用户名: 密码: 验证码:
趋化因子受体CCR7、CXCR4与肺癌器官转移关系的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肿瘤的转移是恶性肿瘤最重要的生物学特性之一,是一个多步骤、多因素参与的极其复杂的过程,但其具体机制尚未明确。研究证实,肿瘤的转移不是随意的,而是具有选择性的,即器官转移特异性。1889年Peget提出的“种子—土壤”学说(the "seed and soil" hypothesis)认为,肿瘤的转移是特定的肿瘤细胞(种子)在适宜其生长的器官环境(土壤)中生长发展的结果。1928年Ewing的“解剖或机械”理论(the anatomical or mechanical theory)以器官的血液、淋巴引流方向解释转移的发生。而后来在肿瘤特异性转移的研究中出现了新的概念:“归巢”理论(the homing theory);该理论认为,肿瘤细胞转移到特定器官是由于不同器官通过趋化作用捕获或吸引特定类型肿瘤细胞而使肿瘤细胞“归巢”的结果。
     近年来,化学趋化因子受体—配体信号轴的研究发现为“归巢”理论提供了有利的证据。趋化因子是细胞因子超家族中一类具有化学趋化作用的分泌型小分子蛋白,由70~125个氨基酸组成,分子量8-15kD不等。迄今为止至少已发现50余种趋化因子及20余种受体。根据其N末端4个保守半胱氨酸(Cys)残基的前两个半胱氨酸残基的位置,可将趋化因子分为4个亚家族——CXC、CC、C、CX3C亚家族。趋化因子受体是一类介导趋化因子行使功能的GTP蛋白耦联的跨膜受体,通常表达于免疫细胞、内皮细胞等细胞膜上;7个跨膜区将分子分成细胞外自由的N端、3个细胞外环和C端几个部分。趋化因子与细胞表面的特异性受体结合后可参与多种生理和病理过程,如细胞生长、发育、分化、凋亡、组织损伤、肿瘤的生长和转移等。2001年Muller A首次提出了肿瘤细胞可以利用趋化因子及其受体的特异性结合实现器官特异性转移,研究发现乳腺癌细胞高表达趋化因子受体CXCR4和CCR7,而CXCR4的配体CXCL12多表达于乳腺癌的特异转移部位肺、肝脏、骨髓等,而CCR7的配体CCL21则多表达于淋巴结组织,从而导致了乳腺癌细胞的定向转移。越来越多的研究表明,趋化因子CXCL12/CXCR4信号轴在肿瘤的器官特异性转移中与趋化因子受体CCR7及其配体在肿瘤淋巴结转移中均发挥着愈加重要的作用。
     肺癌是当今全世界最严重威胁人民健康的恶性疾病之一,随着我国工业化的进展,肺癌的发病率呈上升趋势,现已位居恶性肿瘤发病率和死亡率之首,其中80%以上是非小细胞肺癌(non-small cell lung cancer, NSCLC)。肺癌早期可发生淋巴结转移,晚期可发生远处器官的特异性转移,常见的转移部位有脑、骨、肝和肾上腺等,其中脑转移最为常见。尽管目前在肺癌早期诊断及综合治疗方面取得了一定的进步,肺癌的转移仍是临床治疗所面对的最大难题,直接影响着患者的生存预后。所以研究肺癌器官特异性转移的分子生物学机制,包括淋巴结转移及远处转移,对指导肺癌患者选择治疗方案和判定预后具有重要的临床价值。
     目前,国内对趋化因子与肺癌器官特异性转移机制的研究仍较为少见,尤其是与肺癌脑转移的研究未见相关文献报道。本课题通过应用RT-PCR、免疫组化及Western blot三种方法联合检测趋化因子受体CCR7与VEGF-C在NSCLC患者肺癌组织及转移淋巴结中的表达情况,意在探索肺癌淋巴结转移的可能机制。另外,本课题在国内首次检测趋化因子受体CXCR4在NSCLC并脑转移患者的脑转移灶中的表达情况,以期初步探索肺癌脑特异性转移的可能机制。
     第一部分趋化因子受体CCR7及VEGF-C表达对非小细胞肺癌淋巴结转移潜能的影响
     目的:肺癌淋巴结转移的发生与肺癌细胞的趋化迁移及肿瘤淋巴管生成关系密切。本文旨在于探讨趋化因子受体CCR7及VEGF-C的表达对非小细胞肺癌淋巴结转移潜能的影响。
     方法:临床收集2008年1月至2008年8月间在山东大学附属省立医院胸外科施行肺癌完全切除加系统淋巴结清扫的65例NSCLC患者的标本,包括肺癌组织、淋巴结组织及正常肺组织。应用RT-PCR方法检测标本中CCR7mRNA及VEGF-C mRNA的表达,并进行基因测序验证;应用免疫组化与Western blot方法检测CCR7及VEGF-C蛋白的表达情况,单克隆抗体D2-40标记淋巴管内皮细胞以计数淋巴管密度(LVD)。建立数据库,应用x2检验比较CCR7及VEGF-C表达情况的差异,u检验比较LVD的差异情况,并应用Logistic多因素回归分析判定影响非小细胞肺癌淋巴结转移潜能的独立相关危险因素。
     结果:在65例患者的肺癌组织中,RT-PCR方法检测有47例(72.3%)CCR7 mRNA及39例(60.0%)VEGF-C mRNA表达阳性,免疫组化方法检测有43例(66.2%)CCR7蛋白及36例(55.4%)VEGF-C蛋白表达阳性,Western blot方法检测有44例(67.7%)CCR7蛋白及37例(56.9%)VEGF-C蛋白表达阳性。CCR7及VEGF-C在肺癌组织中的表达均无明显差异(P>0.05),且均与淋巴结转移状态明显相关(P<0.05),而CCR7与VEGF-C的共同表达较单一表达与淋巴结转移状态有更为显著的相关性(P<0.05)。肺癌组织中LVD较正常肺组织中明显增高(P<0.001),且与CCR7、VEGF-C的表达及肺癌淋巴结转移状态显著相关(P<0.05)。35例有转移的淋巴结中CCR7、VEGF-CmRNA的表达率为85.7%、74.3%,分别高于无转移的淋巴结(20.0%、13.3%),并与肺癌组织具有高度同源性。20例正常肺组织中均未见CCR7及VEGF-C蛋白的明显表达。Logistic多因素回归分析结果显示:肺癌组织中CCR7阳性表达(OR=10.275,P=0.005)及VEGF-C阳性表达(OR=5.550,P=0.021)是影响NSCLC患者淋巴结转移潜能的独立危险因素。
     结论:CCR7及VEGF-C在NSCLC患者的肺癌组织及淋巴结转移灶中均表达明显增高,并与肺癌淋巴结转移状态密切相关;CCR7与VEGF-C的共同表达可能促进了NSCLC淋巴结转移,亦可作为预测NSCLC患者淋巴结转移潜能的调控基因。
     第二部分趋化因子受体CXCR4过度表达与非小细胞肺癌脑转移相关性的临床研究
     目的:肺癌可发生远处器官特异性转移,其中以脑转移最为常见,但其具体机制仍未明确。本文旨在于探讨趋化因子受体CXCR4的表达情况与非小细胞肺癌脑转移的相关性。
     方法:选取1998年6月至2008年9月期间在山东大学附属省立医院行肺癌及脑转移瘤切除的32例单发脑转移(M1组)的NSCLC患者的肺癌组织及脑转移灶石蜡标本;并选取近十年期间条件最大限度一致配对的32例无远处转移(M0组)的NSCLC患者的肺癌组织及另30例原发性脑肿瘤组织作为对照。应用免疫组化方法(SP法)检测各标本中CXCR4蛋白的表达情况,Mcnemar配对x2检验或Fisher精确概率法比较CXCR4蛋白表达的差异。随访患者,Kaplan-Meier法计算生存率,绘制生存曲线,Log-rank检验比较生存差别,Cox多因素回归分析判定单发脑转移NSCLC患者预后的独立危险因素。
     结果:在32例单发脑转移(M1组)的NSCLC患者中,有29例(90.6%)肺癌组织中CXCR4蛋白阳性表达,而全部32例(100%)脑转移灶中CXCR4蛋白均阳性表达,二者之间无显著差异(P=0.238)。在32例无远处转移(M0组)的NSCLC患者的肺癌组织中CXCR4蛋白阳性表达率为68.8%(22/32),明显低于M1组NSCLC患者肺癌组织(P=0.000)。30例原发性脑肿瘤中有19例(63.3%)CXCR4蛋白阳性表达,明显低于脑转移灶中的表达(P=0.000)。32例单发脑转移的NSCLC患者术后1年、3年、5年累积生存率分别为62.5%、25%、15.6%;而32例无远处转移的NSCLC患者术后1年、3年、5年累积生存率分别为84.4%、53.1%、40.6%;Log-rank检验显示两者有显著差异(P=0.002)。同时相脑转移的18例NSCLC患者脑部手术后1年、3年及5年生存率分别为72.2%、27.7%、16.7%;异时相脑转移的14例NSCLC患者脑部手术后1年、3年及5年生存率分别为50%、21.4%、14.3%;Log-rank检验显示两组患者无显著差异(P=0.39)。Cox多因素回归分析显示结果显示,性别、年龄、组织学类型、肿瘤分化程度、T分期、N分期、转移方式及CXCR4在肺癌组织中的表达均与单发脑转移的NSCLC患者预后无明显相关性(P>0.05)。
     结论:趋化因子受体CXCR4在NSCLC患者脑转移灶及肺癌组织中均存在过度表达,提示了CXCL12/CXCR4信号轴可能在NSCLC特异性脑转移中起到一定的趋化作用。
Background
     Tumor metastasis is one of the most important biological behaviors of the tumor, which involves a series of complex processes with many factors. But the mechanism of metastasis is still unclear. Tumor metastasis results from a non-random process, but a selective process——Organ specificity. In 1889 Paget developed the theory of "seed and soil", and He hypothesized that certain tumor cells (seeds) colonize selectively distant organs (soil) with a favorable environment facilitating survival of tumor cells. Then in 1928, Ewing explained metastases by the "anatomical or mechanical" theories such as tumor cell trapping or lodgement of tumor emboli into organ vascular bed. However, in the study of Tumor metastasis a new theory——the "homing" theory appeared. The theory holds that different organs have special abilities to arrest or attract through chemotactic factors specific types of cancer cells.
