用户名: 密码: 验证码:
竖井地基固结解析理论与有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在含水量高、压缩性高、抗剪强度低的软土地基上设置竖井并结合堆载或真空负压,能加速地基排水固结、提高土体强度、减少构筑物工后沉降和差异沉降。该技术施工简便、效果可靠且造价低廉,已在公路、铁路、港口、机场等大型基础设施建设中广泛应用。为了合理预测竖井地基的固结发展,学者们在竖井固结解析解和数值解方面开展了大量研究且已取得大量成果。但同时应看到,目前各种计算方法得到的理论预测值与实测值还有一定差距,对可能的工后沉降和沉降差预测不准。另外,近些年来出现的竖井处理深度加大和工期要求加紧等情况,均给竖井地基的设计计算方法提出了挑战。为此,本文从解析理论和有限元法两方面开展了竖井地基固结问题的研究。
     (1)首先对以往研究成果从理论方法和参数取值两方面进行了综述,结果发现:目前被国内外广泛接受的单井地基径向固结度简化计算公式均可表述为一个统一的公式,不同方法在涂抹效应和井阻效应的考虑上略有差异;单井固结理论近些年的新进展主要包括非线性理论、非达西渗流理论、考虑涂抹区渗透性渐变理论以及针对真空预压法的固结理论等;竖井地基固结分析参数取值方面已经开展了大量研究,但得到的参数取值范围较大,这将给计算结果的可靠性带来影响。
     (2)通过对现有塑料排水板通水量特性研究进行综述发现,排水板通水量一方面随侧向压力增大而减小,另一方面在地基固结过程中会因为排水板的弯折和淤积堵塞等影响而逐渐减小。基于这一认识,假定通水量随地基深度线性减小、随时间呈指数函数减小,获得了描述井阻空间属性和时间属性的变井阻效应数学模型。然后,仿效Hansbo和谢康和竖井固结经典理论推导方法,建立了瞬时加荷条件下考虑变井阻效应的固结理论。计算分析表明:相对于采用短期通水量恒定值进行计算的竖井固结理论,变井阻固结理论得到的固结速率减缓;当考虑通水量随地基深度减小时,地基深部土层的超静孔压消散变得更加缓慢;当竖井渗透性减小到与井周土体相当,此时竖井不再起排水通道作用,径向固结将停止。另外,将变井阻固结理论应用于室内大型模型试验和工程实例分析,结果发现变井阻理论模拟的结果较传统理论预测结果与实际情况更为接近。
     (3)通过引入Hansbo非达西渗流假定和变渗透系数假定,得到渗流双重非线性模型。然后,在Biot固结理论研究基础上,应用加权残数法推导了考虑该模型的有限元方程,并自编了相应的计算程序。通过开展参数影响分析得到:考虑渗透系数随时间减小后,地基固结速率减缓趋势明显;增大非达西渗流参数m或il,固结发展速率减缓,但该影响在10%以内;考虑非达西渗流后,地基固结速率随荷载减小而减缓。
     (4)进一步引入土体分段线性e-lgp模型,得到了土体压缩非线性和渗流双重非线性模型。然后,结合宁波土样固结渗流联合测试试验,介绍了该模型的参数获取过程。在给出相应的控制方程和有限元方程基础之上,详细阐述了非线性有限元法编程实现过程。最后,通过算例验证了程序的可靠性,并对考虑土体多重非线性模型时竖井地基的固结性状进行了较为详细的分析,获得了一些有益认识。
     (5)对目前广泛应用的竖井地基平面应变二维等效方法进行了评述。然后,以成层土竖井地基算例和未打穿竖井地基算例对六种二维等效方法进行了考量,结果发现:地基土成层性对二维等效方法计算结果的可靠性有较显著影响,而竖井未打穿情况的影响不明显;在本文算例参数取值情况下,各种方法的误差情况差别较大,Chai(2001)方法和Tran(2008)方法得到的结果相对可靠。此外,基于等效竖向渗透系数思想,建立了以单元体流量等效的一维变形、一维渗流简化分析方法。通过算例检验发现,该法计算效率大大提高,但相比于Chai法计算精度并未改善,且计算过程相对复杂。
     (6)考虑到竖井地基三维有限元分析计算量大、前处理困难,提出了将井与涂抹区在地基横截面内划分为一个网格的复合单元法。复合单元的未知场由10结点单元和线性插值函数来刻画。复合单元内部全局坐标结点自由度和局部坐标结点自由度之间的联系则通过引入经典单井固结解析理论得到建立。之后,基于加权残数法详细推导了复合单元法有限元方程,并编制了相应的计算程序。通过对单井地基和群井地基算例进行验证分析,发现复合单元法计算精度较高、计算效率也有所改善。
     (7)基于大型商业软件和自编程序开展了某电厂海堤下竖井地基固结发展过程的数值模拟。分析过程中,采用Chai(2001)二维等效方法和平面应变空间渗流分析方法分别进行了计算,结果发现:两种数值方法模拟得到的地基变形发展规律近似一致;后者考虑空间渗流得到的沉降略大、侧向位移略小;两种方法的孔压预测结果差异较为明显。数值模拟结果还表明:海堤下软土地基经过塑料排水板处理后,地基固结速率较快,地基中超静孔压在各级堆载间歇期均有明显回落;在给定的堆载方案下,软土地基变形发展速率均在控制范围内。
Vertical drain combined with preloading offer significant benefits in improving sites with thick soft soil deposits by accelerating the consolidation process and it has been used extensively in the large-scale infrastructure construction for highways, railways, ports, airports and so on. A lot of achievements have been made both in theoretical approaches and numerical methods for the reliable simulation of the consolidation process by vertical drains. It was also found that a certain gap exists between the measured values and calculation results by different methods. The predictions of the post construction settlement and the differential settlement are usually in poor accuracy. Additionally, the situations of the long depth of a vertical drain for deep soil deposits and limited construction period are challenging the design and calculation procedure of vertical drain consolidation. To this end, this paper carried out the study for the simulation of the consolidation process by vertical drains from both the analytic theory and the finite element method.
