用户名: 密码: 验证码:
C型钠尿肽及功能受体NPR-B对糖尿病肾病的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以糖尿病大鼠、系膜细胞、内皮细胞为研究对象,运用酶联免疫吸附分析法、免疫组织化学及荧光技术、蛋白印迹和荧光实时定量-逆转录多聚酶链反应等多种实验方法,多方面研究C型钠尿肽(CNP)对糖尿病肾病的保护作用和机制,以及通络方剂等对CNP及NPR-B的影响。结果显示,糖尿病大鼠肾组织存在CNP及NPR-B受体的局部自调节,在糖尿病肾病的不同病理时期表达不同。通络方剂能够调节糖尿病大鼠肾皮质组织CNP及NPR-B的表达,并能促进内皮细胞CNP的合成。CNP能够通过NPR-B/cGMP途径抑制晚期糖基化终末产物或活性氧簇诱导的核因子-κB活性,并抑制系膜细胞增殖及表型转化。提示,CNP及NPR-B受体在糖尿病肾病病理过程中可能具有保护作用;通络方剂能够调节CNP和NPR-B受体表达。
This study investigated STZ-induced diabetes rats, mesangial cells and endothelial cells as object to approach the protective effection of CNP and NPR-B recptor in diabetic nephropathy and their mechanism by the method of immunohistochemistry, immunofluorescent technique, ELISA, western blot, RealTime-PCR and so on. Presence of local autogenous regulation of CNP and NPR-B were found in diabetes rats renal. CNP and NPR-B showed different characteristic on renal cortex at different pathological period, with TongLuo recipe regulated their expression. TongLuo recipe contributed to the synthesis of CNP in cultured human umbilical vein cells. CNP inhibited the active NF-κB and restrainted the proliferation and phenotype converting induced by AGEs or ROS through NPR-B/cGMP pathway in cultured mesangial cells. These study suggesting that CNP and its functional receptor NPR-B may play a protective role on diabetic nephropathy, TongLuo Recipe can regulates their express.
引文
1. Turner RC. The U.K. Prospective Diabetes Study. A review. Diabetes Care. 1998;21 Suppl 3:C35-8.
    2. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405-12
    3. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813-20
    4. West IC. Radicals and oxidative stress in diabetes. Diabet Med. 2000;17:171-180.
    5. Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006 Nov-Dec;40(5-6):553-60
    6. Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Related Articles, Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin. 2006l; 27(7): 821-6.
    7. Murillo MM, Carmona-Cuenca I, Del Castillo G, Ortiz C, Roncero C, Sanchez A, Fernandez M, Fabregat I. Activation of NADPH oxidase by transforming growth factor-beta (TGF-beta) in hepatocytes mediates up-regulation of epidermal growth factor (EGF) receptor ligands through a NF-kappaB-dependent mechanism. Biochem J. 2007 Apr 4; [Epub ahead of print]
    8. Chang JW, Kim CS, Kim SB, Park SK, Park JS, Lee SK. Proinflammatory cytokine-induced NF-kappaB activation in human mesangial cells is mediated through intracellular calcium but not ROS: effects of silymarin. Nephron Exp Nephrol. 2006;103(4):e156-65.
    9. Ha H, Yu MR, Choi YJ, Kitamura M, Lee HB. Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 2002;13(4):894-902.
    10. Umezono T, Toyoda M, Kato M, Miyauchi M, Kimura M, Maruyama M, Honma M, Yagame M, Suzuki D. Glomerular expression of CTGF, TGF-beta 1 and type IV collagen in diabetic nephropathy. J Nephrol. 2006;19(6):751-7.
    11. Martin J, Bowen T, Steadman R.The pluripotent cytokine pleiotrophin is induced by wounding in human mesangial cells. Kidney Int. 2006;70(9):1616-22.
    12. Zhang LS,Aoyagi D, Nakazawa K, Otani M. Post-inflammatory glomerular remodeling is influenced by transformed mesangial cells. Pathol Int. 2005;55(4): 189- 201.
    13. Patel K, Harding P, Haney LB, Glass WF. Regulation of the mesangial cell myofibroblast phenotype by actin polymerization. J Cell Physiol. 2003;195(3): 435-45.
    14. Gonlusen G, Ergin M, Paydas S, Tunali N. The expression of cytoskeletal proteins (alpha-SMA, vimentin, desmin) in kidney tissue: a comparison of fetal, normal kidneys, and glomerulonephritis. Int Urol Nephrol. 2001;33(2):299-305.
    15. Abbey SE, Potter LR. Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations. J Biol Chem. 2002;277(45): 42423-30.
    16. Tokudome T, Horio T, Soeki T, et al.,. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology. 2004; 145(5): 2131-40.
    17. Osawa H, Yamabe H, Kaizuka M, et al., C-Type natriuretic peptide inhibits proliferation and monocyte chemoattractant protein-1 secretion in cultured human mesangial cells. Nephron. 2000;86 (4): 467-72.
    18. Villar IC, Panayiotou CM, Sheraz A, et al. Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res. 2007 Mar 3; [Epub ahead of print]
    19. Feletou M,Vanhoutte PM. EDHF: new therapeutic targets. Phannacol Res. 2004;49:565-80
    1. Lincoln R. Potter, Sarah Abbey-Hosch and Deborah M. Dickey. Natriuretic Peptides, Their Receptors and cGMP-dependent Signaling Functions. Endocrine Reviews.2005;16:er2005- 0014
    2. Schachner T, Zou Y, et al., Perivascular application of C-type natriuretic peptide attenuates neointimal hyperplasia in experimental vein grafts. Eur J Cardiothorac Surg, 2004(25): 585- 90
    3. Hirose K, Osterby R, Nozawa M, et al. Development of glomerular lesions in experimental long-term diabetes in the rat. Kidney Int, 1982 , 21: 689 -695.
