用户名: 密码: 验证码:
多智能体系统分布式跟踪控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,多智能体系统的分布式控制问题是控制理论中的一个热门研究课题,吸引了许多研究人员的关注,其在许多学科和领域,如计算机科学、生物学等有着广泛的应用背景。分布式趋同控制问题是多智能体系统研究的一个中心问题,其目标是设计分布式控制器以使得所有智能体的状态或输出信息达到一致。根据系统中是否带有领导者,此问题可以分为两类:无领导者的趋同(或一致)控制问题以及带有领导者的分布式跟踪控制问题。本文主要研究多智能体系统的分布式跟踪控制算法设计与分析,主要研究内容以及贡献包括以下几个方面。
     一、研究了二阶非线性多智能体系统的分布式跟踪控制问题。首先,在有向图下分别考虑了二阶积分器型和二阶严格反馈型非线性多智能体系统的分布式跟踪控制问题。同时,在领导者的控制输入等于零时,研究了系统的逆最优自适应分布式跟踪控制问题。其次,在无向图下考虑了带有扰动的二阶非线性多智能体系统的分布式跟踪控制问题,并分别设计了状态反馈控制器和动态输出反馈控制器。与已有文献相比,我们并不要求系统中的非线性函数满足全局Lipschitz条件,并且所设计的控制器不依赖于通信拓扑图对应拉普拉斯矩阵以及各个智能体系统自身的状态等。因此,所设计控制器为严格意义上的分布式控制。
     二、利用前面处理非线性多智能体系统的方法,研究了一般线性多智能体系统在有向图下的分布式跟踪控制问题。首先,研究了一类高阶积分器型的线性多智能体系统的分布式跟踪控制问题。与已有结果相比,所设计的控制器不需要利用通信拓扑图对应拉普拉斯矩阵的特征值信息。为此,所设计的控制器为非线性的而非常见的线性控制器。对于任意的含有一个以领导者对应节点为根节点的有向生成树的有向图,此控制器均可使得所有跟踪者状态渐近跟踪领导者状态。其次,利用线性系统理论,将一般线性多智能体系统的分布式跟踪控制问题分解为多个高阶积分器型多智能体系统的分布式跟踪控制问题,进而得到其分布式控制器。
     三、研究了一类输出反馈型非线性多智能体系统在有向图下的分布式跟踪控制问题。通过设计一类新颖的分布式观测器,并利用反步设计法,构造了一类只依赖于相对输出信息的分布式自适应控制器。所设计的控制器可在任意的含有一个以领导者对应节点为根节点的生成树的有向图下,解决系统的分布式跟踪控制问题。
     四、在无向通信拓扑图下,研究了一类带有扰动和不确定函数的非线性多智能体系统的半全局分布式跟踪控制问题。首先利用鲁棒误差符号积分方法,对一类高阶积分器型非线性多智能体系统进行了控制器设计。所设计的控制器可使得系统达到半全局鲁棒跟踪。其次,将此方法推广到了一类更为广泛的不确定非线性系统。与已有文献相比,所设计的控制器为连续型的,而非常见的为达到系统状态渐近趋于一致所设计的非连续型控制器。
     五、在Markov切换拓扑图下,研究了二阶异构非线性多智能体系统的分布式跟踪控制问题以及带有扰动的二阶非线性多智能体系统的分布式逆最优增益设计问题。由于Markov切换拓扑图带来的困难,相应的稳定性分析更具有挑战性,而不是平行的推广。为了更为清晰地讨论多智能体系统的分布式逆最优增益设计问题,首先讨论了Markov跳跃系统的逆最优增益设计问题,并给出此问题可解的两个充分条件。针对二阶非线性多智能体系统,利用两个充分条件设计了两类分布式控制器来解决系统的分布式逆最优增益设计问题。
During the past decade, as one of the central problems in control theory, the dis-tributed control of multi-agent systems has gained much attention due to its broad appli-cation backgrounds in many disciplines, such as computer sciences and biology. One main fundamental problem in multi-agent systems is the consensus problem that aims to design distributed control laws such that the states or outputs of all agents reach an agree-ment. It contains the consensus problem without a leader (i.e., leader-less consensus) and consensus problem with a leader, which is generally called leader-following consen-sus or distributed tracking problem. This dissertation focuses on the leader-following consensus problem of multi-agent systems. The main contents and contributions are summarized as follows.