     In recent years, the research of chemokine receptor-ligand signaling axis provided compelling support for the chemoattraction part of the homing theory. Chemokines are a large family of small secreted proteins associated with the leukocyte trafficking during host defense and pathological immune responses. Chemokines are generally 8-15 kDa in size and contain 70~125 amino acids. The human chemokine system currently includes more than 50 different chemokines and 20 different chemokine receptors. They are classified into which are grouped into four families (C, CC, CXC, and CX3C) based on the spacing of key cysteine residues near the N terminus of these proteins. Chemokines act through both specific and shared receptors that all belong to the superfamily of G protein-coupled receptors (GPCRs) with seven-transmembrane domains. Chemokines and the specific receptors on cell surface may participate in a variety of physiological and pathological processes, such as cell growth, development, differentiation, apoptosis, tissue injury, tumor growth and metastasis. In 2001, Muller A and the colleagues first demonstrated a potential mechanism for site-specific metastasis which is related to expression of chemokines and their receptors. They reported that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-la and CCL21/6Ckine exhibited peak levels of expression in organs representing the first destinations of breast cancer metastasis. Their findings indicated that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.
     Nowadays, lung cancer is one of the most serious malignant diseases threaten to people's health in the world. In China, lung cancer occurs at very high frequencies and has been the leading cause of tumor-specific death, and more than 80% are non-small cell lung cancer (NSCLC). Clinically, it appears that lymph node metastasis of lung cancer may occur early, and latter lung cancer can metastasize to distant specific target organs, such as brain, bone, liver and adrenal glands. Among them, brain metestasis occurs most frequently. Metastatic spread constitutes the primary source of morbidity and mortality, and the prognosis of patients with metastasizing lung cancer leaves much to be desired. Therefore, a thorough understanding of the organ-specific metastatic process, including lymph node metastasis and distant metastasis, is likely to be crucial to developing effective new therapies for lung cancer.
     While nowadays the reports on the role of the chemokine-receptor axis in organ-specific metastasis, especially brain-specific metastasis, of lung cancer were very rare. Then this study was to investigate the relationship between CCR7 expression and lymph node metastasis of NSCLC by RT-PCR, immunohistochemistry, and western blot assays and explore the mechanism of lymph node metastasis of lung cancer. And then this study was the first time to investigate the correlation between CXCR4 expression and brain-specific metastasis of NSCLC and explore the mechanism of brain metastatic specificity of lung cancer initially.
     Part I Effect of CCR7 and VEGF-C on lymph node metastatic potentiality of non-small cell lung cancer
     Objective:The incidence of lymph node metastasis of lung cancer was shown to be positive correlated with tumor chemotactic migration and lymphangiogenesis. This study was to investigate the relationship between lymph node metastatic potentiality of non-small cell lung cancer(NSCLC) and expression of CCR7 and VEGF-C.
     Methods:The samples of cancer tissues, lymph nodes and normal lung tissues from 65 patients with NSCLC, who underwent complete resection in Provincial Hospital Affiliated to Shandong University from January 2008 to August 2008, were collected. And all samples were examined by RT-PCR, immunohistochemistry and western blot assays to detect CCR7 and VEGF-C expression. Monoclonal antibody D2-40 was used to assessment of lymphatic vessel density (LVD). The SSPS 11.5 software package was used for statistical analysis. According to the clinicopathologic factors, the difference of CCR7 and VEGF-C expression was compared byχ2 test, and the difference of LVD was compared by u-test. Logistic regression analysis was performed to determine the independent risk factors of influencing lymph node metastatic potentiality of NSCLC.