     1. The previous researches for both theoretical methods and parameters are summarized at first. It was found that the widely accepted formulas for the calculation of the radial average degree of consolidation can be expressed as a uniform expression. Different approaches have a slight difference in the consideration of the smear effect and the well resistance. The latest developments of the consolidation theory for vertical drained ground consist of non-linear theory, non-Darcy flow theory, the variety of soil permeability within the smear zone and the consolidation theory for the vacuum preloading method. A large number of studies have also been carried out for parameters in the analysis of the vertical drained foundation, but the value ranges of these parameters are large and it will reduce the reliability of the calculation results.
     2. The discharge capacity qn has been investigated by several studies in recent years. General conclusions have been obtained by laboratory tests that the discharge capacity qw can be reduced by several factors throughout the consolidation process in field, such as the deformation of the drain, lateral stress, siltation, hydraulic gradient and so on. Based on this consideration, this paper assumed qw varies linearly with depth z and decreases exponentially with tim t and formed a mathematical model for varied well resistance effect. Then, a series of closed-form solutions following with the approaches of Hansbo's approximate solution and Xie's rigorous solution were developed with the instant loading condition, respectively. The impact of variable discharge capacity on the development of consolidation was investigated. And the following conclusions have been obtained that the existing unit cell method with a constant short time discharge capacity will over predict the consolidation rate. The development of the radial degree of consolidation may be totally interrupted when the permeability of the drain is reduced to that of the surrounding soil. The varied well resistance apparently affects the patterns of the distribution of average excess pore water pressure along the depth. Besides, the proposed method is applied in the simulation of a large indoor model test and an engineering practice. By comparing the results of the new method with classical solutions, it was found that the present method with varied well resistance could predict the consolidation process better since the behavior of PVDs is more accurately described.
     3. A non-linear flow relationship, which assumes that the fluid flow in the soil skeleton obeyed Hansbo's non-Darcian flow and the coefficient of permeability decreased with the consolidation time, was incorporated into Biot's general consolidation theory for the consolidation simulation of soft ground with vertical drains. Governing equations with the coupled non-linear flow model were presented and the finite element (FE) formulations were derived based on the weighted residual method. The effect of the coupled non-linear flow on the development of consolidation was investigated. It was found that the consolidation rate became slow when the non-Darcian flow with varied permeability was considered. The retardation on the consolidation process was taken on an accelerating tendency when increasing the values of the non-linear flow parameters. The loading size also had significant effect on the consolidation behavior in the non-linear analysis of the coupled consolidation problem.
     4. With the introduction of a piecewise linear e-lgp assumption, this paper further presents an FE analysis which takes into account one-dimensional non-linear property of compression and permeability. Combined with the consolidation-seepage joint test for Ningbo soil samples, the acquisition process for parameters of the one-dimensional nonlinear model is presented. Governing equations with the coupled non-linear flow model were presented firstly for force equilibrium condition and continuity condition, respectively. Based on the weighted residual method, the FE formulations were then derived and an existing FE program was modified considering the non-linear flow model. Comparative analyses with established theoretical solutions and numerical solutions were carried out and the results were satisfactory. On this basis, the effect of the coupled non-linear flow on the development of consolidation was investigated, and some useful conclusions were obtained correspondingly.
     5. The two-dimensional equivalent methods are widely used in the finite element analysis of vertical drained ground. Summaries and comments about the equivalent methods are firstly carried out based on the existing researches. Then, six equivalent methods are examined for two numerical examples for layered soil foundation and partially penetrated vertical foundation. The results show that the parameter values for layered soil have significant impact on the reliability of equivalent methods, while the length of the drain has no significant effect. For the parameter values applied in the example, errors for the degree of consolidation for different methods vary considerably. Relatively, the calculation results of Chai's (2001) method and Tran's (2008) method are reliable and the largest errors for the two methods are within10%. Chai's method is worth promoting since the operation of the method is rigorous and with high computational efficient. Additionally, aims to simplify the pre-process of three dimensional analysis of vertical drain foundation and to improve the computation efficiency, the one dimensional equivalent method with1D deformation and1D seepage element was proposed based on Chai's equivalent vertical seepage idea. Numerical results were compared with traditional FEM results for a series of calculation conditions to verify the accuracy of the simplified method. And the results showed that the computation efficiency is greatly improved. However, compared with Chai's equivalent method, the accuracy of the newly proposed method is not improved and the calculation process is relatively complex.
     6. Since drains are small both in spacing and size, resulting in enormous computing costs for a traditional3D FE analysis, a new spatial element that contains the drain well and its neighboring smear zone was presented. This new combined element was depicted by10nodes element, which contains8global independent nodes and2local dependent nodes. A classical analytical theory was introduced to set up the relationship between the two kinds of nodes. Since permeability diversity between the drain and the smear zone was considered, both the effects of smearing and well resistance were taken into account in the composite element method (CEM). A detailed derivation of the CEM was performed using the weighted residual method. To verify the accuracy of the CEM. numerical results were compared with analytical solutions and with traditional FEM results for two cases. These comparative analyses demonstrated that acceptable results were obtained by the CEM. Additionally, the proposed method saves1/4-1/2mesh elements and avoids slender elements for the full-scale FE analysis of vertical drain foundation.