     1. The leader-following consensus problem of second-order nonlinear multi-agent systems is investigated. First, the leader-following consensus problem of second-order integrator type nonlinear multi-agent systems and second-order strict-feedback nonlin-ear multi-agent systems are studied under directed communication topology. Under the assumption that the control input of the leader agent is equal to zero, the inverse opti-mal adaptive distributed tracking control problem is also studied. Second, the leader-following consensus problem of second-order nonlinear multi-agent systems with un-known but bounded disturbances is considered. Both state feedback and dynamic output feedback control laws are designed. Compared with the existence literatures, the nonlin-ear functions are not required to satisfy any globally Lipschitz growth or Lipschitz-like growth condition. Moreover, the adaptive consensus protocol is in a distributed fashion without using any global information such as the eigenvalues of the Laplacian matrix of underly topology and the agent's own state. Therefore, the proposed control laws are in a fully distributed fashion.
     2. According to the methods developed for nonlinear multi-agent systems, the leader-following consensus problem of general linear multi-agent systems is investi-gated. First, the leader-following consensus problem of a class of high-order integrator type multi-agent systems is studied. Compared with the existing works, the proposed control law is independent of the eigenvalues of the Laplacian matrix of underly topol-ogy. Due to the complexity caused by the directed graph, the proposed protocol is nonlinear rather than the conventional linear protocol. It is proved that, for any directed communication graph that contains a spanning tree with the root node being the leader agent, the proposed control law solves the leader-following consensus problem. Sec-ond, by using linear system theory, we convert the leader-following consensus problem of general linear multi-agent systems into the leader-following consensus problem of some high-order integrator type multi-agent systems.
     3. The leader-following consensus problem of a class of nonlinear multi-agent systems in strict feedback form is studied. By introducing a novel distributed observer and employing the backstepping methodology, a distributed adaptive nonlinear control law is constructed using the relative output information between neighboring agents. For any directed communication graph that contains a spanning tree with the root node being the leader agent, the proposed control law solves the leader-following consensus problem.
     4. The robust leader-following consensus problem of a class of multi-agent sys-tems with unknown nonlinear dynamics and unknown but bounded disturbances under undirected communication topology is studied. First, by employing the robust inte-gral of the sign of the error technique, a distributed control law is designed for a class of high-order integrator type nonlinear multi-agent systems. The proposed protocol achieves semiglobally leader-following consensus. Second, the approach is extended to study a class of more general uncertain multi-agent systems. It is worth pointing out that the proposed distributed control law is continuous rather than discontinuous.
     5. The leader-following consensus problem of a class of heterogeneous second-order nonlinear multi-agent systems and the inverse optimal gain assignment distribut-ed control of a class of second-order multi-agent systems under Markovian switching topology are investigated. It is more difficult to design distributed control laws due to the complexity caused by Markovian switching topology. To study the inverse optimal gain assignment distributed control problem of multi-agent systems, the inverse opti-mal gain assignment problem of Markovian jump nonlinear systems is introduced. Two sufficient conditions are given for the solvability of this problem. Based on those two sufficient conditions, two distributed control laws are designed, which solve the inverse optimal gain assignment distributed control problem of multi-agent systems.
引文
[1]M. DeGroot, Reaching a consensus. Journal of the American Statistical Association, vol.69, no.345, pp. 118-121,1974.
    [2]W. Ren, R. Beard, Distributed Consensus in Multi-vehicle Cooperative Control:Theory and Applications. London:Springer,2008.
    [3]C. Reynolds, Flocks, herds and schools:a distributed behavioral model. Computer Graphics, vol.21, no.4, pp.25-34,1987.
    [4]T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Schochet, Novel type of phase transitions in a system of self-driven particles. Physical Review Letters, vol.75, no.6, pp.1226-1229,1995.
    [5]A. Jadbabaie, J. Lin, A. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, vol.48, no.6, pp.988-1001,2003.
    [6]R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topologies and time-delays. IEEE Transactions on Automatic Control, vol.49, no.9, pp.1520-1533,2004.
    [7]W. Ren, E. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, vol.50, no.5, pp.655-661,2005.
    [8]L. Cao, Y. Zhang, Q. Zhou, A necessary and sufficient condition for consensus of continuous-time agents over undirected time-varying networks. IEEE Transactions on Automatic Control, vol.56, no.8, pp.1915-1920, 2011.
    [9]A. Tahbaz-Salehi, A. Jadbabaie, A necessary and sufficient condition for consensus over random networks. IEEE Transactions on Automatic Control, vol.53, no.3, pp.791-795,2008.
    [10]S. Roy, A. Saberi, Static decentralized control of a single-integrator network with Markovian sensing topol-ogy. Automatica, vol.41, no.11, pp.1867-1877,2005.
    [11]I. Matei, N. Martins, J. Baras, Almost sure convergence to consensus in Markovian random graphs. Proceed-ings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp.3535-3540,2008.
    [12]I. Matei, N. Martins, J. Baras, Consensus problems with directed Markovian communication patterns. Pro-ceedings of American Control Conference, St. Louis, MO. USA, pp.1298-1303,2009.