     Results:CCR7 mRNA and VEGF-C mRNA expression was observed in 47(72.3%) and 39 (60.0%) lung cancer tissues by RT-PCR assay; CCR7 protein and VEGF-C protein expression was observed in 43 (66.2%) and 36 (55.4%) lung cancer tissues by immunohistochemistry; and CCR7 protein and VEGF-C protein expression was also observed in 44 (67.7%) and 37 (56.9%) lung cancer tissues by western blot, respectively. No significant difference was found between CCR7 and VEGF-C expression(P>0.05), and each was positive related to lymph node metastasis of NSCLC (P<0.05), furthermore co-expression of CCR7 and VEGF-C expression was more significantly related to lymph node metastasis of NSCLC (P<0.05). In lung cancer tissues, LVD was higher than that in normal lung tissues (P<0.001); and LVD in lung cancer was positively related to CCR7 expression, VEGF-C expression and lymph node metastasis. The expression rate of CCR7 mRNA and VEGF-C mRNA in metastatic lymph nodes were 85.7% and 74.3%, which were higher than that in non-metastatic lymph nodes(20.0% and 13.3%). Obvious expression of CCR7 and VEGF-C protein was found in no normal lung tissuse. Logistic regression analysis revealed that CCR7 mRNA expression (OR=10.275, P=0.005) and VEGF-C mRNA expression in tumors(OR=5.550, P=0.021) were independent risk factors of lymph node metastasis of NSCLC.
     Conclusions:CCR7 and VEGF-C were highly expressed in lung cancer and the metastatic lymph nodes, with significant correlation with lymph node metastasis of NSCLC. The co-expression of CCR7 and VEGF-C might promote lymphatic metastasis of lung cancer and might be a clinical predictor of lymph node metastasis of patients with NSCLC.
     Part II High-level CXCR4 expression correlates with brain metastasis of non-small cell lung cancer
     Objective:Lung cancer might develop organ-specific metastasis, and brain metastasis occurs most frequently, while the mechanism is still unclear. This study was to investigate the correlation between CXCR4 expression and brain metastasis of non-small cell lung cancer.
     Methods:The metastatic brain tumors and lung cancer tissues from 32 patients with solitary brain metastasis of NSCLC (M1), who underwent combined surgical treatment from June 1998 to September 2008, and 32 paring patients without distant metastasis (MO) and 30 patients with primary brain tumor, were examined by immunohistochemistry to detect the expression of CXCR4 protein. The difference of CXCR4 expression was compared byχ2 test. Estimation of survival was calculated using the Kaplan-Meier method, and the statistical differences were analyzed using the Log-rank test. Cox regression analysis was performed to identify risk prognostic factors of patients with solitary brain metastasis of NSCLC.
     Results:CXCR4 protein expression was observed in 29 (90.6%) lung cancer with brain metastasis(M1) and in all metastatic brain tumors (100%), and no difference in them two(P=0.238). And CXCR4 protein expression was observed in 68.8%(22/32) paired lung cancer without brain metastasis(MO), which was significantly lower than that in M1 lung cancer(P=0.000). In 63.3%(19/30) primary brain tumors, CXCR4 protein expression was observed and was significantly lower than that in metastatic brain tumors(P=0.000). The 1-year,3-year and 5-year cumulative survival rates of 32 patients with solitary brain metastasis of NSCLC were 62.5%,25%, and 15.6%; and the survival rates of patients with M0 NSCLC were 84.4%,53.1%, and 40.6%; Log-rank test showed that the rates of the two groups was significantly different(P=0.002). The 1-year,3-year and 5-year cumulative survival rates of 18 patients with synchronous brain metastasis were 72.2%,27.7%, and 16.7%; the survival rates of 14 patients with metachronous brain metastasis were 50%,21.4%, and 14.3%; Log-rank test showed there was no significant difference between the two groups(P=0.39). Cox regression analysis showed that gender, age, tumor histologic type or differentiation, T status, N status, brain metastasis pattern, adjuvant therapy and CXCR4 expression in lung cancer did not significantly affect survival of M1 NSCLC patients(P>0.05).
     Conclusion:CXCR4 protein expressed highly in lung cancer tissues and metastatic brain tumors of patients with M1 NSCLC, which indicated that CXCL12/CXCR4 signaling axis might play a chemotactic role in brain specific metastasis of NSCLC.
引文
1. He J, Gu D, Wu X, et al. Major Causes of Death among Men and Women in China. N Engl J Med,2005,353(11):1124-1134.
    2. Jemal A, Clegg LX, Ward E, et al. Annual report to the nation on the status of cancer,1975-2001, with a special feature regarding survival. Cancer, 2004,101(1):3-27.
    3. Paget S. The distribution of secondary growths in cancer of the breast. Lancet,1889,1(6):571-73.
    4. Ewing J. Neoplastic Diseases.6th ed. Philadelphia, PA:WB Saunders.1928.
    5. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature,2001,410(6824):50-56.
    6. Robert MS. Chemokines:Not just leukocyte chemoattractants in the promotion of cancer. Nature immunol,2001,2(4):285-286.
    7. Vicari AP, Caux C. Chemokines in cancer. Cytokine Growth Factor Rev, 2002,13(2):143-145.
    8. Pope RJ, Hansell DM. Extra-thoracic staging of lung cancer. Eur J Radiol, 2003,45(1):31-38.
    9. Na II, Lee TH, Choe DH, et al. A diagnostic model to detect silent brain metastases in patients with non-small cell lung cancer. Eur J Cancer, 2008,44(16):2411-2417.
    10. Haberkorn U, Schoenberg SO. Imaging of lung cancer with CT, MRT and PET. Lung Cancer,2001,34 Suppl 3:S 13-23.
    11. Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci,2008,99(8):1501-1506.
    12. Jin T, Xu X, Hereld D. Chemotaxis, chemokine receptors and human disease. Cytokine,2008,44(1):1-8.
    13. Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine,2008,43(3):374-379.
    14. Takeuchi H, Fujimoto A, Tanaka M, et al. CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res,2004,10(7):2351-2358.
    15. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 2001,7(2):192-198.
    16. Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res,2001,61(5):1786-1790.
    17. Stacker SA, Baldwin ME, Achen MG. The role of tumor lymphangiogenesis in metastatic spread. FASEB J,2002,16(9):922-934.
    18. Solito R, Alessandrini C, Fruschelli M, et al. An immunological correlation between the anchoring filaments of initial lymph vessels and the neighboring elastic fibers:a unified morphofunctional concept. Lymphology, 1997,30(4):194-202.
    19. Taipale J, Makinen T, Arighi E, et al. Vascular endothelial growth factor receptor-3. Curr Top Microbiol Immunol,1999,237:85-96.
    20.刘慧冬,赵玲辉,李玉兰,等.人胃癌淋巴管的超微结构.解剖学报,2004,35(5):513-516.
    21. Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 2002,296(5574):1883-1886.
    22. Trojan L, Rensch F, VossM, et al. The role of the lymphatic system and its specific growth factor, vascular endothelial growth factor C, for lymphogenic metastasis in prostate cancer. BJU Int,2006,98(4):903-906.
    23. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science,1997,276(5317):1423-1425.
    24. Guo X, Chen L, Lang R, et al. Invasive micropapillary carcinoma of the breast:association of pathologic features with lymph node metastasis. Am J Clin Pathol,2006,126(5):740-746.
    25. Aurello P, Rossi Del Monte S, D'Angelo F, et al. Vascular endothelial growth factor C and microvessel density in gastric carcinoma:correlation with clinicopathological factors. Our experience and review of the literature. Oncol Res,2009,17(9):405-411.
