acid, stigmasterol,α-spinaterol, stigmast-7-en-3β-ol, friedelin, epi-friedelanol, galloylpaeoniflorin (GPF), albiflorin (AF), salicyl alcohol, isosalicin, salicin, methyl gallate (MG), pentagalloylglucose (PG), paeonol (PN), arbutin. 9 Known ones,β-sitosterol, daucosterin, paeoniflorin (PF), benzoylpaeoniflorin (BPF), oxypaeoniflorin, gallic acid (GA), benzoic acid (BA), d-catechin and saccharose, were also isolated.A reversed-phase HPLC method was developed for simultaneous determination of GA, MG, BH, AF, PF, GPF, BA, PG, BPF and PN in white peony root and red peony root, collected from different habitats and different batches. The determination were accomplished by a linear gradient elution system on ODS columns. The linear calibration curves were plotted with satisfied relative coefficients (0.9995~0.9999). The average recoveries were in the range of 96.9~104.0% with RSD less than 3.3%. The established assay method is simple, rapid, reproducible and provide a quantitative basis for the quality assessment for Radix Paeoniae.
     The TLC and HPLC chromatographic fingerprints of methanol extracts of white peony root and red peony root were evaluated. Totally samples derived from Paeonia lactiflora, P. veitchii and P. hybrida, respectively, were firstly analyzed by TLC documentation. The results indicated the three species of peony roots could be distinctly authenticated from each other based on their TLC characters, detected by colorimetric or fluorescent spotting, and the samples from the same species displayed higher homogenicity.
     The methanol extracts of the above mentioned samples were simultaneously analyzed by a newly developed HPLC system and characteristic chromatographic fmgerprints and the chemical data were acquired. The HPLC chromatographic profiles of Radix Paeoniae showing 27 diagnostic peaks from both white and red peony root and studied by chemical pattern recognition methods. The profiling data were randomly treated with hierarchical clustering analysis and divided into three classes, P. lactiflora (peeled), P. lactiflora (unpeeled), and P. veitchii plus P. hybrida. Stepwise discriminant analysis (STEPDA) method was also utilized for differentiation of Radix Paeoniae samples and four discriminant functions were produced from the result of classification, in which P. veitchii plus P. hybrida were divided into two classes in stead. When an unknown sample is analyzed by this method, the observed values are imported into the discriminant functions. The analyzed sample is identified to a specified class which give the biggest function value to the discriminant function of the specified class. Based on the results of classification, a similarity analysis method for quality assessment of Radix Paeoniae samples was developed. All the three different methods resulted in the consistent trend and can be used for identifying white peony root and red peony root.
     High-performance liquid chromatography with on-line photodiode array detection and electrospray ionization tandem mass spectrometry was developed for simultaneous analysis of compounds in the Radix Paeoniae. Combining the separation by HPLC, the characteristic of UV spectra, and the information of molecular structure provided by ESI-MS~n, eight compounds in the white peony root and red peony root were identified. Furthermore, the fragmentation pattern of them were proposed.
     Two inflammatory models of ear edema induced by xylene and elevation of capillary permeability by acetic acid were used for testing the anti-inflammatory effect of extracts of red and white peony roots. The effects on the activating blood and eliminating stasis with prothrombin time (PT), kaolin partial thromboplastin time (KPTT) and platelet aggregation induced by ADP were studied. The results showed that red peony root and white peony root indicated the similar biological activities in those tests.
     Conclusively, by using the theory and methodologies of traditional Chinese medicine (TCM), phytochemistry, analytical chemistry, chemical statistics and pharmacology, red peony root and white peony root were studied in this paper. The chemical components of Paeonia veitchii was elucidated and a new methodology for the quality control of Radix Paeoniae was established. Furthermore, the MS~n fragmentation patterns of compounds were proposed and a comparative study on pharmacological effects was carried out, which provided valuable academic evidences for the future research and development of Radix Paeoniae.