    4. Geoffroy K, Troncy L, Wiernsperger N, Lagarde M, El Bawab S.Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels. FEBS Lett. 2005;579(5):1249-54.
    5. Brownlee M:Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;4 14(6865):813-20.
    6. Yoshio. Terada, K. Tomita, H. Nonoguchi, T. Yang and F. Marumo. PCR localization of C-type natriuretic peptide and B-type receptor mRNAs in rat nephron segments. Am J Physiol Renal Physiol. 1994;267: F215-F222
    7. Suzuki E, Hirata Y, Hayakawa H, Omata M, Kojima M, Kangawa K, Minamino N, Matsuo H. Evidence for C-type natriuretic peptide production in the rat kidney. Biochem Biophys Res Commun. 1993;192(2):532-8.
    8. Kar NL, Josephc KL,Timothy GY. Gene expression and synthesis of natriuretic peptide by cultured human glomrular. Hypertens,1999,17:575-583
    9. Lewko Barbara; Endlich Nicole; Kriz Wilhelm; Stepinski, Jan; Endlich, Karlhans. C-type natriuretic peptide as a podocyte hormone and modulation of its cGMP production by glucose and mechanical stress. Kidney International, 2004; 66 (3): 1001-1008
    10. KJ Koller, DG Lowe, GL Bennett, N Minamino, K Kangawa, H Matsuo, and DV Goeddel. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science, 1991; 252(5002), 120-123
    11. Villar IC, Panayiotou CM, Sheraz A, et al., Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res. 2007 Mar 3; [Epub ahead of print]
    12. Chauhan SD, Hobbs AJ, Ahluwalia A.C-type natriuretic peptide: new candidate for endothelium- derived hyperpolarising factor. Int J Biochem Cell Biol. 2004;36(10):1878-81.
    13. 姚建,曹红娣,王伟. 人肾小球系膜细胞利钠肽受体表达的研究.上海第二医科大学学报,1998; 17: 479-480
    14. Suga S, Itoh H, Komatmu Y, et al. Cytokine-induced C-Type natriuretic peptide(CNP) secretionfrom vasecular endothelial cells-evidence for CNP as a novel autocrine / paracrine regulator from endothelial cells. Endocrinology.1993,133:3038-3041
    15. Takeuchi H, Ohmori K, Kondo I, et al., Potentiation of C-type natriuretic peptide with ultrasound and microbubbles to prevent neointimal formation after vascular injury in rats. Cardiovasc Res, 2003(58):231-8
    16. Zhang Z, Xiao Z, Diamond SL. Shear stress induction of C-type natriuretic peptide (CNP) in endothelial cells is independent of NO autocrine signaling. Ann Biomed Eng. 1999;27(4):419-26.
    17. Walther T , Schuitheiss H , Tschope C. Impaired angiotensin II regulation of renal C-type natriuretic peptide mRNA expression inexperimental diabetes mellitus. Cardio Res,2001,51:562-566.
    18. Coleman HA.Tare M .Parkington HC.EDHF is not K but may be due to spread of current from the endothelium in guinea pig arterioles.Am J Physiol Heart Circ Physiol,2001;280:2478-83
    19. Nishikawa Y,Stepp DW ,Chilian WM .In vivo iocation and mechanism of EDHF- mediated vasodilation in canine coronary micro cimulation.Am J Physiol,l999;277:252-9
    20. Shimokawa H,Yasutake H,Fujii K,Owada MK,Nakaike R.Fukum oto Y.et a1. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation.J Cardiovasc Pharmacol.1996;28:703-11
    21. Feletou M,Vanhoutte PM. EDHF:new therapeutic targets. Phannacol Res,2004:49:565-80
    22. Chrisman TD, Schulz S, Potter LR, Garbers DL. Seminal plasma factors that cause large elevations in cellular cyclic GMP are C-type natriuretic peptides. J Biol Chem. 1993;268(5):3698-703.
    23. Aizawa T, Wei H, Miano JM,et al., Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res. 2003;93(5):406-13.
    24. Qian JY, Haruno A, et al., Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis, and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries. Circ Res. 2002;91(11): 1063-9.
    25. Takao Hanehira, Masakazu Kohno and Junichi Yoshikawa. Endothelin production in cultured vascular smooth muscle cells-Modulation by the atrial, brain, and C-type natriuretic peptide system. Metabolism. 1997, 46(5 ):487-493
    26. Tokudome T, Horio T, Soeki T, et al., Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology. 2004;145(5):2131-40.
    27. Pham I, Sediame S, Maistre G, et al., Renal and vascular effects of C-type and atrial natriuretic peptides in humans. Am J Physiol. 1997;273(4 Pt 2): 1457-64.
    28. Sima.CK,Tammo O,Keratin I,et al. C-Type natriuretic peptide inhibits messangial cell proliferation and matrix accumulation in vivo.Kidney Int.1998;53:1143-1151
    29. Segawa K, Minami K, Jimi N, et al. C-Type natriuretic peptide inhibits rat mesangial cell proliferation by a phosphorylation-dependent mechanism.Naunyn Schmiedebergs Arch Pharmacol, 1998,357(1):158-167,
    30. Horng HC,John C,Bumett Jr. C-Type natriuretic peptide:The endothelial component of natriuretic peptide system. J Cardiovasc Pharmacol. 1998,32:suppl,3.a22-28
    31. HiroshiO,HideakiY, Mitauaki K,et al.C-Type natriuretic peptide inhibits proliferation and monocyte chemoattactant protein-1 secration in cultured human messagnial cells. Nephron.2000;86:467-472
    32. 刘志红,李世军,陈朝红,等.糖尿病肾病患者足细胞病变的临床病理特征.肾脏病与透析肾移植杂志. 2003;12:144-148.