    [13]D. Bauso, L. Giarre, R. Pesenti, Consensus for networks with unknown but bounded disturbances. SIAM Journal on Control and Optimization, vol.48, no.3, pp.1756-1770,2009.
    [14]A. Garulli, A. Giannitrapani, Analysis of consensus protocols with bounded measurement errors. Systems & Control Letters, vol.60, no.1, pp.44-52,2011.
    [15]M. Huang, J. Manton, Coordination and Consensus of Networked Agents with Noisy Measurements:s-tochastic algorithms and asymptotic behavior. SIAM Journal on Control and Optimization, vol.48, no.1, pp. 134-161,2009.
    [16]T. Li, J. Zhang, Mean square average-consensus under measurement noises and fixed topologies:Necessary and sufficient conditions. Automatica, vol.45, no.8, pp.1929-1936,2009.
    [17]T. Li, J. Zhang, Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Transactions on Automatic Control, vol.55, no.9, pp.2043-2057,2010.
    [18]S. Liu, L. Xie, H. Zhang, Distributed consensus for multi-agent systems with delays and noises in transmis-sion channels. Automatica, vol.47, no.5, pp.920-934,2011.
    [19]W. Ren, Multi-vehicle consensus with a time-varying reference state. Systems & Control Letters, vol.56, no. 7, pp.474-483,2007.
    [20]W. Ren, Consensus tracking under directed interaction topologies:algorithms and experiments. IEEE Trans-actions on Control Systems Technology, vol.18, no.1, pp.230-237,2010.
    [21]Y. Hong, J. Hu, L. Gao, Tracking control for multi-agent consensus with an active leader and variable topol-ogy. Automatica, vol.42, no.7, pp.1177-1182,2006.
    [22]F. Chen, Y. Cao, W. Ren, Distributed average tracking of multiple time-varying signals with bounded deriva-tives. IEEE Transactions on Automatic Control, vol.57, no.12, pp.3169-3174,2012.
    [23]Y. Cao, W. Ren, Distributed coordinated tracking with reduced interaction via a variable stricture approach. IEEE Transactions on Automatic Control, vol.57, no.1, pp.33-48,2012.
    [24]J. Hu, G. Feng, Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica, vol.46, no.8, pp.1382-1387,2010.
    [25]Y. Cao, W. Ren, Y. Li, Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication. Automatica, vol.45, no.5, pp.1299-1305,2009.
    [26]Z. Tang, T. Huang, J. Shao, J. Hu, Leader-following consensus for multi-agent systems via sampled-data control. IET Control Theory & Applications, vol.5, no.14, pp.1658-1665,2011.
    [27]W. Ren, E. Atkins, Distributed multi-vehicle coordinated control via local information exchange. Interna-tionalJournal of Robust and Nonlinear Control, vol.17, no.10-11, pp.1002-1033,2007.
    [28]W. Ren, On consensus algorithms for double-integrator dynamics. IEEE Transactions on Automatic Control, vol.53, no.6, pp.1503-1509,2008.
    [29]Y. Hong, G. Chen, L. Bushnell, Distributed observers design for leader-following control of multi-agent networks. Automatica, vol.44, no.3, pp.846-850,2008.
    [30]J. Hu, Y. Hong, Leader-following coordination of multi-agent systems with coupling time delays. Physica A, vol.374, no.2, pp.853-863,2007.
    [31]W. Zhu, D. Cheng, Leader-following consensus of second-order agents with multiple time-varying delays. Automatica, vol.46, no.12, pp.1994-1999,2010.
    [32]G. Chen, F. Lewis, Leader-following control for multiple inertial agents. InternationalJournal of Robust and Nonlinear Control, vol.21, no.8, pp.925-942,2011.
    [33]X. Yang, J. Wang, Y. Tan, Robustness analysis of leader-follower consensus for multi-agent systems char-acterized by double integrators. Systems & Control Letters, vol.61, no.11, pp.1103-1115,2012.
    [34]L. Cheng, Z. Hou, M. Tan, X. Wang, Necessary and sufficient conditions for consensus of double-integrator multi-agent systems with measurement noises. IEEE Transactions on Automatic Control, vol.56, no.8, pp. 1958-1963,2011.
    [35]F. Borrelli, T. Keviczky, Distributed LQR design for identical dynamically decoupled systems. IEEE Trans-actions on Automatic Control, vol.53, no.8, pp.1901-1912,2008.
    [36]S. Tuma, LQR-based coupling gain for synchronization of linear systems. Available at: http://arxiv.org/abs/0801.3390.
    [37]Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multi-agent systems and synchronization of complex networks:a unified viewpoint. IEEE Transactions on Circuits and Systems-Ⅰ:Regular Papers, vol.57, no. 1, pp.213-224.2010.