     7. Finally, numerical simulation for a vertical drain foundation under a power plant seawall was carried out based on a large-scale commercial software and by a self-coding program. The theoretical bases for the two approaches are Chai's two-dimensional equivalent method and Xie's PDSS model. It was found by the comparison of the two numerical methods that the deformation simulations of the ground by the two methods are roughly the same as each other; the settlement of the foundation predicted by the later method is relatively bigger than Chai's method since the PDSS model took into account the spatial seepage. Conclusions also obtained by the numerical simulation that the development of consolidation for the ground is obvious:the excess pore water pressure are dissipated significantly in the intermittent period of loading; the development rates of ground consolidation are within the security value.
引文
[1]Aboshi H, Sutoh Y, Inoue T, Shimizu Y. Kinking deformation of PVD under consolidation settlement of surrounding clay[J]. Soils and Foundations,2001,41(5):25-32.
    [2]Abuel-Naga H M, Pender M J, Bergado D T. Design curves of prefabricated vertical drains including smear and transition zones effects[J]. Geotextiles and Geomembranes,2012,32:1-9.
    [3]Ali F H. The flow behavior of deformed prefabricated vertical drains[J]. Geotextiles and Geomembranes,1991,10(3):235-248.
    [4]Barron R A. Consolidation of fine-grained soils by drain wells[J]. Trans. ASCE,1948,113:718-754.
    [5]Basak P, Madhav R. Analytical solutions of sand drain problems[J]. Journal of Geotechnical Engineering Division,1978,104(1):129-135.
    [6]Basu, D. and Prezzi, M. Effect of the smear and transition zones around prefabricated vertical drains installed in triangular pattern on the rate of soil consolidation[J], ASCE, J. Geomechanics,2007,7(1): 34-43.
    [7]Bergado D T, Asakami H, Alfaro M C, Balasubramaniam A S. Smear effects of vertical drains on soft Bangkok clay[J]. Journal of Geotechnical Engineering,1991,117(10):1509-1530.
    [8]Bergado D T, Balasubramaniam R. Prefabricated vertical drains (PVD) in soft Bangkok clay:a case study of the new Bangkok International Airport project[J]. Canadian Geotechnical Journal,2002, 39:304-315.
    [9]Bergado, D T, Manivannan R, Balasubramaniam A,S. Proposed criteria for discharge capacity of prefabricated vertical drains[J]. Geotextiles and Geomembranes,1996,14 (9):481-505.
    [10]Berry P L, Wilkinson W B. The radial consolidation of clay soils[J]. Geotechnique,1969,19(2): 253-284.
    [11]Biot M A. General theory of three-dimensional consolidation [J]. J Appl Physics,1941, (12):155-164.
    [12]Bo M W, Chu J, Choa V. Soil Improvement:Prefabricated Vertical Drain Techniques[M]. Singapore: Thompson,2003.
    [13]Bo M W. Discharge capacity of prefabricated vertical drain and their field measurements[J]. Geotextiles and Geomembranes,2004, (22):37-48.
    [14]Booker J R, Small J C. Finite element analysis of primary and secondary consolidation[J]. Int. J. Structure,1977,13:137-149.
    [15]Britto A M, Gunn M J. Critical state soil mechanics via finite elements[M]. London:Ellis Horwood, 1987.
    [16]Carrillo N. Simple two and three dimensional cases in the theory of consolidation of soils[J]. J. Math. Phys.,21:1-5.
    [17]Chai J C, Miura N. Sakajo S, Bergado D T. Behavior of vertical drain improved subsoil under embankment Ioading[J]. Soils and Foundations,1995,35(4):49-61.
    [18]Chai J C, Miura N, Sakajo S. A theoretical study on smear effect around vertical drain[C]. Proceedings of the 14th International Conference of Mechanics and Foundations Engineering, Hamburg,1997, 3:1581-1584.
    [19]Chai J C, Miura N. Investigation of factors affecting vertical drain behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(3):216-226.
    [20]Chai J C, Shen S L, Miura N, Bergado D T. Simple method of modeling PVD-improved subsoil[J], Journal of geotechnical and Geoenvironmental Engineering,2001,127(11):965-972.
    [21]Chai J C, Miura N, Nomura T. Effect of hydraulic radius on long-term drainage capacity of geosynthetics drains[J]. Geotextiles and Geomembranes,2004.22:3-16.
    [22]Chai J C, Carter J P. Deformation Analysis in Soft Ground Improvement[M]. Springer,1st Edition, 2011,1-247.
    [23]Chang D T T, Liao J C, Lai S P. Laboratory study of vertical drains for a ground improvement project in Taipei[C]. Proceeding of the 5th International Conference on Geotextiles, Geomembranes and Related Products, Singapore,1994,2:807-812.
    [24]Chen R H, Chen C N. Permeability characteristics of prefabricated vertical drains[C]. Proceedings of the 3rd International conference on Geotextiles, Vienna.1986,3:785-790.
    [25]Cheung Y K, Lee P K, Xie K. H. Some remarks on two and three dimensional consolidation analysis of sand-drained ground[J]. Computers and Geotechnics,1991,12:73-87.
    [26]Chu J, Bo M W, Chang M F, Choa V. Consolidation and permeability properties of Singapore marine clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(9):724-732.
    [27]Chu J, Bo M W, Choa V. Practical considerations for using vertical drains in soil improvement projects[J]. Geotextiles and Geomembranes,2004,22(1-2):101-117.
    [28]Chu J, Bo M W, Choa V. Improvement of ultra-soft soil using prefabricated vertical drains[J]. Geotextiles and Geomembranes,2006,24:339-348.
    [29]Chung S G, Lee N K. Smear effect and well resistance of PVD-installed ground based on the hyperbolic method[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136 (4), 640-642.