    33. Wolf G,Chen S,Ziyadeh FN.From the periphery of the glomendar capillary wall toward the centerof disease: podocyte injury comes of age in diabetic nephropathy.Diabetes,2005,54:1626-1634.
    34. Ha H, Yu MR, et al. Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 2002;13 (4): 894-902.
    35. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005-28.
    36. Lin MJ, Yang XR, Cao YN, et al., Hydrogen Peroxide Induced Ca2+ Mobilization in Pulmonary Arterial Smooth Muscle Cells. Am J Physiol Lung Cell Mol Physiol. 2007; Mar 16;
    37. Yu JH, Kim KH, Kim H. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor. Ann N Y Acad Sci. 2006;1090:292-7.
    38. Hajnoczky G, Csordas G, Das S, et al., Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+uptake in apoptosis.Cell Calcium.2006;40(5-6): 553-60.
    39. Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Related Articles, Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin. 2006; 27(7): 821-6.
    40. Katalin Susztak, Amanda C. Raff, Mario Schiffer, and Erwin P. B?ttinger Glucose-Induced Reactive Oxygen Species Cause Apoptosis of Podocytes and Podocyte Depletion at the Onset of Diabetic Nephropathy. Diabetes 2006;55:225-233
    41. Nakagawa T,Zhu H,Morishima N,et a1.Caspase-12 mediates endoplasmic reticulum specific apoptosis and cytotoxicity by amyloid beta.Nature,2000,403(6765):98-103.
    42. Oakes SA,Opferman JT,Pozzan T,et a1.Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family menbers.Biochem Pharmacol,2003;66(8):1335-1340.
    43. Gerassimou C, Kotanidou A, Zhou Z, et al., Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species. Br J Pharmacol. 2007 Mar 5 [Epub ahead of print]
    44. Christiane R, Peter M S, Arun KH, et al., Beyond NO and heme: biochemical and pharmacological opportunities. BMC Pharmacology 2005, 5(Suppl 1):S18
    45. Haslbeck KM, Schleicher E, Bierhaus A, Nawroth P, Haslbeck M, Neundorfer B, Heuss D. The AGE/RAGE/NF-(kappa)B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp Clin Endocrinol Diabetes. 2005;113(5):288-91.
    46. Chrisman TD, Garbers DL. Reciprocal antagonism coordinates C-type natriuretic peptide and mitogen-signaling pathways in fibroblasts. J Biol Chem 1999;274:4293–9.
    47. Hanada S, Terada Y, Inoshita S, Sasaki S, Lohmann SM, Smolenski A, Marumo F. Overexpression of protein kinase G using adenovirus inhibits cyclin E transcription and mesangial cell cycle. Am J Physiol Renal Physiol. 2001;280(5):F851-9.
    48. Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, Wilcox WR. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J Cell Sci. 2005; 118 (Pt 21):5089-100.
    49. Potter LR, Hunter T. Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue: a possible mechanism of heterologous desensitization. J Biol Chem. 2000;275(40):31099-106.
    50. 吴以岭主编.络病学基础与临床研究.北京:中国科学技术出版社,2005,10-11
    51. Morishige K, Shimokawa H, Yamawaki T, et al.Local adenovirus-mediatedtransfer of C-type natriuretic peptide suppresses vascular remodeling in porcinecoronary arteries in vivo.J Am Coll Cardiol,2000,35(4):1040-1047
    52. Davidson EP, Kleinschmidt,et al. Treatment of streptozotocin-induced diabetic rats with AVE7688, a vasopeptidase inhibitor: effect on vascular and neural disease. Diabetes. 2007;56 (2):355-62.
    1. 刘志红.糖尿病肾病:深入研究,全面认识,推进临床。中华肾脏病杂志2006,22(9):519
    2. Sdurijvers BF,De Vriese AS,Flyvbjerg A.From hyperglycemia to diabetic kidney disease:the role of metabolic,hemodynamic,intracellular factors and growth factors/cytokines.Endocr Rev,2004;25:971-1010.
    3. Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, Barylko B, Redfield MM, Burnett JC Jr. Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab. 2006 Aug;17(6):251-8.
    4. Atsushi K, Yoshitaka I, Yushiro I,et al., C-type natriuretic peptide is synthesized and secreted from leukemia cell lines, peripheral blood cells,and peritoneal macrophages. Experimental Hematology 2001 (29): 609–615
    5. Doi K, Itoh H, Komatsu Y, Igaki T, Chun TH, Takaya K, Yamashita J, Inoue M, Yoshimasa T, Nakao K. Vascular endothelial growth factor suppresses C-type natriuretic peptide secretion. Hypertension. 1996 Mar;27(3 Pt 2):811-5.
    6. Chauhan, SD, Nilsson H, Ahluwalia A,Hobbs AJ. Release of C-type natriuretic peptide accounts for the biological activity of endothelium- derived hyperpolarizing factor. Proc Natl Acad Sci USA. 2003;100: 1426–1431
    7. Zhang Z, Xiao Z, Diamond SL. Shear stress induction of C-type natriuretic peptide (CNP) in endothelial cells is independent of NO autocrine signaling.Ann Biomed Eng. 1999 Jul-Aug;27(4):419-26.