引文
[1] 谢培山.中药质量控制模式的发展趋势.中药新药与临床药药理,2001,12(3):188~191
    [2] 罗国安,王义明,曹进.多维多息特征谱及其应用.中成药,2000,22(6):395~397
    [3] 屠鹏飞.高效液相色谱法制定中药材和中药注射剂特征指纹图谱的探讨.中成药,2000,22(7):516
    [4] 朱建明,王艇,苏应娟.多重任意扩增子图谱技术在中药材鉴定中的应用.中药材,2002,25(7):519~524
    [5] 任德权.中药指纹图谱质控技术的意义与作用.中药材,2001,24(4):235~239
    [6] 毕开顺,孙毓庆,王延琮.用模糊数学评价中成药质量的方法研究.分析测试通报,1988,7(2):64~70
    [7] 齐美玲,罗旭,王玺.黄芩品种及代用品的模糊聚类分析.沈阳药学院学报,1992,9(2):127~129
    [8] 朱景生,何春馥,魏敏吉.化学模式识别技术评价中药厚朴质量的研究.分析测试通报,1988,7(5):20~26
    [9] 王铁杰,罗旭,王玺等.中药龙胆质量的化学模式识别.药学学报,1992,27(6):456~461
    [10] 魏敏吉,罗旭,王玺等.化学模式识别评价中药威灵仙质量的研究.药学学报,1991,26(10):772~776
    [11] 何为.吴茱萸质量的化学人工神经网络模式识别.沈阳药科大学博士学位论文,沈阳,1998
    [12] 姚美村.黄芪药效物质基础与其评价指标的研究.沈阳药科大学博士学位论文,沈阳,2000
    [13] 王巧.杜仲质量评价方法的研究.沈阳药科大学硕士学位论文,沈阳,1999
    [14] 罗旭,毕开顺,王玺等.中药质量化学模式识别研究的进展.药学学报,1993,28(12):936~940
    [15] 齐莹.黄芪质量评价方法的研究.沈阳药科大学硕士学位论文,沈阳,2000
    [16] 苏薇薇.中药细辛的化学模式识别研究(Ⅰ).中药材,1999,22(6):279~282
    [17] 吴忠,苏薇薇,何新新.中药连翘质量的灰色模式识别研究.中药材,2000,23(9):536~537
    [18] 温国庆.台湾地区中药品质管制现况与未来趋势.医药食品生物科技季刊,2000,6(2):21~25
    [19] Rudolf Bauer. Quality Criteria and Phytopharmaceutical: Can Acceptable Drug Standards be achieved? Drug Information Journal, 1998,32 : 101
    [20] 卫生部药政局.中药材手册.人民卫生出版社.1990,82
    [21] 中华人民共和国药典(1990年版一部)注释编委会编.中华人民共和国药典(1990年版一部)注释选编.广东:广东科技出版社.1993,84~86
    [22] 国家药典委员会编.中华人民共和国药典.2005年版(一部).北京:化学工艺出版社.79,125
    [23] 国家中医药管理局《中华本草》编委会.《中华本草》.上海:上海科学技术出版社,(第三卷),515~528
    [24] 胡世林,付桂兰,冯学峰等.不同产地和部位赤芍中芍药苷的含量测定.中国中药杂志,2000,25(12):714~716
    [25] Wu Chang Chuang, Weng Chung Lin, Shuenn lyi Sheu, et al. A comparative study on commercial samples of the Roots of Paeonia Vitchii and P. lactiflora. Planta Medica. 1996,62(4): 347~351
    [26] 黄璐琦,王敏,格小光等.赤、白芍药的划分与地域分布的相关性探讨.中国中药杂志,1998:23(4):204~205
    [27] 周红涛,胡世林,郭宝林等.芍药野生与栽培群体的遗传变异研究.药学学报,2002,37(5):383~388
    [28] 田树革,周晓英.新疆赤芍理化性质与紫外光谱的研究.中医药学刊,2002,20(4):542~543
    [29] 周晓英,柴黎明,燕雪花.新疆赤芍中芍药总苷提取工艺的研究.天津药学,2004,16(2):25~27
    [30] 田树革,刘庆.新疆芍药色谱图谱分析及芍药苷的含量测定.中国民族医药杂志,2003,9(4):32~33
    [31] S.Shibata, M.Nakahara and N.Aimi. Paeoniflorin,a glucoside of Chinese Paeony root (1). Chem. Pharm. Bull,1963,11 (3) :372~378