    26. Faoro L, Hutto JY, Salgia R, et al. Lymphatic vessel density is not associated with lymph node metastasis in non-small cell lung carcinoma. Arch Pathol Lab Med,2008,132(12):1882-1888.
    27. Naumann CM, Al-Najar A, Alkatout I, et al. Lymphatic spread in squamous cell carcinoma of the penis is independent of elevated lymph vessel density. BJU Int,2009,;103(12):1655-1659.
    28. Liang P, Hong JW, Ubukata H, et al. Increased density and diameter of lymphatic microvessels correlate with lymph node metastasis in early stage invasive colorectal carcinoma. Virchows Arch,2006,448(5):570-575.
    29.于秀文,荣玮,徐凤琳,等.粘蛋白和上皮钙粘附蛋白在结直肠肿瘤组织中的表达及其意义.癌症,2007,26(11):1204-1210.
    30. Yoshida R, Kimura N, Harada Y, et al. The loss of E-cadherin, alpha-and beta-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int J Oncol,2001,18(3):513-520.
    31. Kovar JL, Johnson MA, Volcheck WM, et al. Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model. Am J Pathol, 2006,169(4):1415-1426.
    32. Ioachim E, Charchanti A, Briasoulis E, et al. Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer:their prognostic value and role in tumour invasion and progression. Eur J Cancer,2002,38(18):2362-2370.
    33. Pepper MS, Mandriota SJ, Jeltsch M, et al. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol,1998,177(3):439-452.
    34. Karkkainen MJ, Makinen T, Alitalo K. Lymphatic endothelium:a new frontier of metastasis research. Nat Cell Biol,2002,4(1):E2-5.
    35. Clarijs R, Schalkwijk L, Hofmann UB, et al. Induction of vascular endothelial growth factor receptor-3 expression on tumor microvasculature as a new progression marker in human cutaneous melanoma. Cancer Res, 2002,62(23):7059-7065.
    36. Was H. Characterization of markers and growth factors for lymphatic endothelium. Postepy Biochem,2005,51(2):209-214.
    37. Jackson DG, Prevo R, Clasper S, et al. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol,2001,22 (6):317-321.
    38. Mouta Carreira C, Nasser SM, di Tomaso E, et al. LYVE-1 is not restricted to the lymph vessels:expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res, 2001,61(22):8079-8084.
    39. Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn, 2002,225(3):351-357.
    40. Kato S, Shimoda H, Ji RC, et al. Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers. Anat Sci Int, 2006,81(2):71-83.
    41. Schacht V, Dadras SS, Johnson LA, et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol, 2005,166(3):913-921.
    42. Sonne SB, Herlihy AS, Hoei-Hansen CE, et al. Identity of M2A (D2-40) antigen and gp36 (Aggrus, T1A-2, podoplanin) in human developing testis, testicular carcinoma in situ and germ-cell tumours. Virchows Arch, 2006,449(2):200-206.
    43. Rollins BJ. Chemokines. Blood,1997;90(3):909-928.
    44. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol,2000,18:217-242.
    45. Zlotnik A, Yoshie O. Chemokines:a new classification system and their role in immunity. Immunity,2000,12(2):121-127.
    46. Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol, 2004,14(3):181-185.
    47. Tanaka T, Bai Z, Srinoulprasert Y, et al. Chemokines in tumor progression and metastasis. Cancer Sci,2005,96(6):317-322.
    48. Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol,2006,79(4):639-651.
    49. Strieter RM, Belperio JA, Phillips RJ, et al. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol,2004,14(3):195-200.
    50. Singh S, Sadanandam A, Singh RK. Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev,2007,26(3-4):453-467.
    51. Boisleve F, Kerdine-Romer S, Rougier-Larzat N, et al. Nickel and DNCB induce CCR7 expression on human dendritic cells through different signalling pathways:role of TNF-alpha and MAPK. J Invest Dermatol, 2004,123(3):494-502.
    52. Ott TR, Pahuja A, Nickolls SA, et al. Identification of CC chemokine receptor 7 residues important for receptor activation. J Biol Chem, 2004,279(41):42383-42392.
    53. Yoshida R, Nagira M, Kitaura M, et al. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem,1998,273(12):7118-7122.
    54. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands:balancing immunity and tolerance. Nat Rev Immunol,2008,8(5):362-371.
    55. Sanchez-Sanchez N, Riol-Blanco L, Rodriguez-Fernandez JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol, 2006,176(9):5153-5159.
    56. Hirao M, Onai N, Hiroishi K, et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells:critical role in migration from the tumor site to draining lymph nodes. Cancer Res, 2000,60(8):2209-2217.
    57. Hirao M, Onai N, Hiroishi K, et al. CC chemokine receptor 7 on dendritic cells is iduced after interaction with apoptotic tumor cells:critical role in migration from the tumor site to draining lymph nodes. Cancer Research, 2000;60(8):2209-2217.
    58. Yang SC, Hillinger S, Riedl K, et al. Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res,2004,10(8):2891-2901.
    59. Braun SE, Chen K, Foster RG, et al. The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol,2000,164(8):4025-4031.
    60. Arenberg DA, Zlotnick A, Strom SR, et al. The murine CC chemokine, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunol Immunother,2001,49(11):587-592.
    61. Vicari AP, Ait-Yahia S, Chemin K, et al. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol,2000,165(4):1992-2000.
    62. Sharma S, Stolina M, Leco J, et al. Secondary lymphoid tissue chemokine mediates T cell dependent antitumor responses in vivo. J Immunol, 2000;164(9):4558-4563.
    63. Sanchez-Sanchez N, Riol-Blanco L, de la Rosa G, et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood,2004,104(3):619-625.
    64. Cabioglu N, Yazici MS, Arun B, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res,2005,11(16):5686-5693.
    65. Sancho M, Vieira JM, Casalou C, et al. Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. J Endocrinol, 2006,191(1):229-238.
    66. Wiley HE, Gonzalez EB, Maki W, et al. Expression of CC chemokine receptor 7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst,2001,93(21):1588-1589.
    67. Joukov V, Pajusola K, Kaipainen A, et al. A novel endothelial growth factor, VEGF-C, is a ligand for the Flt4(VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J,1996,15(2):290-298.
    68. Lee J, Gray A, Yuan J, et,al. Vascular endothelial growth factor-related protein:a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA,1996,93(5):1988-1992.
    69. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science,1997,276(5317):1423-1425.
    70. Hamrah P, Chen L, Zhang Q, et al. Expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol,2003,163(1):57-68.
    71. Enholm B, Paavonen K, Ristimaki A, et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene,1997,14(20):2475-2483.
    72. Tsai PW, Shiah SG, Lin MT, et al. Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway. J Biol Chem, 2003,278(8):5750-5759.
    73. Tang Y, Zhang D, Fallavollita L, et al. Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Res,2003,63(6):1166-1171.
    74. Ruohola JK, Valve EM, Karkkainen MJ, et al. Vascular endothelial growth factors are differentially regulated by steroid hormones and antiestrogens in breast cancer cells. Mol Cell Endocrinol,1999,149(1-2):29-40.
    75. Ristimaki A, Narko K, Enholm B, et al. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem,1998,273(14):8413-8418.
    76. Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transducer growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J,2001,20(17):4762-4773.
    77. Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin Cancer Res,2006,12(23):6865-6868.