    8. Abbey SE, Potter LR. Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor,NPR-B/GC-B, requires elevated intra- cellular calcium concentrations. J Biol Chem. 2002 Nov 8;277(45): 42423-30.
    9. Walther T, Schuitheiss HP, Tschope C. Impaired angiotensin II regulation of renal C-type natriuretic peptide mRNA expression in experimental diabetes mellitus. Cardiovasc Res. 2001 Aug 15;51(3):562-6.
    10. Tokudome T, Horio T, Soeki T, Mori K, Kishimoto I, Suga S, Yoshihara F, Kawano Y, Kohno M, Kangawa K. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology. 2004 May;145(5):2131-40.
    11. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813-20
    12. Guzik TJ , Mussa S , Gastaldi D , et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: Role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation , 2002 , 105 :1656-1662.
    13. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J.Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.
    14. Christiane R, Peter MS, Arun KH,et al., Beyond NO and heme: biochemical and pharmacological opportunities.BMC Pharmacology 2005, 5(Suppl 1):S18
    15. Qian JY, Haruno A, Asada Y, Nishida T, Saito Y, Matsuda T, Ueno H.Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis, and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries. Circ Res. 2002 Nov 29;91 (11): 1063-9.
    16. Katherine Green, Martin D. Brand, Michael P. Murphy. Prevention of Mitochondrial Oxidative Damage as a Therapeutic Strategy in Diabetes. DIABETES, 2004 Feb 53 (s1):s110-s118.
    17. Klepac N, Rudes Z, Klepac R. Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biomed Pharmacother. 2006 Jan;60(1):32-5.
    18. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in Diabetic Nephropathy. Semin Nephrol. 2007 Mar;27(2):130-43.
    19. Guzik TJ , Mussa S , Gastaldi D , et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus :Role of NAD( P) H oxidase and endothelial nitric oxide synthase . Circulation , 2002 , 105 :1656-1662.
    20. Bierhaus A , Illmer T , Kasper M , et al. Advanced glycation end products (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE . Circulation , 1997 ,
    96 :2262-2271.
    21. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006 Aug 8;114(6):597-605.
    22. Guo XH, Huang QB, Chen B, Wang SY, Li Q, Zhu YJ, Hou FF, Fu N, Brunk UT, Zhao M. Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. APMIS. 2006 Dec; 114(12): 874-83.
    23. Arciniegas E, Frid MG, Douglas IS, Stenmark KR.Perspectives on Endothelial- Mesenchymal Transition: Potential Contribution to Vascular Remodeling in Chronic Pulmonary Hypertension. Am J Physiol Lung Cell Mol Physiol. 2007 Mar 23; [Epub ahead of print]
    24. 吴以岭主编.络病学基础与临床研究.北京:中国科学技术出版社,2005,10-11
    1. Zhu Y, Usui HK, Sharma K. Regulation of transforming growth factor Beta in diabetic nephropathy: implications for treatment. Semin Nephrol. 2007 Mar;27(2):153-60.
    2. Alejandro NF, Parrish AR, Bowes RC, Burghardt RC, Ramos KS.Phenotypic profiles of cultured glomerular cells following repeated cycles of hydrocarbon injury. Kidney Int. 2000;57(4):1571-80.
    3. Sima.C.K,Tammo O,Keratin,I,et al. C-Type natriuretic peptide inhibits messangial cell proliferation and matrix accumulation in vivo. Kidney Int,1998;53:1143-1151
    4. Hiroshi O,Hideaki Y,Mitauaki K,et al. C-Type natriuretic peptide inhibits proliferation and monocyte chemoattactant protein-1 secration in cultured human messagnial cells. Nephron.2000; 86: 467-472
    5. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, Schwartz SM. Renal injury from angiotensin II-mediated hypertension.Hypertension. 1992 May; 19 (5): 464-74.
    6. Stephanie Schulz. C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides 26 (2005) 1024–1034
    7. Woodard GE, Rosado JA, Brown J. Expression and control of C-type natriuretic peptide in rat vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol. 2002 Jan;282(1):R156-65.
    8. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, et al. Gene expression, secretion, and autocrine action of Ctype natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 2003;144:2279–84
    9. Tao J, Mallat A, Gallois C, Belmadani S, Mery PF, Nhieu JT, Pavoine C, Lotersztajn S. Biological effects of C-type natriuretic peptide in human myofibroblastic hepatic stellate cells. J Biol Chem. 1999 Aug 20;274(34):23761-9.
    10. Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, Wilcox WR. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis.J Cell Sci. 2005 Nov 1;118(Pt 21):5089-100.
    11. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-20
    12. Ha H, Yu MR, Choi YJ,et al. Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 2002;13(4):894-902.
    13. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1005-28.
    14. Han HJ, Jeon YJ, Lee YJ. Involvement of NF-kappaB in high glucose-induced alteration of alpha-methyl-D-glucopyranoside (alpha-MG) uptake in renal proximal tubule cells. Cell Physiol Biochem. 2003;13(6):375-84.
    15. Haslbeck KM, Schleicher E, Bierhaus A, Nawroth P, Haslbeck M, Neundorfer B, Heuss D. The AGE/RAGE/NF-(kappa)B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp Clin Endocrinol Diabetes. 2005 May;113(5):288-91.
    1. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813-20
    2. Ha H, Yu MR, Choi YJ,et al. Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 2002 Apr;13(4):894-902.
    3. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1005-28.