    [30]Christian J T. Two-and three-dimensional consolidation by finite element[M]. In:Desai SC, editor. Numerical methods in geotechnical engineering. McGraw-Hill,1977,399-462.
    [31]Cline M J, Burns S E. Evaluation of Wick Drain Performance in Virginia Soils[M]. Virginia Department of Transportation, Federal Highway Administration, Washington, DC, USA,2003.
    [32]Cortellazzo G. Comparison between laboratory and in situ values of the coefficient of primary consolidation Cv[J]. Canadian Geotechnical Journal,2002, (39):103-110.
    [33]Den Hoedt G. Laboratory testing of vertical drains[C], Proceedings of the international conference on Soil mechanics and foundation engineering, Stockholm,1981,1:627-630.
    [34]Fang Z, Yin J H. Physical modeling of consolidation of Hong Kong marine clay with prefabricated vertical drains[J]. Canadian Geotechnical Journal,2006,43(6):638-652.
    [35]Hansbo S. Consolidation of clay with special reference to vertical sand drains[D]. Swedish Geotechnical Institute,1960.
    [36]Hansbo S. Consolidation by band-shaped prefabricated drains[J]. Ground Engineering,1979,12(5): 16-25.
    [37]Hansbo S. Consolidation of fine-grained soils by prefabricated drains[C]. Proceedings 10th international conference on Soil Mechanics and Foundation Engineering, Stockholm,1981,3:667-682.
    [38]Hansbo S, Jamiolkowski M, Kok L. Consolidation by vertical drains[J]. Geotechnique,1981,31(1): 45-66.
    [39]Hansbo S. How to evaluate the properties of prefabricated drains[C]. Proceedings of the 8th European Conference on Soil Mechanics and Foundation Engineering:Improvement of Ground, Balkema, Rotterdam, The Netherlands,1983,2:621-626.
    [40]Hansbo S. Aspects of vertical drain design:Darcian or non-Darcian flow[J]. Geotechnique,1997,47(5): 983-992.
    [41]Hansbo S. Consolidation equation valid for both Darcian and non-Darcian flow[J]. Geotechnique,2001, 51(1):51-54.
    [42]Hansbo S. Deviation from Darcy's law observed in one-dimensional consolidation[J], Geotechnique, 2003,53(6):601-605.
    [43]Hansbo S. Experience of Consolidation Process from Test Areas with and without Vertical Drains[C]. In:Indraratna B, Chu J (Eds.), Ground Improvement-Case Histories, Vol.3, Elsevier, London,2005, 3-49.
    [44]Hart E G, Kindner R L, Boyer W C. Analysis for partially penetrating sand drains[J]. Journal of Soil Mechanics and Foundation Division, ASCE,1958,84(SM4):1-15.
    [45]Hawlader B C, Imai G and Muhunthan B. Numerical study of the factors affecting the consolidation of clay with vertical drains[J]. Geotextiles and Geomembranes.2002,20(4):213-239.
    [46]Horne M R. The consolidation of a stratified soil with vertical and horizontal drainage [J]. International Journal of Mechanical Science,1964,6:187-197.
    [47]Holtz R D. Behavior of bent prefabricated vertical drains[C]. Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil,1989,3:1657-1660.
    [48]Holtz R D, Jamiolkowski M B, Lancellotta R, Pedroni R. Prefabricated Vertical Drains:Design and Performance[R], CIRIA Ground Engineering Report, Butterworth-Heinemann Ltd, London,1991.
    [49]Hird C C, Pyrah I C, Russell D. Finite element modeling of vertical drains beneath embankments on soft ground[J]. Geotechnique,1992,42(3):499-511.
    [50]Hird C C, Pyrah 1 C, Russell D, Cinicioglu F. Modeling the effect of vertical drains in two-dimensional finite element analyses of embankments on soft round[J]. Canadian Geotechnical Journal,1995,32: 795-807.
    [51]Hird C C, Moseley V J. Modeling study of seepage in smear zones around vertical drains in layered soil[J]. Geotechnique,2000,50(1):89-97.
    [52]Indraratna B. Numerical modeling of vertical drains with smear and well resistence installed in soft clay[J]. Canadian Geotechnical Journal,2000,37:132-145.
    [53]Indraratna B. Recent advances in the application of vertical drains and vacuum preloading in soft soil stabilization[M]. EH Davis memorial lecture. Australian Geomechanics Society; 2010,1-57.
    [54]Indraratna B, Redana I W. Laboratory determination of smear zone due to vertical drain installation[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(2):180-184.
    [55]Indraratna B, Redana I W. Numerical modeling of vertical drains with smear and well resistance installed in soft clay[J]. Canadian Geotechnical Journal,2000,37:132-145.
    [56]Indraratna B, Bamunawita C, Khabbaz H. Numerical modeling of vacuum preloading and field applications[J]. Canadian Geotechnical Journal,2004,41:1098-1110.
    [57]Indraratna B, Sathananthan I, Rujikiatkamjom C, Balasubramaniam A S. Analytical and numerical modeling of soft soil stabilized by PVD incorporating vacuum preloading[J]. International Journal of Geomechanics,2005,5(2):114-124.
    [58]Indraratna B, Rujikiatkamjorn C, Sathananthan I. Analytical and numerical solutions for a single vertical drain including the effects of vacuum preloading[J]. Canadian Geotechnical Journal,2005, 42(4):994-1014.
    [59]Indraratna B, Rujikiatkamjorn C, and Sathananthan I. Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canadian Geotechnical Journal,2005, 42:1330-1341.
    [60]Indraratna B, Aljorany A, Rujikiatkamjorn C. Analytical and Numerical Modeling of Consolidation by Vertical Drain beneath a Circular Embankment[J]. International Journal of Geomechanics,2008, 8(3):199-206.