    [32] M.Kaneda, Y.Litaka and S.Shibata. The absolute structures of paeoniflorin,albiflorin, oxypaeoniflorin and benzoylpaeoniflorin isolatde from Chinese Paeony root. Tetrahedron, 1972,28:4309~4317
    [33] 郎蕙英,李守珍,梁晓天.中药赤芍化学成分的研究.药学学报,1983,18(7):551~552
    [34] Lang Huiying, Li Shouzhen, T. McCabe, et al. A new monoterpene glycoside of Paeonia lactiflora. Planta Medica. 1984,50 (6): 501~504
    [35] T.Hayashi, T. Shinbo, M. Shimizu, et al. Paeonilactone~A, ~B and ~C, new monoter~ penoids from Paeony radix. Tetrahedron Letters,1985,26 (31): 3669~3702
    [36] Shigetoshi Kadota, Satoshi Terashima, Purusotam Basnet, et al. Palbinone,a novel terpenoid from Paeonia albiflora; Potent inhibitory activity on 3α-Hydroxysteroid Dehydrogenase. Chem. Pharm. Bull. 1993,41(3): 487~490
    [37] M.Shimizu, T.Hayashi, N.Morita, et al. Paeoniflorigenone, a new monoterpene from paeony roots. Tetrahedron Letters. 1981,22 (32) :3069~3070
    [38] 张晓燕,高崇凯,王金辉等.白芍中的一种新的单萜苷.药学学报,2002,37(9):705~708
    [39] K. Kamiya, K. Yoshioka, Y. Saiki, et al. Triterpenoids and flavonoids from Paeonia lactiflora. Phytochemistry. 1997,44(1):141~144
    [40] M.Nishizaws, T.Yamagishi, G.Nonaka, et al. Structure of Gallotannins in Paeoniae Radix. Chem. Pharm. Bull. 1980,28 (9): 2850~2852
    [41] 陈海生,徐一新,廖时萱等.川赤芍化学成分的研究.第二军医大学学报,1994,15(1):72~73
    [42] 陈海生,廖时萱,洪志军.川赤芍化学成分的研究.中国药学杂志,1993,28(3):137~138
    [43] 梁君山,陈敏珠,徐叔云.白芍总苷对大鼠佐剂性关节炎及其免疫功能的影响.中国药理学与毒理学杂志,1990,4(4):258~261
    [44] 李俊,赵维忠,陈敏珠等.白芍总苷对大鼠腹腔巨噬细胞产生白三烯B_4的影响.中国药理学通报,1992,8(1):36~38
    [45] 菅谷爱子.芍药的药理及药效.国外医学中医中药分册,1992,14(5):15~18
    [46] 梁曼若,刘倩娴,辛达愉等.白芍药的抗炎免疫药理作用研究.新中医,1989,21(3):51
    [47] 彭招华,王朝虹,闵知大.芍药苷对小鼠学习记忆能力的影响.中药材,2000,23(8):482~483
    [48] 楚正绪,沈洪兴,竺青等.赤芍提取物改善学习记忆的作用.第二军医大学学报,1991,12(5):465~466
    [49] 倪建伟.芍药及其成分芍药苷对大鼠空间识别障碍的改善作用.国外医学中医中药分册,1993,15(2):40
    [50] 杨军,王静,冯平安等.赤芍总苷对小鼠脑缺血再灌注损伤的保护作用.中药材,2000,23(2):95-97
    [51] 刘超,王静,杨军.赤芍总苷活血化淤作用的研究.中药材,2000,23(9):557~560
    [52] 李金才.白芍食疗的回顾与展望.中药通报,1987,12(8):54~56
    [53] 黄泰康主编.常用中药成分与药理手册.北京:中国医药科技出版社.1994:1003~1015
    [54] 肖尚喜,张咏南,史百芬.白芍总苷促干扰素诱生及抗病毒作用的研究.中国药理学通报,1993,9(1):58~60
    [56] 戚心广,稻垣丰.丹参、赤芍对实验性肝损伤大鼠血浆纤维联接蛋白影响的研究.中国医科大学学报,1990,19(3):166~168
    [57] 周丹,韩大庆,刘静等.白芍、赤芍及卵叶芍药滋补强壮作用的研究探讨.吉林中医药,1993,(2):38
    [58] 丁俊杰.再谈白芍利小便.辽宁中医杂志,1990,14(3):40~41.