    4. Lin MJ, Yang XR, Cao YN, Sham JS.Hydrogen Peroxide Induced Ca2+ Mobilization in Pulmonary Arterial Smooth Muscle Cells. Am J Physiol Lung Cell Mol Physiol. 2007 Mar 16;
    5. Yu JH, Kim KH, Kim H. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor. Ann N Y Acad Sci. 2006 Dec;1090:292-7.
    6. Hajnoczky G, Csordas G, Das S, et al., Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40(5-6): 553-60.
    7. Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Related Articles, Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin. 2006; 27(7): 821-6.
    8. Katalin Susztak, Amanda C. Raff, Mario Schiffer,et al., Glucose-Induced Reactive Oxygen Species Cause Apoptosis of Podocytes and Podocyte Depletion at the Onset of Diabetic Nephropathy. Diabetes 2006;55:225-233
    9. Han HJ, Jeon YJ, Lee YJ. Involvement of NF-kappaB in high glucose-induced alteration of alpha-methyl-D-glucopyranoside (alpha-MG) uptake in renal proximal tubule cells. Cell Physiol Biochem. 2003;13(6):375-84.
    10. Shiose A, Kuroda J, Tsuruya K, et al., A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem. 2001;12;276(2): 1417-23.
    11. Hsieh HL,Schafer BW,Sasaki N,et al .Expression analysis of S100 proteins and RAGE in human tumors using tissue miaroarmys. Biochem Biophys Res Commun. 2003; 307: 375-381.
    12. Haslbeck KM, Schleicher E, Bierhaus A,et al., The AGE/RAGE/NF-(kappa)B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp Clin Endocrinol Diabetes. 2005;113(5):288-91.
    13. Pandhare J, Cooper SK, Phang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J Biol Chem.2006;281(4):2044-52.
    14. Kim SH, Yoo CI, Kim HT,et al., Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces cell death through MAPK-dependent mechanism in osteoblastic cells.Toxicol Appl Pharmacol. 2006;215(2):198-207.
    15. Fialkow L, Wang Y, Downey GP.Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42(2): 153-64.
    16. Bubici C, Papa S, Dean K, et al., Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene. 2006;25 (51): 6731-48.
    17. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G.. The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol. 2006;21(1):69-80.
    18. Papa S, Bubici C, Zazzeroni F, et al., The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ. 2006;13(5): 712-29.
    19. Kefaloyianni E, Gaitanaki C, Beis I. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal. 2006 Dec;18(12):2238-51.
    20. Scivittaro V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activate proteinkinase C beta(Ⅱ) in neotal messangial cells. Am J Physiol Renal Physiol,2000,278(4):F676
    21. Abbey SE, Potter LR. Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations. J Biol Chem. 2002;277(45): 42423-30.
    22. Tokudome T, Horio T, Soeki T, et al., Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology. 2004; 145(5): 2131-40.
    23. Christiane R, Peter M S, Arun KH, et al., Beyond NO and heme: biochemical and pharmacological opportunities. BMC Pharmacology 2005;5(Suppl 1):S18
    24. Gerassimou C, Kotanidou A, Zhou Z, et al., Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species.Br J Pharmacol. 2007 Mar 5; [Epub ahead of print]
    25. Broderick KE, Zhang T,Rangaswami H,et al., Cyclic GMP/cGMP-dependent Protein Kinase Induce Interleukin-6 Transcription in Osteoblasts. Mol Endocrinol. 2007 Mar 6; [Epub ahead of print]
    26. Oakes SA,Opferman JT,Pozzan T,et a1.Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family menbers.Biochem Pharmacol,2003; 66(8):1335-1340.
    27. Chitapanarux T, Chen SL, Lee H, Melton AC, Yee HF Jr. C-type natriuretic peptide induces human colonic myofibroblast relaxation. Am J Physiol Gastrointest Liver Physiol. 2004;286(1):G31-6.
    28. Tao J, Mallat A, Gallois C,et al., Biological effects of C-type natriuretic peptide in human myofibroblastic hepatic stellate cells. J Biol Chem. 1999;274(34):23761-9.
    29. Pilz RB, Broderick KE. Role of cyclic GMP in gene regulation. Front Biosci. 2005;10:1239-68.
    30. Hanada S, Terada Y, Inoshita S, Sasaki S, Lohmann SM, Smolenski A, Marumo F. Overexpression of protein kinase G using adenovirus inhibits cyclin E transcription and mesangial cell cycle. Am J Physiol Renal Physiol. 2001;280(5):F851-9.
    31. Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, Wilcox WR. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis.J Cell Sci. 2005; 118 (Pt 21):5089-100.
    32. Chrisman TD, Garbers DL. Reciprocal antagonism coordinates C-type natriuretic peptide and mitogen-signaling pathways in fibroblasts. J Biol Chem 1999;274:4293–9.
    33. Potter LR, Hunter T. Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue: a possible mechanism of heterologous desensitization. J Biol Chem. 2000;275(40):31099-106.
    34. Mendonca MC, Doi SQ, Glerum S, Sellitti DF. Increase of C-type natriuretic peptide expression by serum and platelet-derived growth factor-BB in human aortic smooth muscle cells is dependent on protein kinase C activation. Endocrinology. 2006;147(9):4169-78.