    [61]Jansen H L, Den Hoedt G. Vertical drains:in situ and laboratory performance and design considerations[J]. Proceedings 8th European Conference on Soil Mechanics and Foundation Engineering, Helsinki,1983,2:647-651.
    [62]Johnson S J. Foundation precompression with vertical sand drains[R]. JSMFD, ASCE,1970,96(SM1): 145-175.
    [63]Kamon M, Pradhan T B S, Suwa S. Laboratory evaluation of the discharge capacity of prefabricated band-shaped drains[M], Soil Improvement", Edited by Mise, T., New York, Elsevier Science Pub. Co., 1992,23-38.
    [64]Kim R, Hong S J, Lee M J, Lee W. Time dependent well resistance factor of PVD[J]. Marine Georesources & Geotechnology,2011,29 (2):131-144.
    [65]Koda E, Szymanski A, Wolski W. Laboratory tests on Geodrains:durability in organic soils[C], Proceedings, Seminar Laboratory testing of prefabricated band-shaped drains, Milan,1986.
    [66]Kremer R. Discussion to specialty session 6[C], Proceedings of the 8th European Conference on Soil Mechanics and Foundation Engineering, Helsinki,1983,3:1235-1237.
    [67]Kremer R, De Jager W, Maagdenberg A, Meyvogel I, Oostveen J. Quality standards for vertical drains[C], Proceedings,2 International conference on Geotextiles, Las Vegas,1982,2:319-324.
    [68]Kremer R H J, Oostveen J P, Van Weele A F, De Jager W F J, Meyvogel I J. Quality of vertical drainage[C], Proceedings of the 8th European Conference on Soil Mechanics and Foundation Engineering:Improvement of Ground. Volume 2:Soil Reinforcement, Speeding Up of Consolidation, Improvement of Special Soils, Soil Improvement Under Water and Soil Stabilization,1983,2:721-726.
    [69]Lawrence C A, Koerner R M. Flow behavior of kinked strip drains. Proceedings of the Symposium on Geosynthetics for Soil Improvement[M]. Nashville, TN, ASCE Geotechnical Special Publication,1988, (18):22-35.
    [70]Lee N K, Chung S G. Reevaluation of the Factors Influencing the Consolidation of Ground by Incorporating Prefabricated Vertical Drains[J]. KSCE Journal of Civil Engineering,2010, 14(2):155-164.
    [71]Lekha K R, Krishnaswamy N R, Basak P. Consolidation of clay by sand drain under time-dependent loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(1):91-94.
    [72]Lekha K R, Krishnaswamy N R, Basak P. Consolidation of clays for variable permeability and compressibility[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(11): 1001-1009.
    [73]Leo C J. Equal strain Consolidation by vertical drains[J], Journal of Geotechnical and Geoenvironmental Engineering,2004.130(3):316-327.
    [74]Lo D O K. Soil improvement by vertical drains[D]. PhD Thesis, University of Illinois at Urbana-Champaign,1991,190-231.
    [75]Lorenzo G A. Bergado D T. Innovations and performances of PVD and dual function geosynthetic applications[J]. Geotextiles and Geomembrances,2004, (22):75-99.
    [76]Miura N, Park Y M, Madhav M R. Fundamental study on the discharge capacity of plastic board drains[J]. Journal of Geotechnical Engineering, JSCE,1993,35(3):31-40.
    [77]Madhav R, Park Y M, Miura N. Modeling and study of smear zones around band shaped drains[J]. Soil and Foundations,1993,33(4):135-147.
    [78]Miura N, Chai J C, Toyota K. Investigation on some factors affecting discharge capacity of prefabricated vertical drain[C]. Proceedings of the 6th International Conference on Geosynthetics, Atlanta, GA, USA,1998(2):845-850.
    [79]Miura N, Chai J C. Discharge capacity of prefabricated vertical drains confined in clay[J]. Geosynthetics International,2000,7(2):119-135.
    [80]Morohoshi K, Yoshinaga K, Miyata M, Sasaki I, Saito H, Tokoro M. Design and long-term monitoring of Tokyo International airport extension project constructed on super-soft ground[R]. A manuscript for Geotechnical and Geological Engineering,2007.
    [81]Olson R E. Consolidation under time-dependent loading[J]. J. Geotech. Eng. Div., ASCE,1977, 103(GT1):55-60.
    [82]Ong C Y, Chai J C, Hino T. Degree of consolidation of clayey deposit with partially penetrating vertical drains[J]. Geotextiles and Geomembranes,2012,34:19-27.
    [83]Onoue A. Consolidation by vertical drains taking well resistance and smear into consideration"[J], Soil and Foundations,1988,28(4):165-174.
    [84]Onoue A, Ting N H, Germaine J T, Whitman R V. Permeability of disturbed zone around vertical drains[C]. Proceedings of Geotechnical Engineering Congress. Boulder,1991,2:879-890.
    [85]Oostveen J P. Discussion to specialty session 6[C]. Proceedings of the 8th European Conference on Soil Mechanics and Foundation Engineering, Helsinki, Finland,1983,3:1152-1154.
    [86]Orleach P. Technique to evaluate the field performance of vertical drains[D], MSc. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,1983.
    [87]Richart Jr F E. A review of the theories for sand drains[C]. Proc. ASCE,1957,83(SM3):1-38.
    [88]Rixner J J, Kraemer S R, Smith A D. Prefabricated vertical drains[M], Vol. I & II, Summary of Research Effort, Federal Highway Administration, USA,1986.
    [89]Rowe P W. The calculation of the consolidation rates of laminated varied or layered clays with particular reference to sand drains[J]. Geotechnique,1964,14(4):321-340.