    [38]H. Zhang, F. Lewis, A. Das, Optimal design for synchronization of cooperative systems:state feedback, observer and output feedback. IEEE Transactions on Automatic Control, vol.56, no.8, pp.1948-1952,2011.
    [39]T. Yang, S. Roy, Y. Wan, A. Saberi, Constructing consensus controllers for networks with identical general linear agents. International Journal of Robust and Nonlinear Control, vol.21, no.11, pp.1237-1256,2011.
    [40]W. Ni, D. Cheng, Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems & Control Letters, vol.59, no.3, pp.209-217,2010.
    [41]L. Ding, Q. Han, G. Guo, Network-based leader-following consensus for distributed multi-agent systems. Automatica, vol.49, no.7, pp.2281-2286,2013.
    [42]G. Wen, G. Hu, W. Yu, J. Cao, G. Chen, Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs. Systems & Control Letters, vol.62, no.12, pp.1151-1158,2013.
    [43]Z. Meng, Z. Zhao, Z. Lin, On global leader-following consensus of identical linear dynamic systems subject to actuator saturation Systems & Control Letters, vol.62, no.2, pp.132-142,2013.
    [44]Q. Wang, C. Yu, H. Gao, Semiglobal synchronization of multiple generic linear agents with input saturation. International Journal of Robust and Nonlinear Control, http://dx.doi.org/10.1002/rnc.3053.
    [45]Y. Guan, Z. Ji, L. Zhang, L. Wang, Decentralized stabilizability of multi-agent systems under fixed and switching topologies. Systems & Control Letters, vol.62, no.5, pp.438-446,2013.
    [46]H. Kim, H. Shim, J. Back, J. Seo, Consensus of output-coupled linear multi-agent systems under fast switch-ing networks:averaging approach. Automatica, vol.49, no.1, pp.267-272,2013.
    [47]Z. Wang, J. Xu, H. Zhang, Consensusability of multi-agent systems with time-varying communication delay. Systems & Control Letters, vol.65, no.1, pp.37-42,2014.
    [48]Q. Wang, C. Yu, H. Gao, Synchronization of identical linear dynamic systems subject to input saturation. Systems & Control Letters, vol.64, no.1, pp.107-113,2014.
    [49]M. Valcher, P. Misra, On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions. Systems & Control Letters, vol.66, no.1, pp.94-103,2014.
    [50]K. You, L. Xie, Network topology and communication data rate for consensusability of discrete-time multi-agent systems. IEEE Transactions on Automatic Control, vol.56, no.10, pp.2262-2275,2011.
    [51]G. Gu, L. Marinovici, F. Lewis, Consensusability of discrete-time dynamic multiagent systems. IEEE Trans-actions on Automatic Control, vol.57, no.8, pp.2085-2089,2012.
    [52]K. Hengster-Movric, K. You, F. Lewis, L. Xie, Synchronization of discrete-time multi-agent systems on graphs using Riccati design. Automatica, vol.49, no.2, pp.414-423,2013.
    [53]T, Yang, Z. Meng, D. Dimarogonas, K. Johansson, Global consensus for discrete-time multi-agent systems with input saturation constraints. Autonatica, vol.50, no.2, pp.499-506,2014.
    [54]P. Wieland, R. Sepulchre, F. Allgower, An internal model principle is necessary and sufficient for linear output synchronization. Automatica, vol.47, no.5, pp.1068-1074,2011.
    [55]J. Lunze, Synchronization of heterogeneous agents. IEEE Transactions on Automatic Control, vol.57, no. 11, pp.2885-2890,2012.
    [56]H. Grip, T. Yang, A. Saberi, A. Stoorvogel, Output synchronization for heterogeneous networks of non-introspective agents. Automatica, vol.48, no.10, pp.2444-2453,2012.
    [57]T. Tang, A. Stoorvogel, H. Grip, A. Saberi, Semi-global regulation of output synchronization for heteroge-neous networks of non-introspective, invertible agents subject to actuator saturation. International Journal of Robust and Nonlinear Control, vol.24, no.3, pp.548-566,2014.
    [58]T. Yang, A. Saberi, A. Stoocvogel, H. Grip, Output synchronization for heterogeneous networks of introspec-tive right-invertible agents. International Journal of Robust and Nonlinear Control, DOI:10.1002/rnc.2965.
    [59]X. Wang, A. Saberi, T. Yang, Synchronization in heterogeneous networks of discrete-time introspective right-invertible agents. International Journal of Robust and Nonlinear Control, DOI:10.1002/rnc.3054.
    [60]S. Tuna, Conditions for synchronizability in arrays of coupled linear systems. IEEE Transactions on Auto-matic Control, vol.54, no.10, pp.2416-2420,2009.
    [61]L. Scardovi, R. Sepulchre, Synchronization in networks of identical linear systems. Automatica, vol.45, no. 11, pp.2557-2562,2009.