    35. 吴以岭主编.络病学基础与临床研究.北京:中国科学技术出版社,2005,10-11
    1. Takei Y. Structural and functional evolution of the natriuretic peptide system in vertebrates. Int Rev Cytol 2000;194:1-66
    2. Inoue K, Naruse K, Yamagami S,et al., Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system.. Proc Natl Acad Sci U S A. 2003;100:10079-84
    3. Sudoh T, Minamino N, Kangawa K,et al.,. C-type natriuretic peptide (CNP):a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys. Res Commun 1990;168: 863-70
    4. Misono KS, Grammer RT, Fukumi H, Inagami T. Rat atrial natriuretic factor: isolation, structure and biological activities of four major peptides. Biochem Biophys Res Commun.1984;123:444-51
    5. Nakayama T. The genetic contribution of the natriuretic Peptide system to cardiovascular diseases. Endocr J. 2005;52:11-21
    6. Ogawa Y, Itoh H, Yoshitake Y, et al., Molecular cloning and chromosomal assignment of the mouse C-type natriuretic peptide (CNP) gene (Nppc): comparison with the human CNP gene (NPPC). Genomics 1994;24:383-7
    7. Chusho H, Tamura N, Ogawa Y, et al., Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A 2001;98:4016-21.
    8. Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem. 2003;278:25847-52
    9. Yeung VT, Ho SK, Nicholls MG, Cockram CS.Binding of CNP-22 and CNP-53 to cultured mouse astrocytes and effects on cyclic GMP. Peptides.1996;17:101-6
    10. Stingo AJ, Clavell AL, Heublein DM,et al., Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 1992; 263: H1318-21
    11. Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27(1):47-72.
    12. Zhang Z, Xiao Z, Diamond SL. Shear stress induction of C-type natriuretic peptide (CNP) in endothelial cells is independent of NO autocrine signaling. Ann Biomed Eng. 1999;27(4):419-26.
    13. Potter LR. Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci 2005;10:1205-20
    14. Lucas KA, Pitari GM, Kazerounian S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 2000;52:375–414.
    15. Koiler KJ, Lowe DG, Bennett GL,et a1., Selective activation of the B-type natriuretic peptide receptor by CNP.Science。1991;252:120-123
    16. Villar IC, Panayiotou CM, Sheraz A, et al. Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res. 2007 Mar 3; [Epub ahead of print]
    17. Potter LR, Hunter T. Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 1998;273:15533–9.
    18. Potter LR, Hunter T. Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue: a possible mechanism of heterologous desensitization. J Biol Chem. 2000;275(40):31099-106.
    19. Mendonca MC, Doi SQ, Glerum S, Sellitti DF. Increase of C-type natriuretic peptide expression by serum and platelet-derived growth factor-BB in human aortic smooth muscle cells is dependent on protein kinase C activation. Endocrinology. 2006;147(9):4169-78.
    20. Abbey SE, Potter LR. Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations. J Biol Chem. 2002;277(45): 42423-30.
    21. Abbey SE, Potter LR. Lysophosphatidic acid inhibits C-type natriuretic peptide activation of guanylyl cyclase-B. Endocrinology 2003;144:240–6.
    22. Watterson K, Sankala H, Milstien S, Spiegel S. Pleiotropic actions of sphingosine- 1-phosphate. Prog Lipid Res 2003;42:344–57.
    23. Tokudome T, Horio T, Soeki T, et al., Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology. 2004; 145(5): 2131-40.
    24. Chitapanarux T, Chen SL, Lee H, Melton AC, Yee HF Jr. C-type natriuretic peptide induces human colonic myofibroblast relaxation. Am J Physiol Gastrointest Liver Physiol. 2004;286(1):G31-6.
    25. Kazerounian S, Pitari GM, Ruiz-Stewart I, Schulz S, Waldman SA. Nitric oxide activation of soluble guanylyl cyclase reveals high and low affinity sites that mediate allosteric inhibition by calcium. Biochemistry 2002;41:3396–404.
    26. Pilz RB, Broderick KE. Role of cyclic GMP in gene regulation. Front Biosci. 2005;10:1239-68.
    27. Oakes SA,Opferman JT,Pozzan T,et a1.Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family menbers.Biochem Pharmacol,2003; 66(8):1335-1340.
    28. Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40(5-6):553-60.
    29. Broderick KE, Zhang T, Rangaswami H, Zeng Y, Zhao X, Boss GR, Pilz RB. Cyclic GMP/cGMP -dependent Protein Kinase Induce Interleukin-6 Transcription in Osteoblasts. Mol Endocrinol. 2007 Mar 6; [Epub ahead of print]
    30. Hanada S, Terada Y, Inoshita S, et al., Overexpression of protein kinase G using adenovirus inhibits cyclin E transcription and mesangial cell cycle. Am J Physiol Renal Physiol. 2001;280(5):F851-9.
    31. Krejci P, Masri B, Fontaine V, et al., Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis.J Cell Sci. 2005;118(Pt 21):5089-100.
    32. Chrisman TD, Garbers DL. Reciprocal antagonism coordinates Ctype natriuretic peptide and mitogen-signaling pathways in fibroblasts. J Biol Chem 1999;274:4293–9.
    33. Tao J, Mallat A, Gallois C, et al., Biological effects of C-type natriuretic peptide in human myofibroblastic hepatic stellate cells. J Biol Chem. 1999;274(34):23761-9.
    34. Wright RS, Wei CM, Kim CH, et al., C-type natriuretic peptide-mediated coronary vasodilation: role of the coronary nitric oxide and particulate guanylate cyclase systems. J Am Coll Cardiol. 1996;28(4):1031-8.
    35. Pham I, Sediame S, Maistre G, et al., Renal and vascular effects of C-type and atrial natriuretic peptides in humans. Am J Physiol. 1997;273(4 Pt 2): 1457-64.