    [90]Rujikiatkamjorn C, Indraratna B, Chu J.2D and 3D numerical modeling of combined surcharge and vacuum preloading with vertical drains[J]. Int J Geomech 2008;8(2):144-56
    [91]Rujikiatkamjorn C, Indraratna B. Design procedure for vertical drains considering a linear variation of lateral permeability within the smear zone[J]. Canadian Geotechnical Journal,2009,46:270-280.
    [92]Sandhu R S, Wilson E L. Finite element analysis of flow of saturated porous elastic mediafJ]. Journal of the Engineer Mechanics Division, ASCE,1969,98(SM7):641-652.
    [93]Sandhu R S. Finite element analysis of coupled deformation and fluid flow in porous media[M]. In: Martins(ed.), Numerical Methods in Geomechanics. Boston:D.Reidel Pub.Com.,1982:203-227.
    [94]Saowapakpiboon J, Bergado D T, Voottipruex P, Lam L G, Nakakuma K. PVD improvement combined with surcharge and vacuum preloading including simulations[J]. Geotextiles and Geomembranes,2011, 29:74-82.
    [95]Sasaki S. Report of experimental test for the prefabricated drain geodrain[M]. Tokyo Construction Co., Tokyo,1981.
    [96]Sathananthan I, lndraratna B, Rujikiatkamjorn C. Evaluation of Smear zone extent surrounding mandrel driven vertical drain using the cavity expansion theory[J], Geomechanics, ASCE,2008,8(6): 255-365.
    [97]Scott R F. Principles of soil mechanics[M]. Addison-Wesley Publishing Co.,1963.
    [98]Seah T H, Koslanant S. Anisotropic consolidation behavior of soft Bangkok clay[J]. Geotechnical Testing Journal,2003,26(3):266-275.
    [99]Sharma J S, Xiao D. Characterization of a smear zone around vertical drains by large-scale laboratory tests[J]. Canadian Geotechnical Journal,2000,37(6):1265-1271.
    [100]Shin D H, Lee C, Lee J S, Lee W. Detection of smear zone using micro-cone and electrical resistance probe[J], Canadian Geotechnical,2009,46(6):719-726.
    [101]Shinsha H, Hara H, Abe T, Tanaka A. Consolidation settlement and lateral displacement of soft ground improved by sand drains[J], Tsuchi-to-Kiso, Japanese Soc. Soil Mech. Found. Eng.,1982,30(2):7-12.
    [102]Sridharan A, Prakash K. Asha S R. Consolidation behavior of clayey soils under radial drainage[J]. Geotechnical Testing Journal.1996,19(4):421-431.
    [103]Suits L D, Gemme R L, Masi J J. Effectiveness of prefabricated drains on laboratory consolidation of remolded soils[C]. Proceedings, symposium on Consolidation of Soils:testing and evaluation, ASTM special technical publication,1986,663-683.
    [104]Tang X W, Onisuka K. Consolidation of ground with partially vertical drains[D]. Geotechnical Engineering Journal,1998,29(2):209-231.
    [105]Tang X W, Onisuka K. Consolidation of double-layered ground with vertical drains[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(14):1449-1465.
    [106]Tavenas F, Jean P. The permeability of natural soft clays. Part Ⅱ:Permeability characteristics[J]. Canadian Geotechnical Journal,1983,20:645-660.
    [107]Teh C 1, Nie X Y. Coupled consolidation theory with non-Darcian flow[J]. Computers and Geotechnics, 2002,29(3):169-209.
    [108]Terzaghi K. Theoretical soil mechanics[C]. New York:Wiley,1943.
    [109]Tran T A, Mitachi T. Equivalent plane strain modeling of vertical drains in soft ground under embankment combined with vacuum preloading[J]. Computers and Geotechnics,2008,35:655-672.
    [110]Tran-Nguyen, H H, Edil T B, Schneider J A. Effect of deformation of prefabricated vertical drains on discharge capacity[J]. Geosynthetics International,2010,17(6):431-442.
    [111]Vermeer P A, Verruijt A. An accuracy condition for consolidation by FE[J]. Int. J.Num. Ana. Methods in Geomechanics,1981,5(1):25-30.
    [112]Walker R, Indraratna B. Vertical drain consolidation with parabolic distribution of permeability in smear zone[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(7):937-941.
    [113]Walker R, Indraratna B. Vertical drain consolidation with overlapping smear zones[J]. Geotechnique, 2007,57(5):463-467.
    [114]Walker R, Indraratna B, Rujikiatkamjorn C. Vertical drain consolidation with non-Darcian flow and void-ratio dependent compressibility and permeability[J]. Geotechnique,2012,62(11):985-997.
    [115]Wang X S, Jiao J J. Analysis of soil consolidation by vertical drains with double porosity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics.2004,28: 1385-1400.
    [116]Xie K H, Lee P K K, Cheung Y K. Consolidation of a two-layer system with ideal drains[C]. In Proceeding of the 8th International Conference on Computer Methods and Advances in Geomechanics. Morgantown, West Virginia, USA,1994,1:789-794.
    [117]Yildiz A, Karstunen M, Krenn H. Numerical modelling of vertical drains with advanced constitutive models[C]. In:Proceedings of the 6th European conference on numerical methods in geotechnical engineering-numerical methods in geotechnical engineering. Balkema:Taylor and Francis,2006, 835-841.
    [118]Yildiz A. Numerical modeling of vertical drains with advanced constitutive models[J]. Comput. Geotech.,2009,36(6):1072-83.
    [119]Yoshikuni H, Nakanado H. Consolidation of fine-grained soils by drain well with filter permeability[J]. Soil and Foundation,1974,14(2):35-46.