    [62]Z. Li, W. Ren, X. Liu, M. Fu, Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Transactions on Automatic Control, vol.58, no.7, pp. 1786-1791,2013.
    [63]Z. Li, W. Ren, X. Liu, L. Xie, Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica, vol.49, no.7, pp.1986-1995,2013.
    [64]Z. Li, X. Liu, W. Ren, L. Xie, Distributed tracking control for linear multiagent systems with a leader of bounded unknown input. IEEE Transactions on Automatic Control, vol.58, no.2, pp.518-523,2013.
    [65]H. Khalil, Nonlinear Systems (3rd ed.). New Jersey:Prentice-Hall,2002.
    [66]M. Arcak, Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, vol. 52, no.8, pp.1380-1390,2007.
    [67]U. Mtinz, A. Papachristodoulou, F. Allgower, Robust consensus controller design for nonlinear relative de-gree two multi-agent systems with communication constraints. IEEE Transactions on Automatic Control, vol.56, no.1, pp.145-151,2011.
    [68]X. Wang, H. Ji, Leader-follower consensus for a class of nonlinear multi-agent systems. InternationalJournal of Control, Automation and Systems, vol.10, no.1, pp.27-35,2012.
    [69]Y. Zhao, Z. Li, Z. Duan, Distributed consensus tracking of multi-agent systems with nonlinear dynamics under a reference leader. International Journal of Control, vol.86, no.10, pp.1859-1869,2013.
    [70]Y. Zhao, Z. Duan, G. Wen, G. Chen, Robust consensus tracking of multi-agent systems with uncertain lure-type non-linear dynamics.1ET Control Theory & Applications, vol.7, no.9, pp.1249-1260,2013.
    [71]H. Su, G. Chen, X. Wang, Z. Lin, Adaptive second-order consensus of networked mobile agents with non-linear dynamics. Automatica, vol.47, no.2, pp.368-375,2011.
    [72]Y. Hu, H. Su, J. Lam, Adaptive consensus with a virtual leader of multiple agents governed by locally Lips-chitz nonlinearity. International Journal of Robust and Nonlinear Control, vol.23, no.9, pp.978-990,2013.
    [73]W. Yu, G. Chen, M. Cao, Consensus in directed networks of agents with nonlinear dynamics. IEEE Trans-actions on Automatic Control, vol.56, no.6, pp.1436-1441,2011.
    [74]W. Yu, G. Chen, M. Cao, J. Kurths, Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 40, no.3, pp.881-891,2010.
    [75]Q. Song, J. Cao, W. Yu, Second-order leader-following consensus of nonlinear multi-agent systems via pin-ning control. System & Control Letters, vol.59, no.9, pp.553-562,2010.
    [76]K. Liu, G. Xie, W. Ren, L. Wang, Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies. Systems & Control Letters, Vol.62, no.2, pp.152-162,2013.
    [77]W. Yu, W. Ren, W. Zhen, G. Chen, J. Lu, Distributed control gains design for consensus in multi-agent systems with second-order nonlinear systems. Automatica, vol.49, no.7, pp.2107-2115,2013.
    [78]J. Mei, W. Ren, G. Ma, Distributed coordination for second-order multi-agent systems with nonlinear dy-namics using only relative position measurements. Automatica, vol.49, no.5, pp.1419-1427,2013.
    [79]G. Hu, Robust consensus tracking for an integrator-type multi-agent system with disturbances and unmod-elled dynamics. International Journal of Control, vol.84, no.1, pp.1-8,2011.
    [80]B. Xian, D. Dawson, M. de Queiroz, J. Chen, A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Transactions on Automatic Control, vol.49, no.7, pp.1206-1211,2004.
    [81]G. Hu, Robust consensus tracking of a class of second-order multi-agent dynamic systems. Systems & Control Letters, vol.61, no.1, pp.134-142,2012.
    [82]Z. Meng, Z. Lin, W. Ren, Robust cooperative tracking for multiple non-identical second-order nonlinear systems. Automatica, vol.49, no.8, pp.2363-2372,2013.
    [83]W. Dong, Adaptive consensus seeking of multiple nonlinear systems. International Journal of Adaptive Con-trol and Signal Processing, vol.26, no.5, pp.419-434,2012.
    [84]K. Listmann, C. Woolsey, J. Adamy, Passivity-based coordination of multi-agent systems:a backstepping approach. Proceedings of the European Control Conference, pp.2450-2455,2009.
    [85]S. Yoo, Distributed adaptive consensus tracking of a class of networked non-linear systems with parametric uncertainties. IET Control Theory & Applications, vol.7, no.7, pp.1049-1057,2013.