    36. Ohbayashi H, Yamaki K, Suzuki R, Kume H, Takagi K. Neutral endopeptidase 3.4.24.11 inhibition potentiates the inhibitory effects of type-C natriuretic peptide on leukotriene D4-induced airway changes. Clin Exp Pharmacol Physiol. 1998; 25 (12): 986-91.
    37. Ohbayashi H, Suito H, Takagi K. Compared effects of natriuretic peptides on ovalbumin-induced asthmatic model. Eur J Pharmacol. 1998;346(1):55-64.
    38. Itaba S, Chijiiwa Y, Matsuzaka H, Motomura Y, Nawata H. Presence of C-type natriuretic peptide (CNP) in guinea pig caecum: role and mehanisms of CNP in circular smooth muscle relaxtion. Neurogasroenterol Motil. 2004;16(3):375-82
    39. Chrisman TD, Schulz S, Potter LR, Garbers DL. Seminal plasma factors that cause large elevations in cellular cyclic GMP are C-type natriuretic peptides. J Biol Chem. 1993;268(5):3698-703.
    40. Aizawa T, Wei H, Miano JM, et al., Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res. 2003;93(5):406-13.
    41. Qian JY, Haruno A, Asada Y, et al., Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis, and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries. Circ Res. 2002;91(11): 1063-9.
    42. Takao Hanehira, Masakazu Kohno and Junichi Yoshikawa. Endothelin production in cultured vascular smooth muscle cells-Modulation by the atrial, brain, and C-type natriuretic peptide system. Metabolism. 1997; 46(5 ):487-493
    43. Walther T, Schuitheiss H, Tschope C. Impaired angiotensinⅡ regulation of renal C-type natriuretic peptide mRNA expression inexperimental diabetes mellitus. Cardio Res.2001; 51:562-566.
    44. Tanaka Y,Koike K,Tom L.MaxiK channel roles in blood Vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms.J Smooth Musele Res. 2004;40:l25-53
    45. Coleman HA.Tare M.Parkington HC.EDHF is not K but may be due to spread of current from the endothelium in guinea pig arterioles.Am J Physiol Heart Circ Physiol. 2001; 280: 2478-83
    46. Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA. 2003;100(3):1426-31.
    47. Villar IC, Panayiotou CM, Sheraz A, et al., Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res. 2007 Mar 3; [Epub ahead of print]
    48. Nishikawa Y, Stepp DW, Chilian WM.In vivo iocation and mechanism of EDHF- mediated vasodilation in canine coronary micro cimulation.Am J Physiol,l999;277:252-9
    49. Shimokawa H, Yasutake H, Fujii K, et a1.,The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation.J Cardiovasc Pharmacol.1996;28:703-11
    50. Feletou M, Vanhoutte PM. EDHF:new therapeutic targets. Phannacol Res. 2004;49:565-80
    51. Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE. Mechanisms of natriuretic peptide- induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res. 1997; 35(1): 158-67.
    52. Ueno H, Haruno A, Morisaki N, et al. Local expression of C-type natriuretic peptide markedly suppresses neointimal formation in rat injured arteries through an autocrine/paracrine loop. Circulation 1997;96:2272–9.
    53. Langenickel TH, Buttgereit J, Pagel-Langenickel I, et al., Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA.2006;103(12):4735-40.
    54. Segawa K, Minami K, Jimi N, Nakashima Y, Shigematsu A. Ctype natriuretic peptide inhibits ratmesangial cell proliferation by a phosphorylation-dependent mechanism. Naunyn Schmiedebergs Arch Pharmacol 1998;357:70–6.
    55. Canaan-Kuhl S, Osten dorf T, Zander K, Koch KM, Floege J. Ctype natriuretic peptide inhibits mesangial cell proliferation and matrix accumulation in vivo. Kidney Int 1998; 53: 1143–51.
    56. Horio T, Tokudome T, Maki T, et al. Gene expression, secretion, and autocrine action of Ctype natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 2003;144:2279–84.
    57. Tao J, Mallat A, Gallois C, et al. Biological effects of C-type natriuretic peptide in human myofibroblastic hepatic stellate cells. J Biol Chem. 1999;274(34):23761-9.
    58. Simpson PJ, Miller I, Moon C, et al., Atrial natriuretic peptide type C induces a cell-cycle switch from proliferation to differentiation in brain-derived neurotrophic factor- or nerve growth factor-primed olfactory receptor neurons. J Neurosci 2002;22:5536–51.
    59. Fowkes RC, Forrest-Owen W, McArdle CA. C-type natriuretic peptide (CNP) effects in anterior pituitary cell lines: evidence for homologous desensitisation of CNP-stimulated cGMP accumulation in alpha T3-1 gonadotroph-derived cells. J Endocrinol 2000;166:195–203.
    60. Fowkes RC, Forrest-Owen W, Williams B, et al. C-type natriuretic peptide (CNP) effects on intracellular calcium [Ca2+]i in mouse gonadotrope-derived alphaT3-1 cell line. Regul Pept 1999; 84:43–9.
    61. Samson WK, Huang FL, Fulton RJ. Opposing neuroendocrine actions of the natriuretic peptides: C-type and A-type natriuretic peptides do not interact with the same hypothalamic cells controlling prolactin secretion. J Neuroendocrinol. 1995;7(10):759-63.
    62. Samson WK, Huang FL, Fulton RJ. C-type natriuretic peptide mediates the hypothalamic actions of the natriuretic peptides to inhibit luteinizing hormone secretion. Endocrinology 1993;132:504–9.
    63. Charles CJ, Espiner EA, Richards AM, Donald RA. Central C-type natriuretic peptide augments the hormone response to hemorrhage in conscious sheep. Peptides. 1995;16 (1): 129-32.