    78. Chen Z, Varney ML, Backora MW, et al. Downregulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 2005,65(19):9004-9011.
    79. Mattila MM, Ruohola JK, Karpanen T, et al. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer,200,98(6):946-951.
    80. Karpanen T, Alitalo K. Lymphatic vessels as targets of tumor therapy? J Exp Med,2001,194(6):37-42.
    81. Valtola R, Salven P, Heikkila P. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol, 1999,154(5):1381-1390.
    82. Hamada K, Oike Y, Takakura N, et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood, 2000,96(12):3793-3800.
    83. Chien MH, Ku CC, Johansson G, et al. Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis, 2009,30(12):2005-2013.
    84. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J, 2001,20(4):672-682.
    85. Mylona E, Alexandrou P, MPakali A, et al. Clinicopathological and prognostic significance of vaseular endothelial growth factors(VEGF)-C and-D and VEGF receptor 3 in invasive breast carcinoma. Eur J Surg Oncol, 2007,33(3):294-300.
    86. Hachisuka T, Narikiyo M, Yamada Y, et al. High lymphatic vessel density correlates with overexpression of VEGF-C in gastric cancer. Oncol Rep, 2005,13(4):733-737.
    87. Kajita T, Ohta Y, Kimura K, et al. The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br J Cancer, 2001,85(2):255-260.
    88. Kazama S, Watanabe T, Kanazawa T, et al. Vascular endothelial growth factor-C (VEGF-C) is a more specific risk factor for lymph node metastasis than VEGF-D in submucosal colorectal cancer. Hepatogastroenterology, 2007,54(73):71-76.
    89. Zoltan G, Xiaowei X, Christina S, et al. Peritumoral lymphatic vessel density and vascular endothelial growth factor C expression in early-stage squamous cell carcinoma of the uterine cervix. Clin Cancer Res, 2005,11(23):8364-8371.
    90. Trojan L, Rensch F, Voss M, et al. The role of the lymphatic system and its specific growth factor, vascular endothelial growth factor C, for Iymphogenic metastasis in prostate cancer. BJU Int,2006,98(4):903-906.
    91. Boone B, Blokx W, De Bacquer D, et al. The role of VEGF-C staining in predicting regional metastasis in melanoma. Virchows Arch, 2008,453(3):257-265.
    92. Yamaguchi R, Yano H, Nakashima O, et al. Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol,2006,21(1):152-160.
    93. Yu XM, Lo CY, Chan WF, et al. Increased expression of vascular endothelial growth factor C in papillary thyroid carcinoma correlates with cervical lymph node metastases. Clin Cancer Res,2005,11(22):8063-8069.
    94. Okazawa T, Yoshida T, Shirai Y, et al. Expression of vascular endothelial growth factor C is a prognostic indicator in esophageal cancer. Hepatogastroenterology,2008,55(86-87):1503-1508.
    95. Sedivy R, Beck-Mannagetta J, Haverkampf C, et al. Expression of vascular endothelial growth factor-C correlates with the lymphatic microvessel density and the nodal status in oral squamous cell cancer. J Oral Pathol Med, 2003,32 (8):455-460.
    96. Gunningham SP, Currie MJ, Han C, et al. The short form of the alternatiely spliced flt-4 but not its ligand vascular endothelial growth factor C is related to lymph node metastasis in human breast cancer. Clin Cancer Res, 2000,6(11):4278-4286.
    97. Travis WD, Brambilla E, Muller-Hermelink HK, et al. World Health Organization classification of tumours, pathology and genetics of tumours of the lung, pleura, thmus and heart. Lyon:IARC Press,2004.9-124.
    98. Mountain CF, Dresler CM. Regional lymph node classification for lung cancer staging. Chest,1997,111(6):1718-1723.
    99. UICC. TNM classification of malignant tumours,6th ed. Geneva:UICC, 2002.
    100. Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res,2003,9(9):3406-3412.
    101.李杰,李宝兰,张海青,等.非小细胞肺癌中血管内皮生长因子C表达与淋巴结转移关系的研究.中华医学杂志,2008,88(42):2982-2985.
    102. Andre F, Cabioglu N, Assi H, et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol,2006,17(6):945-951.
    103. Takanami I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer,2003,105(2):186-189.
    104. Koizumi K, Kozawa Y, Ohashi Y, et al. CCL21 promotes the migration and adhesion of highly lymph node metastatic human non-small cell lung cancer Lu-99 in vitro. Oncol Rep,2007,17(6):1511-1516.
    105. Maekawa S, Iwasaki A, Shirakusa T, et al. Association between the expression of chemokine receptors CCR7 and CXCR3, and lymph node metastatic potential in lung adenocarcinoma. Oncol Rep, 2008,19(6):1461-1468.
    106.曾涛,温剑虎,李醒.趋化因子受体CCR7在NSCLC与转移淋巴结中的表达关系及意义.中国肺癌杂志,2008,11(2):246-250.
    107. Li Y, Qiu X, Zhang S, et al. Hypoxia induced CCR7 expression via HIF-1 alpha and HIF-2alpha correlates with migration and invasion in lung cancer cells. Cancer Biol Ther,2009,8(4):322-330.
    108. Saintigny P, Kambouchner M, Ly M, et al. Vascular endothelial growth factor-C and its receptor VEGFR-3 in non-small-cell lung cancer:concurrent expression in cancer cells from primary tumour and metastatic lymph node. Lung Cancer,2007,58(2):205-213.
    109. Arinaga M, Noguchi T, Takeno S, et al. Clinical significance of vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 in patients with nonsmall cell lung carcinoma. Cancer,2003,97(2):457-464.
    110. Takizawa H, Kondo K, Fujino H, et al. The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer. Br J Cancer,2006,95(1):75-79.
    111. Niki T, Iba S, Tokunou M, et al. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res,2000,6(6):2431-2439.
    112. Ogawa E, Takenaka K, Yanagihara K, et al. Clinical significance of VEGF-C status in tumor cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer,2004,91 (3):498-503.
    113. Issa A, Le TX, Shoushtari AN, et al. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res,2009,69(1):349-357.
    114. Li SH, Wang Z, Liu XY, et al. Gene diagnosis and prognostic significance of lymph node micrometastasis after complete resection of histologically node-negative non-small cell lung cancer. World J Surg, 2008;32(8):1651-1656.
    115.王洲,刘相燕,张林等.淋巴结隐匿性微转移对肺癌预后影响的前瞻性研究.中华胸心血管外科杂志,2003,19(4):225-228.
    1. Jemal A, Clegg LX, Ward E, et al. Annual report to the nation on the status of cancer,1975-2001, with a special feature regarding survival. Cancer, 2004,101(1):3-27.
    2. Gavrilovic IT, Posner JB. Brain metastases:epidemiology and pathophysiology. J Neurooncol,2005,75(1):5-14.
    3. Bajard A, Westeel V, et al. Multivariate analysis of factors predictive of brain metastases in localized non-small cell lung carcinoma. Lung Cancer, 2004,45(3):317-323.
    4. Gaspar LE, Albain KS, et al. Time from treatment to subsequent diagnosis of brain metastases in stage III non-small cell lung cancer:a retrospective review by southwest Oncology Group. J Clin Oncol,2005,23(13):2955-2961.