    [59] 张雪琴,汪伟民.白芍总苷对老年性疾病的治疗作用.中国药理学通报,1988,4(5):314~315
    [60] 徐丽华,文红梅.赤芍中芍药苷含量测定方法研究.中药材,2001,24(5):346~347
    [61] 钱亚男,刘信顺,张先芬.高效液相色谱法测定白芍总苷中芍药苷的含量.中草药,1995,26(7):349~350
    [62] 徐先祥,刘青云,俞能高等.双波长薄层扫描测定赤芍总甙中芍药甙含量.时珍国医国药,2001,12(1):25~26
    [63] 胡世林,刘岱,杨立新等.不同产地白芍中芍药甙和丹皮酚的含量测定及比较.中国中药杂志,1994,19(6):328~330
    [64] 寿国春,吕归宝.大孔树脂预分离~薄层光密度法测定消炎灵软胶囊中芍药苷的含量.中草药,1997,28(8):462~463
    [65] 中华人民共和国卫生部药典委员会.中国药典(一部).广东科技出版社,化学工业出版社.1995:142~143
    [66] 杨更亮,宋秀荣,张红医等.胶束毛细管电泳法测定牡丹皮及芍药中牡丹酚和芍药甙.分析化学研究报告,1999,27(1):1~4
    [67] 彭源贵,王实强,谢昭明.参茸白凤膏多指标成分定量分析.湖南中医药导报,1998,4(2):28~29
    [68] Weng Chung Lin, Wu Chang Chuang, Shuenn Jyi Sheu, et al. HPLC Separation of the Major Constituents in Paeoniae Radix. J. High Resoutionl Chromatogr. 1996,19 (9): 530~533
    [69] 金昌东,徐国钧,金蓉鸾等.反相HPLC法测定芍药根中甙类和苯甲酸的含量.中国药科大学学报,1989,20(3):139~142
    [70] 金昌东,徐国钧,金蓉鸾等.反相HPLC法测定不同采集期毛果芍药根中甙类和苯甲酸的量.中国药科大学学报,1991,22(5):279~281
    [71] 王慕邹,陈毓亨,相乐和彦等.常用中草药高效液相色谱分析.北京:科学出版社.1999,103~106
    [72] 张树花,董志立,熊运初.芍药中d~儿茶精、没食子酸及其乙酯的含量测定.中草药,1988,19(9):10
    [73] Susumu Honda, Kenji Suzuki, Mayumi Kataoka, et al. Analysis of the components of Paeonia radix by capillary zone electrophoresis. J Chromatogr. 1990,515:653~658
    [74] Hsin Kai Wu, Shuenn Jyi Sheu. Capillary electrophoretic determination of constituents of Paeoniae Radix. J. Chromatogr. A. 1996,753 (1):139~146
    [75] 张克荣,毕开顺.白芍HPLC指纹图谱相似度的分析.中国中药杂志,2004,29(4):381~382
    [76] 张克荣,毕开顺.赤芍HPLC指纹图谱的研究.中草药,2003,34(11):1048~1051
    [77] 谢培山,林巧玲.白芍总苷的薄层色谱指纹图谱实验研究.中药新药与临床药理,2004,15(3):171~193
    [78] 邹忠梅,徐丽珍,杨世林.芍药总苷高效液相色谱指纹图谱研究.药学学报,2003,38(1):46~49
    [79] 徐永群,黄吴,周群等.红外指纹图谱和聚类分析法在赤芍产域分类鉴别中的应用.分析化学研究报告,2003,3(1):5~9
    [80] 周红涛,胡世林,冯学峰等.不同产地赤芍的FTIR指纹图谱对比分析.中草药,2002,33(9):834~837
    [81] Lang H.Y., Li S.Z., T McCabe and J Clardy. A New Monoterpene Glycoside of Paeonia lactiflora. Planta Medica,1984,50,501~504