    64. Kellner M, Diehl I, Knaudt K, Schule C, Jahn H, Wiedemann K. C-type natriuretic peptide exerts stimulatory effects on the corticotropin-releasing hormone-induced secretion of hormones in normal man. Eur J Endocrinol. 1997;136(4):388-93.
    65. Kellner M, Yassouridis, Hua, et al., Intravenous C-type natriuretic peptide augments behavioral and endocrine effects of cholecystokinin tetrapeptide in healthy men. J Psychiatr Res. 2002;36(1): 1-6.
    66. Yamamoto S, Morimoto I, Yanagihara N, et al., C-type natriuretic peptide suppresses arginine- vasopressin secretion from dissociated magnocellular neurons in newborn rat supraoptic nucleus. Neurosci Lett. 1997;229(2):97-100.
    67. Pataki I, Jaszberenyi M, Telegdy G. Hyperthermic effect of centrally administered natriuretic peptides in the rat. Peptides. 1999;20(2):193-7.
    68. Holliday LS ,Dean AD , Greenwald JM. et al . C- type natriuretic peptide incrase bone resorption in 1,25-dihydroxyvitamin-D3-stimulated mouse bone marrow cultures. J Biol Chem, 1995; 270(32): 18983-9
    69. Yoshio. Terada, K. Tomita, H. et al., PCR localization of C-type natriuretic peptide and B-type receptor mRNAs in rat nephron segments. Am J Physiol Renal Physiol. 1994;267: F215-F222
    70. Suzuki E, Hirata Y, Hayakawa H, et al., Evidence for C-type natriuretic peptide production in the rat kidney. Biochem Biophys Res Commun. 1993;192(2):532-8.
    71. Kar NL, Josephc KL,Timothy GY. Gene expression and synthesis of natriuretic peptide by cultured human glomrular. Hypertens,1999,17:575-583
    72. Lewko B; Endlich N, Kriz W, et al. C-type natriuretic peptide as a podocyte hormone andmodulation of its cGMP production by glucose and mechanical stress. Kidney International, 2004; 66 (3): 1001-1008
    73. 姚建,曹红娣,王伟. 人肾小球系膜细胞利钠肽受体表达的研究.上海第二医科大学学报,1998;17:479-480
    74. Suga S, Itoh H, Komatmu Y, et al. Cytokine-induced C-Type natriuretic peptide(CNP) secretion from vasecular endothelial cells-evidence for CNP as a novel autocrine / paracrine regulator from endothelial cells.Endocrinology.1993;133:3038-3041
    75. Sima.C.K,Tammo O,Keratin I,et al. C-Type natriuretic peptide inhibits messangial cell proliferation and matrix accumulation in vivo. Kidney Int,1998;53:1143-1151
    76. Segawa K, Minami K, Jimi N, et al. C-Type natriuretic peptide inhibits rat mesangial cell proliferation by a phosphorylation-dependent mechanism.Naunyn Schmiedebergs Arch Pharmacol, 1998,357(1):158-167,
    77. Horng HC,John C,Bumett Jr. C-Type natriuretic peptide:The endothelial component of natriuretic peptide system. J Cardiovasc Pharmacol. 1998;32:suppl,3.a22-28
    78. Hiroshi O, Hideaki Y, Mitauaki K, et al. C-Type natriuretic peptide inhibits proliferation and monocyte chemoattactant protein-1 secration in cultured human messagnial cells. Nephron, 2000; 86:467-472
    79. 刘志红,李世军,陈朝红,等.糖尿病肾病患者足细胞病变的临床病理特征. 肾脏病与透析肾移植杂志. 2003;12:144-148.
    80. Wolf G,Chen S,Ziyadeh FN.From the periphery of the glomendar capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy.Diabetes.2005;54:1626-1634.
    81. Lin MJ, Yang XR, Cao YN, Sham JS.Hydrogen Peroxide Induced Ca2+ Mobilization in Pulmonary Arterial Smooth Muscle Cells. Am J Physiol Lung Cell Mol Physiol. 2007 Mar 16;
    82. Yu JH, Kim KH, Kim H. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor. Ann N Y Acad Sci. 2006;1090:292-7.
    83. Hajnoczky G, Csordas G, et al., Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40(5-6): 553-60.
    84. Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Related Articles, Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin. 2006; 27(7): 821-6.
    85. Katalin Susztak, Amanda C. Raff, Mario Schiffer, and Erwin P. B?ttinger Glucose-Induced Reactive Oxygen Species Cause Apoptosis of Podocytes and Podocyte Depletion at the Onset of Diabetic Nephropathy. Diabetes 2006;55:225-233
    86. Gerassimou C, Kotanidou A, Zhou Z, Simoes DD, Roussos C, Papapetropoulos A. Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species. Br J Pharmacol. 2007 Mar 5
    87. Christiane R, Peter M S, Arun KH, et al., Beyond NO and heme: biochemical and pharmacological opportunities. BMC Pharmacology 2005, 5(Suppl 1):S18
    88. Kuthe A, Reinecke M, Uckert S, Becker A, David I, Heitland A, et al. Expression of guanylyl cyclase B in the human corpus cavernosum penis and the possible involvement of its ligand C-type natriuretic polypeptide in the induction of penile erection. J Urol 2003;169:1918–22.
    89. Davidson EP, Kleinschmidt TL, Oltman CL, et al. Treatment of streptozotocin-induced diabetic rats with AVE7688, a vasopeptidase inhibitor: effect on vascular and neural disease. Diabetes. 2007;56(2):355-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700