    5. Louie AV, Rodrigues G, Yaremko B, et al. Management and prognosis in synchronous solitary resected brain metastasis from non-small-cell lung cancer. Clin Lung Cancer,2009,10(3):174-179.
    6. Ma S, Xu Y, Deng Q, et al. Treatment of brain metastasis from non-small cell lung cancer with whole brain radiotherapy and Gefitinib in a Chinese population. Lung Cancer,2009,65(2):198-203.
    7. Flannery TW, Suntharalingam M, Regine WF, et al. Long-term survival in patients with synchronous, solitary brain metastasis from non-small-cell lung cancer treated with radiosurgery. Int J Radiat Oncol Biol Phys, 2008,72(1):19-23.
    8. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature,2001,410(6824):50-56.
    9. Granone P, Margaritora S, D'Andrilli A, et al. Non-small cell lung cancer with single brain metastasis:the role of surgical treatment. Eur J Cardiothorac Surg,2001,20(2):361-366.
    10. Billing PS, Miller DL, Allen MS, et al. Surgical treatment of primary lung cancer with synchronous brain metastases. J Thorac Cardiovasc Surg, 2001,122(3):548-553.
    11. Getman V, Devyatko E, Dunkler D, et al. Prognosis of patients with non-small cell lung cancer with isolated brain metastases undergoing combined surgical treatment. Eur J Cardiothorac Surg, 2004,25(6):1107-1113.
    12. Saitoh Y, Fujisawa T, Shiba M, et al. Prognostic factors in surgical treatment of solitary brain metastasis after resection of non-small-cell lung cancer. Lung Cancer,1999,24(2):99-106.
    13. Paget S. The distribution of secondary growths in cancer of the breast. Lancet,1889,1(6):571-573.
    14. Ewing J. Neoplastic Diseases.6th ed. Philadelphia, PA:WB Saunders.1928.
    15. Robert MS. Chemokines:Not just leukocyte chemoattractants in the promotion of cancer. Nature immunol,2001,2(4):285-286.
    16. Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment Specific lymphocyte homing. Curr Opin Immunol, 2000,12(3):336-341.
    17. Levesque JP, Hendy J, Takamatsu Y,et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest, 2003,111(2):187-196.
    18. Vicari AP, Caux C. Chemokines in cancer. Cytokine Growth Factor Rev, 2002,13(2):143-145.
    19. Kaplan RN, Riba R D, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature,2005,438(7069):820-827.
    20. Kaplan RN, Rafii S, Lyden D. Preparing the "soil":the premetastatic niche. Cancer Res,2006,66(23):11089-11093.
    21. Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med,2007,13(2):72-81.
    22. Varghese HJ, Davidson MT, MacDonald IC, et al. Activated ras regulates the proliferation/apoptosis balance and early survival of developing micrometastases. Cancer Res,2002,62(3):887-891.
    23. Orr FW, Wang HH. Tumor cell interactions with the microvasculature:a rate limiting step in metastasis. Surg Oncol Clin North Am,2001,10(2):357-381.
    24.沈岩,Vogel I, Kalthoff H,等.不同转移能力肿瘤细胞间转移相关特征的比较研究.中华肿瘤杂志,2000,22(3):201-204.
    25. Gohji K, Nakajima M, Boyd D, et al. Organ-site dependence for the production of urokinase-type plasminogen activator and metastasis by human renal cell carcinoma cells. Am J Pathol,1997,151(6):1655-1661.
    26. Moore MA. The role of chemtattraction in cancer metastases. Bioessays, 2001,23(8):674-676.
    27. Roland J, Murphy BJ, Ahr B, et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood,2003,101(2):399-406.
    28. Crump MP, Gong JH, Loetscher P, et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J, 1997,16(23):6996-7007.
    29. Huang CY, Lee CY, Chen MY, et al. Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol,2009,221(1):204-212.
    30. Helbig G, Christopherson KW, Bhat-Nakshatri P, et al. NF-κB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem,2003,278(24):21631-21638.
    31. Phillips RJ, Mestas J, Gharaee-Kermani M, et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1 alpha. J Biol Chem, 2005,280(23):22473-22481.
    32. Kukreja P, Abdel-Mageed AB, Mondal D, et al. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration:role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res, 2005,65(21):9891-9898.
    33. Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor:functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science,1996,272(5263):872-877.
    34. Pleskoff O, Treboute C, Brelot A, et al. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science,1997,276(5320):1874-1878.
    35. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, et al. Chemokine control of HIV-1 infection. Nature,1999,400(6746):723-724.
    36. Salcedo R, Oppenheim JJ. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation,2003,10(3-4):359-270.
    37. Lazarini F, Tham TN, Casanova P, et al. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia,2003,42(2):139-148.
    38. Juarez J, Bendall L. SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol,2004,19(1):299-309.
    39. Kucia M, Jankowski K, Reca R, Wysoczynski M, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol, 2004,35(3):233-245.
    40. Miller RJ, Banisadr G, Bhattacharyya BJ. CXCR4 signaling in the regulation of stem cell migration and development. J Neuroimmunol, 2008,198(1-2):31-38.
    41. Gelmini S, Mangoni M, Serio M, et al. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest, 2008,31(9):809-819.
    42. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell,2005,121(3):335-348.
    43. Brand S, Dambacher J, Beigel F, et al. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res,2005,310(1):117-130.
    44. Yang L, Jackson E, Woerner BM, et al. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res, 2007,67(2):651-658.
    45. Marchesi F, Monti P, Leone BE, et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res,2004,64(15):8420-8427.
    46. Burger JA, Kipps TJ.CXCR4:a key receptor in the crosstalk between tumor cells and their microenvironment. Blood,2006,107(5):1761-1767.
    47. Ohira S, Sasaki M, Harada K, et al. Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-a and stromal-derived factor-1 released in stroma. Am J Pathol,2006,168(4):1155-1168.
    48. Kryczek I, Lange A, Mottram P, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res,2005,65(2):465-472.
    49. Aghi M, Cohen KS, Klein RJ, et al. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res, 2006,66(18):9054-9064.
    50. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization:recruitment, retention, and role of accessory Cells. Cell, 2006,124(1):175-189.
    51. Ruiz de Almodovar C, Luttun A, Carmeliet P. An SDF-1 trap for myeloid cells stimulates angiogenesis. Cell,2006,124(1):18-21.
    52. Perissinotto E, Cavalloni G, Leone F, et al. Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin Cancer Res,2005,11(2):490-497.
    53. Sun YX, Fang M, Wang JH, et al. Expression and activation of αvβ3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate,2007,67(1):61-73.
    54. Sipkins DA, Wei XB, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 2005,435(7044):969-973.
    55. Samara GJ, Lawrence DM, Chiarelli CJ, et al. CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett,2004,214(2):231-241.
    56. Bartolome RA, Galvez BG, Longo N, et al. Stromal cell-derived factor-1 alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrixmetalloproteinase and Rho GTPase activities. Caner Res,2004,64(7):2534-2543.
    57. Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling activates Akt-land MMP-9 expression in prostate cancer cells:the role of bone microenvironment-associated CXCL12. Prostate,2005,66(1):32-48.