    [82] Stothers,J.B., Carbon~~(13)NMR spectroscopy. Academic Press. Inc.:New York, 1972
    [83] Toshihiro H, Motoo T, Yoshinori A. Piscicidal Sterol Acylglucosides from Edgewprthia Chrysantha. Photochemistry, 1991,30(9):71
    [84] 刘大有,王晓颖,夏忠庭。两头尖化学成分研究.长春中医学院学报,2003,19(3):137~138
    [85] 丛浦珠.光谱学在天然有机化学中的应用.北京:科学出版社,1987:88
    [86] Hisashi K, Noriko S, Akiko H, et al. Sterol Glucosides from Prunella Vulgaris. Photochemistry, 1990,29(7):2351~2355
    [87] 席荣英,白素平,孙祥德.卵叶三脉紫菀化学成分的研究.中草药,2003,34(9):785~786
    [88] 张晓燕,王金辉,李铣.白芍的化学成分研究.沈阳药科大学学报,2001,18(1):30~33
    [89] Kazou Y, Miyuki K, Osamu T. Carbon~~(13)NMR Spectral assignments of paeoniflorin homologues with the AID of spin-lattice relaxation time. Tetrahedron letters, 1976,44:3965~3968
    [90] Mizuo M, Masaya K and Chiemi M. A Penolic Glucoside from leaves of Salix chaenomeloides. J. Nat. Prod.,1991,54:1447~1450
    [91] 马广恩,申雅维,鲁学照.栾树抗菌有效成分的研究.中草药,1998,29(2):84~85
    [92] 杜玉虹,崔承彬,李文欣.方榄抗癌活性成分的研究—酚酸类细胞周期抑制剂.中国药物化学杂志,2003,13(6):320~323
    [93] 姚新生.天然药物化学(第二版).北京:人民卫生出版社,1994:258,263
    [94] M Nishizawa, T Yamagishi, G Nonaka, et al. Structures of gallotannins in paeoniae radix. Chem Pharm Bull, 1980,28(9):2850~2852
    [95] 张海玲,王嗣,陈若芸.大叶紫玉盘化学成分研究.药学学报,2002,37(2):124~127
    [96] R.Amold Weeks, R.H.Dobberstein and Norman R. Farnsworth,Isolation of Paenonol from Bathysa meridionalis. J. Nat. Prod., 1977,40:515~516
    [97] 马英丽,田振坤,郭桂彬.越桔叶中熊果苷的分离与鉴定.中草药,1995,26(9):472~485
    [98] 李肖玲,崔岚,祝德秋.没食子酸生物学作用的研究进展.中国药学,2004(7)10:667~669
    [99] 苏薇薇.中药指纹图谱质量控制技术.中药材,2001,24(5):370~371
    [100] 谢培山.中药色谱指纹图谱鉴别的概念、属性、技术与应用.中国中药杂志,2001,26(10):653~655
    [101] 江俊.中药质量评价的新方法-中药指纹图谱.湖北中医学院学报,2001,3(4):11~12
    [102] 相秉仁编.计算药学.北京:中国医药科技出版社.1990.296~298