    [120]Yoshikuni H. Design and control of construction in the vertical drain method[M]. Tokyo:Gihoudou, 1979.
    [121]Zeng G X, Xie K H, Shi Z Y. Consolidation Analysis of Sand-Drain Ground by FEM[C]. Proc.8th Asian Regional Conf. Soft Mech., Kyoto,1987,1:139-142.
    [122]Zeng G X, Xie K H. New development of the vertical drain theories[C]. In:Proceedings of the 12th international conference on soil mechanics and foundation engineering, Rio de Janeiro,1989, vol.2, 1435-1438.
    [123]Zhu G F, Yin J H. Consolidation of soil with vertical and horizontal drainage[J]. Geotechnique,2001, 51(4):361-367.
    [124]Zhu G F, Yin J H. Consolidation analysis of soil with vertical and horizontal drainage under ramp loading considering smear effects[J]. Geotextiles and Geomembranes,2004, (22):63-74.
    [125]Zienkiewicz OC, Taylor RL. The finite element method for solid and structure mechanics[M].6th ed. Singapore:Elsevier,2009.
    [126]曹志远,张佑启.半解析数值分析[M].北京:国防工业出版社,1992.
    [127]陈根媛.多层地基的一维固结计算方法与砂井地基计算的改进建议[J].水利水运科学研究,1984,(2):18-29.
    [128]陈国红,谢康和,程永峰,徐妍.考虑涂抹区渗透系数变化的砂井地基固结解[J].浙江大学学报(工学版),2011,45(4):665-670.
    [129]陈建锋,石振明,陈竹昌.砂井地基平面问题转换及其应用[J].岩土工程技术,2001,(1):11-15.
    [130]陈立宏.一维渗流单元在砂井固结模拟中的应用[J].石家庄铁道学院学报,2004,17(4):60-63.
    [131]陈立宏,陈祖煜,李广信.砂井地基有限元计算的等效平面应变算法[J].土木工程学报,2004,37(6):82-86.
    [132]陈平山,房营光,莫海鸿,张功新,董志良.真空预压法加固软基三维有限元计算[J].岩土工程学报,2009,31(4):564-570.
    [133]陈小丹,赵维炳.考虑井阻和涂抹的砂井地基平面应变等效方法分析[J].岩土力学,2005,26(4):567-571.
    [134]陈永辉,陈龙,郑宏,王新泉,齐昌广.塑料排水板联合堆载预压加固软基工后沉降预测方法研究[C].工程排水与加固技术理论与实际,第八届全国工程排水与加固技术研讨会论文集.北京:中国水利水电出版社,2011.
    [135]邓岳保,谢康和,王坤.散体桩复合地基固结有限元网格划分效应分析[J].湖南大学学报(自然科学版),2012,39(4):12-17.
    [136]董志良.堆载及真空预压砂井地基固结解析理论[J].水运工程,1992,(9):1-7.
    [137]房营光.砂井地基固结的空间渗流和群井效应的解析分析[J].岩土工程学报,1996,18(2):30-36.
    [138]高长胜,汪肇京,魏汝龙,朱群峰.固结排水中排水带通水量的影响及选择[J].岩土力学,2004,25(3):473-476.
    [139]耿雪玉.复杂条件下软粘土地基多维固结分析[D].杭州:浙江大学,2008.
    [140]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [141]龚晓南.软土地基固结有限元分析[D].杭州:浙江大学,1981.
    [142]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [143]郭彪.竖井地基轴对称固结解析理论研究[D].杭州:浙江大学,2010.
    [144]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2005.
    [145]郝玉龙,陈云敏,王军.深厚软土未打穿砂井超载预压地基孔隙水压力消散规律分析[J].中国公路学报,2002,15(2):4-8.
    [146]蒋春霞.含竖向排水体地基轴对称固结及平面应变等效固结分析[D].南京:河海大学,2005.
    [147]李传勋.基于非线性渗流定律的软土一维固结理论研究[D].杭州:浙江大学,2012.
    [148]李大梁,徐国强.砂井地基弹塑性固结变形有限单元法分析[J].水利水运科学研究,1983,(3):55-61.
    [149]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [150]李玲玲.砂井地基平面应变问题的变形计算和有限元分析[D].杭州:浙江大学,2002.
    [151]李尧臣、周顺华,真空排水固结法处理软土地基的数值模拟[J1,上海铁道大学学报,2000,21(10):96-99.
    [152]李彰明.软土地基加固与质量监控[M].北京:中国建筑工业出版社,2011.
    [153]林政.软土的固结和渗透特性原位测试理论研究及应用[D].杭州:浙江大学,2005.
    [154]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [155]刘汉龙,彭劼,陈永辉,郑绍君.真空-堆载预压处理高速公路软基的有限元计算[J].岩土力学,2003,24(6):1029-1033.
    [156]刘加才.层状砂井地基固结分析及其工程应用[D].南京:河海大学,2004.
    [157]刘加才,施建勇,赵维炳.真空堆载联合预压作用下路基固结分析[J].水运工程,2003,(6):1-4.
    [158]刘佳有,吴正友,席平.国产SPB-1型和日本丸红GEODRAIN-L型塑板真空度传递性能的现场试验研究[C]//塑料板排水固结法加固软基技术研讨会论文集.水运工程,1990,(12):86-96.
    [159]刘兴旺,谢康和,潘秋元,曾国熙.竖向排水井地基粘弹性固结解析理论[J].土木工程学报,1998,31(1):10-19.
    [160]娄荣.砂井地基数值简化算法的研究[D].杭州:浙江大学,2006.
    [161]卢萌盟.复杂条件下复合地基固结解析理论研究[D].杭州:浙江大学,2009.