    [86]T. Liu, Z. Jiang, Distributed output-feedback control of nonlinear multi-agent systems. IEEE Transactions on Automatic Control, vol.58, no.11, pp.2912-2917,2013.
    [87]A. Das, F. Lewis, Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica, vol.46, no.12, pp.2014-2021,2010.
    [88]A. Das, F. Lewis, Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. International Journal of Robust and Nonlinear Control, vol.21, no.13, pp.1509-1524,2011.
    [89]H. Zhang, F. Lewis, Adaptive cooperative tracking control of high-order nonlinear systems with unknown dynamics. Automatica, vol.48, no.7, pp.1432-1439,2012.
    [90]S. Yoo, Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a di-rected graph. IEEE Transactions on Neural Networks and Learning Systems, vol.24, no.4, pp.666-672, 2013.
    [91]J. Mei, W. Ren, G. Ma, Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems. IEEE Transactions on Automatic Control, vol.56, no.6, pp.1415-1421,2011.
    [92]G. Chen, F. Lewis, Distributed adaptive tracking control for synchronization of unknown networked La-grange systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vo.41, no.3, pp.805-816,2011.
    [93]H. Wang, Passivity based synchronization for networked robotic systems with uncertain kinematics and dy-namics. Automatica, vol.49, no.3, pp.755-761,2013.
    [94]Y. Liu, H. Min, S. Wang, Z. Liu, S. Liao, Distributed adaptive consensus for multiple mechanical systems with switching topologies and time-varying delay. Systems & Control Letters, vol.64, no.1, pp.119-126, 2014.
    [95]J. Fax, R. Murray, Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, vol.49, no.9, pp.1465-1476,2004.
    [96]J. Wang, H. Wu, Leader-following formation control of multi-agent systems under fixed and switching topologies. International Journal of Control, vol.85, no.6, pp.695-705,2012.
    [97]H. Min, S. Wang, F. Sun, Z. Gao, J. Zhang, Decentralized adaptive attitude synchronization of spacecraft formation. Systems & Control Letters, vol.61, no.1, pp.238-246,2012.
    [98]K. Oh, H. Ahn, Formation control of mobile agents based on distributed position estimation. IEEE Transac-tions on Automatic Control, vol.58, no.3, pp.737-742,2013.
    [99]X. Chen, P. Yan, A. Serrani, On input-to-state stability-based design for leader/follower formation control with measurement delays. International Journal of Robust and Nonlinear Control, vol.23, no.13, pp.1433-1455,2013.
    [100]T. Liu, Z. Jiang, Distributed formation control of nonholonomic mobile robots without global position mea-surements. Automatica, vol.49, no.2, pp.592-600,2013.
    [101]F. He, Y. Wang, Y. Yao, L. Wang, W. Chen, Distributed formation control of mobile autonomous agents using relative position measurements. IET Control Theory & Applications, vol.7, no.11, pp.1540-1552,2013.
    [102]M. Ou, H. Du, S. Li, Finite-time formation control of multiple nonholonomic mobile robots. International Journal of Robust and Nonlinear Control, vol.24, no.1, pp.140-165,2014.
    [103]R. Olfati-Saber, Flocking for multi-agent dynamic systems:algorithms and theory. IEEE Transactions on Automatic Control, vol.51, no.3, pp.401-420,2006.
    [104]H. Su, X. Wang, Z. Lin, Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, vol.54, no.2, pp.293-307,2009.
    [105]W. Yu, G. Chen, M. Cao, Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities. Systems & Control Letters, vol.59, no.9, pp.543-552,2010.
    [106]W. Guo, J. Lu, S. Chen, X. Yu, Second-order tracking control for leader-follower multi-agent flocking in directed graphs with switching topology. Systems & Control Letters, vol.60, no.12, pp.1051-1058,2011.
    [107]G. Wen, Z. Duan, Z. Li, G. Chen, Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements. International Journal of Robust and Nonlinear Control, vol.22, no.16, pp.1790-1805,2012.
    [108]J. Zhou, X. Wu, W. Yu, M. Small, J. Lu, Flocking of multi-agent dynamical systems based on pseudo-leader mechanism. Systems & Control Letters, vol.61, no.1, pp.195-202,2012.
    [109]H. Wang, Flocking of networked uncertain Euler-Lagrange systems on directed graphs. Automatica, vol.49, no.9, pp.2774-2779,2013.
    [110]H. Liu, G. Xie, L. Wang, Containment of linear multi-agent systems under general interaction topologies. Systems & Control Letters, vol.61, no.4, pp.528-534,2012.
    [111]J. Li, W. Ren, S. Xu, Distributed containment control with multiple dynamic leaders for double-integrator dynamics using only position measurements. IEEE Transactions on Automatic Control, vol.57, no.6, pp. 1553-1559,2012.