    [103] 许禄.化学计量学方法.北京:科学出版社.1997,192~276
    [104] 王秀坤,李家实,阎玉凝.多指标综合分析在中药质量研究中的应用.中医学信息.1996,(5):26~28
    [105] 黄建明,郭济贤.模式识别及其在生药学领域中的应用.天然产物研究与开发,1997,9(3):90~96
    [106] 洪楠主编.SPSS for Windows统计分析教程.北京:电子工业出版社.1999,288~308
    [107] 北京希望电子出版社总策划,三味工作室编写.《SPSS V10.0 for Windows实用基础教程》.北京:希望电子出版社.2001,303~304
    [108] 陈念贻.模式识别优化技术及其应用.北京:中国石油化工出版社,1997,30~34
    [109] 黄海,罗友丰,陈志英等编著.SPSS 10.0 for Windows统计分析.北京:人民邮电出版社,2001,248
    [110] 卢纹岱主编.SPSS for Windows统计分析.北京:电子工业出版社.2000,381
    [111] 王龙星,肖红斌,梁鑫淼等.一种评价中药色谱指纹图谱相似性的新方法:向量夹角法.药学学报.2002,37(9):713~717.
    [112] 孟庆华,刘永锁,王健松等.色谱指纹图谱相似度的新算法及其应用.中成药,2003,25(1):4~8
    [113] 陈闽军,程翼宇,林瑞超.中药色谱指纹图谱相似性计算方法的研究.中成药,2002,24(12):905~908
    [114] 赵亚男,臧景岳.不同炮制品亳白芍的质量研究.基层中药杂志,2000,14(41:22~23
    [115] 周淑芬,唐声武.肠肛舒颗粒质量标准研究.中草药,1999,30(8):579~581
    [116] 杜志谦,王广强.芍药苷检测在中药质量控制中的应用.时珍国医国药,2002.13(9):554~555
    [117] 马斌,任冬梅.葛根汤口服液的薄层色谱鉴别.山东大学学报:医学版,2002.40(5):476~477
    [118] 薛纯盛,王盂良.小儿泻速停颗粒鉴别方法研究.中国药品标准,2002,3(005,).~32~34
    [119] 郭新华.冠心康颗粒的胶束薄层色谱鉴别.兰州医学院学报,2002,28(3):34~35
    [120] 刘玉珍,滕欧.双波长薄层扫描法测定前列消炎栓中芍药甙的含量.中成药,1993,19(6):328~330
    [121] 邓开英.桂枝合剂中芍药甙和甘草的薄层色谱鉴别.中国药业,2000,9(6):19
    [122] 兰亦青,卢宁.白芍中丹皮酚、芍药苷和苯甲酸的反相薄层色谱分析.天然产物研究与开发,2001.13(6):42~44
    [123] 王玺,马丽娟,潘卫东.蟾酥薄层色谱数据的化学模式识别,沈阳药科大学学报,1995,12(4):250~254
    [124] Lin G, Zhou KY, Zhao XG, et al. Detemination of hepatotoxic pyrrolizidine alkaloids by on~line high performance liquid chromatography mass spectromery with an electrospray interface. Rapid Commun Mass Spectrom, 1998,12(20): 1445~1456
    [125] Qiao SY, Guo JF, Zhao YM, et al. Rapid discovery and analysis of C~glycosylflavones from Stellaria media(L.)Cyr, by MS/MS.中国天然药物,2003,1(2):120~123
    [126] 李仪奎.中药药理实验方法学.上海:上海科学技术出版社,1989,300~304,564~566

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700