    [162]潘秋元,朱向荣,谢康和.关于砂井地基超载预压的若干问题[J].岩土工程学报,1991,13(2):
    [163]彭劫,刘汉龙.砂井地基数值计算中的三维排水板单元及其验证[J].岩土工程学报.2005,27(12):1491-1493.
    [164]齐添.软土一维非线性固结理论与试验对比研究[D].杭州:浙江大学,2008.
    [165]沈珠江,易进栋.海滩软土路基的固结变形分析[J].岩土工程学报,.1987,(6):39-45.
    [166]沈珠江.用有限单元法计算软土地基的固结变形[J].水利水运科技情报,1977,(1):7-12.
    [167]孙立强,闫澍旺,李伟,吴坤标.超软土真空预压室内模型试验研究[J].岩土力学,2011,32(4):984-990.
    [168]王坤.考虑起始比降的软土地基一维固结理论研究[D].杭州:浙江大学,2012.
    [169]王立忠,李玲玲.未打穿砂并地基下卧层固结度分析[J].中国公路学报,2000,13(3):4-8.
    [170]王瑞春.竖井地基和散体材料桩复合地基固结解析研究[D].杭州:浙江大学,2001.
    [171]王铁儒,丁利,李玲玲.深厚软基高速公路软基预压研究[C].第五届全国塑料排水板工程技术研讨会论文集,中国,天津,2002.
    [172]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [173]王旭升,陈崇希.砂井地基固结的三维有限元模型及应用[J].岩土力学,2004,25(1):94-98.
    [174]王旭升.渗流固结问题的数值分析及粘性土-砂井地基固结模拟[D].武汉:中国地质大学,2002.
    [175]王贻荪.考虑砂井阻力的折减井径法[J].岩土工程学报,1982,4(3):43-52.
    [176]谢康和.复合地基固结理论研究现状与发展[J].地基处理,1993,4(3):1-4.
    [177]谢康和.砂井地基:固结理论、数值分析与优化设计[D].杭州:浙江大学,1987.
    [178]谢康和,曾国熙.等应变条件下的砂井地基固结解析理论[J].岩土工程学报,1989,11(2):3-17.
    [179]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002.
    [180]谢康和,周开茂.未打穿竖向排水井地基固结理论[J].岩土工程学报,2006,28(6):679-684.
    [181]徐研.考虑涂抹区渗透系数变化的砂井地基固结理论研究[D].杭州:浙江大学,2008.
    [182]徐洋.复合地基固结与变形的计算理论与数值分析[D].杭州:浙江大学,2004.
    [183]闫澍旺,孙立强,李伟,吴坤标.真空加固超软土工艺的室内模型试验研究[J].岩土工程学报,2011,33(3):341-347.
    [184]殷宗泽.土工原理[M].北京:中国水利水电出版社.2007.
    [185]余坤.考虑影响区真实形状的砂井地基固结理论研究[D].杭州:浙江大学,2010.
    [186]于志强,张丽丽.塑料排水板加固软土地基的设计与实践[C].第五届全国塑料排水板工程技术研讨会论文集,中国,天津,2002.
    [187]俞炯奇,孙伯永.长期在地下工作后的塑料排水板的性能研究[J].水利学报(增刊),2007,38(10): 711-715.
    [188]曾国熙,王铁儒,顾尧章.砂井地基的若干问题[J].岩土工程学报,1981,3(3):74-81.
    [189]曾国熙,杨锡令.砂井地基沉陷分析[J].浙江大学学报,1959,(3):3-39.
    [190]赵维炳,陈永辉,龚友平.平面应变有限元分析中砂井的处理方法[J].水利学报,1998,(6):53-57.
    [191]赵维炳,主编.工程排水与加固技术理论与实践—第八届全国工程排水与加固技术研讨会论文集[C].中国水利水电出版社,2011.
    [192]赵维炳.广义Voigt 模型模拟的饱水土体固结理论及其应用[D].南京:河海大学,1987.
    [193]赵维炳.排水固结加固软基技术指南[M].人民交通出版社,2005.
    [194]赵维炳,施健勇.软土固结与流变[M].南京:河海大学出版社,1996.
    [195]郑刚,龚晓南,谢永利,李广信.地基处理技术发展综述[J].土木工程学报,2012,45(2):127-146.
    [196]郑辉.软粘土地基大应变非线性流变固结理论研究[D].杭州:浙江大学,2004.
    [197]周开茂,谢康和,应宏伟,来方勇.双面排水条件下未打穿竖井地基固结计算[J].浙江大学学报(工学版),2007,41(1):151-156.
    [198]周琦,张功新,王友元,邓志勇.真空预压条件下的砂井地基Hansbo固结解[J].岩石力学与工程学报,2010,29(增2):3994-3999.
    [199]周顺华,王炳龙,李尧臣,陈国芳.真空排水固结法处理地基的沉降计算[J].铁道学报,2001,23(2):58-60.
    [200]朱百里,沈珠江.计算土力学[M].上海:上海科学技术出版社,1990.
    [201]中华人民共和国行业标准.水运工程塑料排水板应用技术规程(JTS 206-1-2009)[s].北京:人们交通出版社,2009.
    [202]中华人民共和国行业标准.建筑地基处理技术规范(JGJ 79-2002)[s].北京:中国建筑工业出版社,2002.
    [203]中华人民共和国行业标准.土工合成材料测试规程(sL/T235-2011)[s].北京:中国水利水电出版社,2012.
    [204]朱俊高,陆晓平.第三届全国青年岩土力学与工程会议论文集[C].南京,1998.
    [205]朱耀庭,尹长权,陈举.对塑料排水板板芯质量的试验研究[J].中国港湾建设.2008,(157):35-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700