    [112]J. Mei, W. Ren, G. Ma, Distributed containment control for Lagrangian networks with parametric uncertain-ties under a directed graph. Automatica, vol.48, no.4, pp.653-659,2012.
    [113]K. Liu, G. Xie, L. Wang, Containment control for second-order multi-agent systems with time-varying delays. Systems & Control Letters, vol.67, no.1, pp.24-31,2014.
    [114]P. Wang, Y. Jia, Distributed containment control of second-order multi-agent systems with inherent non-linear dynamics. IET Control Theory & Applications, vol.8, no.4, pp.277-287,2014.
    [115]Y. Zheng, L. Wang, Containment control of heterogeneous multi-agent systems. International Journal of Control, vol.87, no.1, pp.1-8,2014.
    [116]B. Liu, T. Chu, L. Wang, G. Xie, Controllability of a leader-follower dynamic network with switching topol-ogy. IEEE Transactions on Automatic Control, vol.53, no.4, pp.1009-1014,2008.
    [117]A. Rahmani, M. Ji, M. Mesbahi, M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective. SIAM Journal on Control and Optimization, vol.48, no.1, pp.162-186,2009.
    [118]G. Parlangeli, G. Notarstefano, On the reachability and observability of path and cycle graphs. IEEE Trans-actions on Automatic Control, vol.57, no.3, pp.743-748,2012.
    [119]M. Valcher, P. Misra, On the controllability and stabilizability of non-homogeneous multi-agent dynamical systems. Systems & Control Letters, vol.61, no.7, pp.780-787,2012.
    [120]X. Liu, H. Lin, B. Chen, Graph-theoretic characterisations of structural controllability for multi-agent system with switching topology. International Journal of Control, vol.86, no.2, pp.222-231,2013.
    [121]S. Sundaram, C. Hadjicostis, Structural controllability and observerbility of linear systems over finite fields with applications to multi-agent systems. IEEE Transactions on Automatic Control, vol.58, no.1, pp.60-73, 2013.
    [122]P. Lin, Y. Jia, L. Li, Distributed robust H∞ consensus control in directed networks of agents with time-delay. Systems & Control Letters, vol.57, no.8, pp.643-653,2008.
    [123]Y. Liu, Y. Jia,H∞ consensus control of multi-agent systems with switching topology:a dynamic output feedback protocol. International Journal of Control, vol.83, no.3, pp.527-537,2010.
    [124]Z. Li, Z. Duan, G. Chen, On H∞ and H2 performance regions of multi-agent systems. Automatica, vol.47, no.4, pp.797-803,2011.
    [125]G. Wen, Z. Duan, Z. Li, G. Chen, Consensus and its L2-gain performance of multi-agent systems with intermittent information transmissions. International Journal of Control, vol.85, no.4, pp.384-396,2012.
    [126]Y. Zhao, Z. Duan, G. Wen, G. Chen, Distributed H∞ consensus of multi-agent systems:a performance region-based approach. International Journal of Control, vol.85, no.3, pp.332-341,2012.
    [127]L. Wang, F. Xiao, Finite-time consensus problems for networks of dynamic agents. IEEE Transactions on Automatic Control, vol.55, no.4, pp.950-955,2010.
    [128]G. Chen, F. Lewis, L. Xie, Finite-time distributed consensus via binary control protocols. Automatica, vol. 47, no.9, pp.1962-1968,2011.
    [129]Y. Zheng, W. Chen, L. Wang, Finite-time consensus for stochastic multi-agent systems. International Journal of Control, vol.84, no.10, pp.1644-1652,2011.
    [130]S. Li, H. Du, X. Lin, Finite-time consensus algorithm for multi-agent systems with double-integrator dynam-ics. Automatica, vol.47, no.8, pp.1706-1712,2011.
    [131]F. Sun, Z. Guan, Finite-time consensus leader-following second-order multi-agent system. International Journal of Systems Science, ahead-of print, pp.1-12,2011.
    [132]Y. Cao, W. Ren, Finite-time consensus for second-order systems with unknown inherent nonlinear dynamics under an undirected switching graph. Proceedings of American Control Conference, Montreal, Canada, pp. 26-31,2012.
    [133]Y. Zhao, Z. Duan, G. Wen, Y. Zhang, Distributed finite-time tracking control for multi-agent systems:An observer-based approach. Systems & Control Letters, vol.62, no.1, pp.22-28,2013.
    [134]L. Xiao, S. Boyd, S. Kim, Distributed average consensus with least-mean-square deviation. Journal of Par-allel and Distributed Computing, vol.67, no.1, pp.33-46,2007.
    [135]Y. Kim, D. Gu, I. Postlethwaite, Spectral radius minimization for optimal average consensus and output feedback stabilization. Automatica, vol.45, no.6, pp.1379-1386,2009.