    58. Retz MM, Sidhu SS, Blaveri E, et al. CXCR4 expression reflects tumor progression and regulates motility of bladder cancer cells. Int J Cancer, 2005,114(2):182-189.
    59. Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 2002,62(6):1832-1837.
    60. Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J,2004,18(11):1240-1242.
    61. 马向涛,余力伟,张在兴,等.趋化因子受体CXCR4/CXCL12信号转导通路在结直肠癌肝转移中的作用.世界华人消化杂志,2006,14(16):1566-1570.
    62.蒋玉萍,吴小华,邢邯英等.趋化因子CXCL12及其受体CXCR4对卵巢上皮性癌细胞增殖、迁移和侵袭能力的影响.中华妇产科杂志,2007,42(6):403-407.
    63. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res, 2002,62(20):5930-5938.
    64. Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res,2003,63(16):4801-4804.
    65.杜岳峰,邢毅飞,曾甫清,等.人前列腺特异性抗原启动子调控的CXCR4-siRNA逆转录病毒载体的构建及其对前列腺癌细胞的生物学效应.中华肿瘤杂志,2007,29(7):489-494.
    66. Li JK, Yu L, Shen Y, et al. Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro. World J Gastroenterol,2008,14(15):2308-2313.
    67. Liang Z, Wu T, Lou H, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res, 2004,64(12):4302-4308.
    68. Kim SY, Lee CH, Midura BV, et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis,2008,25(3):201-211.
    69. Eichler AF, Plotkin SR. Brain metastases. Curr Treat Options Neurol, 2008,10(4):308-314.
    70. Oh Y, Taylor S, Bekele BN, et al. Number of metastatic sites is a strong predictor of survival in patients with non-small cell lung cancer with or without brain metastases. Cancer,2009,115(13):2930-2938.
    71. Nicolson GL, Menter DG, Herrmann JL, et al. Brain metastasis:role of trophic, autocrine, and paracrine factors in tumor invasion and colonization of the central nervous system. Curr Top Microbiol Immunol, 1996,213(2):89-115.
    72. Grinberg-Rashi H, Ofek E, Perelman M, et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res,2009,15(5):1755-1761.
    73. Wrage M, Ruosaari S, Eijk PP, et al. Genomic profiles associated with early micrometastasis in lung cancer:relevance of 4q deletion. Clin Cancer Res, 2009,15(5):1566-1574.
    74. Theoharides TC, Rozniecki JJ, Sahagian G, et al. Impact of stress and mast cells on brain metastases. J Neuroimmunol,2008,205(1-2):1-7.
    75. I H, Lee JI, Nam DH, et al. Surgical treatment of non-small cell lung cancer with isolated synchronous brain metastases. J Korean Med Sci, 2006,21(2):236-241.
    76. Rohren EM, Turkington TG, Coleman RE. Clinical Applications of PET in Oncology. Radiology,2004,231(2):305-332.
    77. Sajama C, Lorenzoni J, Tagle P. Diagnosis and treatment of brain metastasis. Rev Med Chil,2008,136(10):1321-1326.
    78. Kaal EC, Niel CG, Vecht CJ. Therapeutic management of brain metastases. Lancet Neurol,2005,4(5):289-298.
    79. Taimur S, Edelman MJ. Treatment options for brain metastases in patients with non-small-cell lung cancer. Curr Oncol Rep,2003,5(4):342-346.
    80. Topkan E, Yildirim BA, Selek U, et al. Cranial prophylactic irradiation in locally advanced non-small cell lung carcinoma:current status and future perspectives. Oncology,2009,76(3):220-228.
    81. Keall P, Arief I, Shamas S, et al. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy. Phys Med Biol,2008,53(9):2267-2276.
    82. Kepka L, Cieslak E, Bujko K, et al. Results of the whole-brain radiotherapy for patients with brain metastases from lung cancer:the RTOG RPA intra-classes analysis. Acta Oncol,2005,44(4):389-398.
    83. Antoniou D, Kyprianou K, Stathopoulos GP, et al. Response to radiotherapy in brain metastases and survival of patients with non-small cell lung cancer. Oncol Rep,2005,14(3):733-736.
    84. Zabel A, Debus J. Treatment of brain metastases from non-small cell lung cancer(NSCLC):radiotherapy. Lung Cancer,2004,45(Suppl):247-252.
    85. Slotman B, Faivre-Finn C, Kramer G, et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med,2007,357(7):664-672.
    86. Arriagada R, Le Chevalier T, Riviere A, et al. Patterns of failure after prophylactic cranial irradiation in small-cell lung cancer:analysis of 505 randomized patients. Ann Oncol,2002,13(5):748-754.
    87. 王世秀,袁智勇,马青山,等.局部晚期非小细胞肺癌脑预防性照射的探讨.中国肺癌杂志,2008,11(6):824-827.
    88. Pan HC, Sheehan J, Stroila M, et al. Gamma knife surgery for brain metastases from lung cancer. J Neurosurg,2005,102(suppl):128-133.
    89. Gerosa M, Nicolato A, Foroni R, et al. Analysis of long-term outcomes and prognostic factors in patients with non-small cell lung cancer brain metastases treated by gamma knife radiosurgery. J Neurosurg, 2005,102(suppl):75-80.
    90. Noel G, Medioni J, Valery CA, et al. Three irradiation treatment options including radiosurgery for brain metastases from primary lung cancer. Lung Cancer,2003,41 (3):333-343.
    91. Serizawa T, Ono J, Iichi T, et al. Gamma knife radiosurgery for metastatic brain tumors from lung cancer:a comparison between small cell and non-small cell carcinoma. J Neurosurg,2002,97(5 Suppl):484-488.
    92. Schuette W. Treatment of brain metastases from lung cancer:chemotherapy. Lung Cancer,2004,45(Suppl 2):S253-259.
    93. Girard N, Cottin V, Tronc F, et al. Chemotherapy is the cornerstone of the combined surgical treatment of lung cancer with synchronous brain metastases. Lung Cancer,2006,53(1):51-58.
    94. Kim DY, Lee KW, Yun T, et al. Efficacy of platinum-bases chemotherapy after cranial radiation in patients with brain metastasis from non-small cell lung cancer. Oncol Rep,2005,14(1):207-211.
    95. Robinet G, Thomas P, Breton JL, et al. Results of a phase III study of early versus delayed whole brain radiotherapy with concurrent cisplatin and vinorelbine combination in inoperable brain metastasis of non-small-lung cancer. Ann Oncol,2001,12(1):59-67.
    96. Comes J, Rodriguez J, Aramendia JM, et al. Front-line paclitaxel/cisplatin-based chemotherapy in brain metastases from non-small-cell lung cancer. Oncology,2003,64(1):28-35.
    97. Newton HB. Chemotherapy for the treatment of metastatic brain tumors. Exper Rev Anticancer Ther,2002,2(5):495-506.
    98. Matsumoto S, Takahashi K, Iwakawa R, et al. Frequent EGFR mutations in brain metastases of lung adenocarcinoma. Int J Cancer, 2006,119(6):1491-1494.
    99. Kim JE, Lee DH, Choi Y. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer, 2009,65(3):351-354.
    100.张思维,雷正龙,李光琳,等.中国肿瘤登记地区2005年发病死亡资料分析.中国肿瘤,2009,18(12):973-979.