    [136]Z. Qu, M. Simaan, Inverse optimality of cooperative control for networked systems. Joint Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, December, pp.1651-1658,2009.
    [137]D. Mao, Y, He, X. Ye, M. Yu, Inverse optimal stabilization of cooperative control in networked multi-agent systems. Proceedings of the 23rd Chinese Control and Decision Conference, pp.1031-1037,2011.
    [138]Y. Cao, W. Ren, Optimal linear-consensus algorithms:an LQR perspective. IEEE Transactions on systems, Man, and Cybernetics—Part B:Cybernetics, vol.40, no.3, pp.819-830,2010.
    [139]M. Rafiee, A. Bayen, Optimal network topology design in multi-agent systems for efficient average consen-sus. Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, pp.3877-3883, 2010.
    [140]Q. Hui, Optimal distributed linear averaging. Automatica, vol.47, no.12, pp.2713-2719,2011.
    [141]X. Wang, Y. Hong, J. Huang, Z. Jiang, A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Transactions on Automatic Control, vol.55, no.12, pp.2891-2895, 2010.
    [142]H. Kim, H. Shim, J. Seo, Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Transactions on Automatic Control, vol.56, no.1, pp.200-206,2011.
    [143]Y. Su, J. Huang, Cooperative output regulation of linear multi-agent systems. IEEE Transactions on Auto-matic Control, vol.57, no.4, pp.1062-1066,2012.
    [144]Y. Su, J. Huang, Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader. Systems & Control Letters, vol.62, no.6, pp.461-467,2013.
    [145]Z. Ding, Consensus output regulation of a class of heterogeneous nonlinear systems. IEEE Transactions on Automatic Control, vol.58, no.10, pp.2648-2653,2013.
    [146]G. Miao, S. Xu, B. Zhang, Y. Zou, Mean square consensus of second-order multi-agent systems under Markov switching topologies. IMA Journal of Methematical Control and Information, DOI:10.1093/imamci/dns036, 2013.
    [147]M. Krstic, Z. Li, Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Transactions on Automatic Control,vol.43, no.3, pp.336-350,1998.
    [148]M. Krstid, H. Deng, Stabilization of Nonlinear Uncertain Systems. London:Springer-Verlag,1998.
    [149]J. Huang, Nonlinear Output Regulation:Theory and Applications. Philadelphia:SIAM,2004.
    [150]W. Lin, C. Qian, Adaptive control of nonlinearly parameterized systems:the smooth feedback case. IEEE Transactions on Automatic Control, vol.47, no.8, pp.1249-1266,2007.
    [151]X. Mao, C. Cheng. Stochastic Differential Equations with Markovian Switching. London:Imperial College Press,2006.
    [152]R. Sepulchre, M. Jankovic, P. Kokotovic, Constructive Nonlinear Control. New York:Springer-Verlag,1997.
    [153]Z. Li, M. Krstid, Optimal design of adaptive tracking controllers for nonlinear systems. Automatica, vol.33, no.8, pp.1459-1473,1997.
    [154]H. Khalil, Adaptive output feedback control of nonlinear systems represented by input-out models. IEEE Transactions on Automatic Control, vol.41, no.2, pp.177-188,1996.
    [155]B. Xian, M. de Queiroz, D. Dawson, M. McIntyre, A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems. Automatica, vol.40, no.4, pp.695-700,2004.
    [156]H. Zhao, W. Ren, D. Yuan, J. Chen, Distributed discrete-time coordinated tracking with Markovian switching topologies. Systems & Control Letters, vol.61, no.7, pp.766-772,2012.
    [157]Y. Zhang, Y. Tian, Consentability and protocol design of multi-agent systems with stochastic switching topology. Automatica, vol.45, no.5, pp.1195-1201,2009.
    [158]G. Miao, S. Xu, Y. Zou, Necessary and sufficient conditions for mean square consensus under Markov switching topologies. International Journal of Systems Science, vol.44, no.1, pp.178-186,2013.
    [159]D. Xie, Y. Cheng, Bounded consensus tracking for sampled-data second-order multi-agent systems with fixed and Markovian switching topology. International Journal of Robust and Nonlinear Control, DOI: 10.1002/rnc.3085,2013.
    [160]K. You, Z. Li, L. Xie, Consensus condition for linear multi-agent systems over randomly switching topolo-gies. Automatica, vol.49, no.10, pp.3125-3132,2013.
    [161]P. Zhao, Y. Kang, D. Zhai, On input-to-state stability of stochastic nonlinear systems with Markovian jumping parameters. International Journal of Control, vol.85, no.4, pp.343-349,2012.
    [162]E. Sontag, Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, vol. 34, no.4, pp.435-443,1989.
    [163]C. Chen, Linear System Theory and Design. New York:Holt, Rinehart and Winston,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700