    101. Li M, Ransohoff RM. Multiple roles of chemokine CXCL12 in the central nervous system:a migration from immunology to neurobiology. Prog Neurobiol,2008,84:116-131.
    102. Kucia M, Jankowski K, Reca R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol,2004,35(3):233-245.
    103. Singh S, Sadanandam A, Singh RK. Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev,2007,26(3-4):453-467.
    104. Phillips RJ, Burdick MD, Lutz M, et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med, 2003,167(12):1676-1686.
    105.苏丽萍,张进平,徐焕宾,等.CXCR4在肺癌转移中的作用及其机制研究.中华医学杂志,2005,85(17):1190-1194.
    106.苏丽萍,张进平,郑秀娟,等.CXCR4表达水平对肺癌细胞转移潜能的影响.中国肿瘤生物治疗杂志,2005,12(1):46-51.
    107. Wagner PL, Hyjek E, Vazquez MF, et al. CXCL12 and CXCR4 in adenocarcinoma of the lung:association with metastasis and survival. J Thorac Cardiovasc Surg,2009,137(3):615-621.
    108. Salmaggi A, Maderna E, Calatozzolo C, et al. CXCL12, CXCR4 and CXCR7 expression in brain metastases. Cancer Biol Ther,2009,8(17):1608-1614.
    109. Lazarini F, Tham TN, Casanova P, et al. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia,2003,42(2):139-148.
    110. Banisadr G, Skrzydelski D, Kitabgi P, et al. Highly regionalized distribution of stromal cell-derived factor-1/CXCL12 in adult rat brain:constitutive expression in cholinergic, dopaminergic and vasopressinergic neurons. Eur J Neurosci,2003,18(6):1593-1606.
    111.王瑞林,宋文广,付占昭,等.脑转移癌血脑屏障变化的免疫组化及超微结构研究.中国肿瘤临床,2007,31(17):977-979.
    112. Lee BC, Lee TH, Avraham S, et al. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res,2004,2(6):327-338.
    113. Huang EH, Singh B, Cristofanilli M, et al. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res, 2009,155(2):231-236.
    [1]Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K. A novel endothelial growth factor, VEGF-C, is a ligand for the Flt4(VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15:290-8.
    [2]Paavonen K, Horelli-Kuitunen N, Chilov D, Kukk E, Pennanen S, Kallioniemi OP, Pajusola K, Olofsson B, Eriksson U, Joukov V, Palotie A, Alitalo K. Novel human vascular endothelial growth factor genes VEGF-B and VEGF-C localize to chromosomes 11q13 and 4q34, respectively. Circulation 1996; 93:1079-82.
    [3]Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001;20:672-82.
    [4]Naruke T, Suematu K, Ishikawa S. Lymph node mapping and curability at various levels of metastasis in resected lung cancer. J Thorac Cardiovasc Surg 1978;76:832-9.
    [5]Liu XE, Sun XD, Wu JM. Expression and significance of VEGF-C and FLT-4 in gastric cancer. World J Gastroenterol 2004; 10:352-5.
    [6]Noda E, Maeda K, Inoue T, Nishihara T, Nishiguchi Y, Ohira M, Hirakawa K. Predictive value of vascular endothelial growth factor-C expression for local recurrence of rectal carcinoma._Oncol Rep 2007; 17:1327-31.
    [7]Saintigny P, Kambouchner M, Ly M, Gomes N, Sainte-Catherine O, Vassy R, Czernichow S, Letoumelin P, Breau JL, Bernaudin JF, Kraemer M. Vascular endothelial growth factor-C and its receptor VEGFR-3 in non-small-cell lung cancer:concurrent expression in cancer cells from primary tumour and metastatic lymph node. Lung Cancer 2007;58(2):205-13.
    [8]Tsukioka T, Nishiyama N, Iwata T, Izumi N, Mizuguchi S, Morita R, Inoue K, Suehiro S. Early recurrence of completely resected N2-positive non-small-cell lung cancer. Gen Thorac Cardiovasc Surg 2007;55:113-8.
    [9]Ichinose Y, Kato H, Koike T, Tsuchiya R, Fujisawa T, Shimizu N, Watanabe Y, Mitsudomi T, Yoshimura M; Japan Clinical Oncology Group. Overall survival and local recurrence of 406 completely resected stage Ⅲa.-N2 non-small cell lung cancer patients:questionnaire survey of the Japan Clinical Oncology Group to plan for clinical trials. Lung Cancer 2001;34:29-36.
    [10]Martini N, Rusch VW, Bains MS, Kris MG, Downey RJ, Flehinger BJ, Ginsberg RJ. Factors influencing ten-year survival in resected stages Ⅰ to Ⅲa non-small cell lung cancer. J Thorac Cardiovasc Surg 1999; 117:32-6.
    [11]Choi YS, Shim YM, Kim J, Kim K. Recurrence-free survival and prognostic factors in resected pN2 non-small cell lung cancer. Eur J Cardiothorac Surg 2002;22:695-700.
    [12]Andre F, Grunenwald D, Pujol JL, Girard P, Dujon A, Brouchet L, Brichon PY, Westeel V, Le Chevalier T. Patterns of relapse of N2 nonsmall-cell lung carcinoma patients treated with preoperative chemotherapy:should prophylactic cranial irradiation be reconsidered? Cancer 2001;91:2394-400.
    [13]Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002;296:1883-6.
    [14]Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL, Pytowski B, Fukumura D, Padera TP, Jain RK. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes:therapeutic implications. Cancer Res.2006;66:8065-75.
    [15]Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007;109:1010-7.
    1. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50-56
    2. Spano JP, Andre F, Morat L et al (2004) Chemokine receptor CXCR4 and early-stage non-small cell lung cancer:pattern of expression and correlation with outcome. Ann Oncol 15:613-617
    3. Kucia M, Jankowski K, Reca R et al (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233-245
    4. Li M, Ransohoff RM (2008) Multiple roles of chemokine CXCL12 in the central nervous system:a migration from immunology to neurobiology. Prog Neurobiol 84:116-131
    5. Rossi D, Zlotnik A (2000). The biology of chemokines and their receptors. Annu Rev Immunol 18:217-242
    6. Zlotnik A (2006). Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol 13:191-199
    7. Zlotnik A (2008). New insights on the role of CXCR4 in cancer metastasis. J Pathol 215:211-213
    8. Banisadr G, Skrzydelski D, Kitabgi P et al (2003) Highly regionalized distribution of stromal cell-derived factor-1/CXCL12 in adult rat brain: constitutive expression in cholinergic, dopaminergic and vasopressinergic neurons. Eur J Neurosci 18:1593-1606
    9. Patchell RA, Tibbs PA, Walsh JW et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322:494-500
    10. Phillips RJ, Burdick MD, Lutz M et al (2003) The stromal derived factor-1/CXCL 12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 167:1676-1686
    11. Salmaggi A, Maderna E, Calatozzolo C et al (2009) CXCL12, CXCR4 and CXCR7 expression in brain metastases. Cancer Biol Ther 8:1608-1614
    12. Gavrilovic IT, Posner JB (2005) Brain metastases:epidemiology and pathophysiology. J Neurooncol 75:5-14
    13. Lee BC, Lee TH, Avraham S et al (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700