用户名: 密码: 验证码:
ZnO,SiC薄膜的X射线衍射研究暨高分子体系的微束散射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X射线衍射是重要的结构表征手段。依托国家同步辐射实验室X射线衍射与散射实验站和康奈尔高能同步辐射光源(CHESS)的D-Line,发展了多种衍射和散射技术手段,包括掠入射衍射(GID)、非对称衍射、微束小角散射(μSAXS)和微束掠入射广角散射(μGIWAXS),对ZnO、SiC半导体薄膜和PI-b-PEO/resol薄膜、P3HT微米线高分子材料进行了结构探测,得到一系列的结构信息。最后还对Fe、Co等铁磁薄膜的磁圆二色(MCD)效应进行了探讨。主要研究工作如下:
     1.国家同步辐射实验室X射线衍射与散射光束线站建设
     参与建设了国家同步辐射实验室X射线衍射与散射光束线站,介绍了合肥光源和XRDS光束线的参数、设备、设计指标和实际性能,对光束线上的主要器件聚焦镜和单色器做了详细说明,并发展了其在材料学上的主要应用,包括Si/C多层膜的X射线反射、Si标准样品的粉末衍射、弛豫铁电体的散射和聚合物单晶结构测定等。
     2.多种X射线衍射手段表征ZnO和SiC半导体薄膜。
     利用掠入射衍射和非对称衍射方法系统地研究了ZnO和SiC半导体薄膜。ZnO薄膜使用脉冲激光沉积(PLD)方法制备,掠入射衍射分析对比了在Si衬底上有无SiC缓冲层的ZnO薄膜的晶格驰豫和界面结构;对不同衬底温度和氧气氛浓度的一系列ZnO/Al_2O_3薄膜的界面品格结构做对比并得到了最优化的制备条件;非对称衍射分析对比ZnO/Al_2O_3薄膜和ZnO/SiC薄膜的晶体取向,计算得到了ZnO薄膜tilt和twist取向差之间的关系和不同薄膜体系的螺旋位错和线位错密度;还利用CCD面探测器进行掠入射衍射实验,分析在不同衬底温度上生长的ZnO/Si(111)薄膜的取向性和晶体质量。SiC薄膜使用分子束外延(MBE)方法制备,掠入射衍射研究了SiC同质外延膜的层间界面结构,得到了三层结构模型:研究了SiC/Si异质外延薄膜的的晶格驰豫和界面结构;利用非对称衍射分析SiC/Si薄膜的晶体取向信息,对比得到薄膜tilt和twist取向差之间的关系。
     3.微束X射线对高分子材料的散射研究。
     在CHESS、D-line,利用单次反射毛细管获得了高通量(约1×10~(10)photons/s)、低发散度(小于2mrad)的微束光斑(约15μm),分辨率可以达到50nm,并详细介绍了微束光斑的特性和调试方法。对于PI-b-PEO/resol薄膜样品,进行微束小角散射(μSAXS)实验,发现其含有两种结构不同尺寸不一的晶粒,得到了两种晶粒的尺寸、结构、取向和结晶度等结构信息。对于P3HT微米线样品进行了微束掠入射广角散射(μGIWAXS)实验,建立了微米线内部结构模型,分析得到了微米线中表面附近、介面附近和样品中心的P3HT取向,得到微米线宽度,并第一次观察到沿着表面分布的不同取向的P3HT排列。
     4.纳米铁磁薄膜中MCD效应的初步研究
     在同步辐射实验室软X射线磁圆二色实验站,我们得到了能量范围100~1000 eV的单色软X射线,分辨本领为1V,通量超过10~8photons/s。可以有效的对导体半导体薄膜进行XMCD测量。我们研究了Fe/MgO和Co/Au两个纳米铁磁薄膜体系的MCD效应。对于Fe/MgO薄膜,利用XMCD实验技术得到铁原子的自旋磁矩和轨道磁矩分别是0.069μ_B和2.33μ_B。为考察铁膜沿膜的面内磁各向异性,在入射角为600的情况下选择[110]、[100]、[010]三个方向测量铁的XMCD吸收谱,发现双轴磁各向异性与单轴磁各向异性叠加在一起,使得轨道磁矩在不同晶向上具有不同的原子磁矩。磁晶各向异性能和单轴各向异性能基本相同。对于Co/Au薄膜,研究了Si衬底上沉积的不同厚度的Co膜的轨道磁矩和自旋磁矩。薄膜厚度分别是2nm、10nm和30nm的样品得到的轨道磁矩和自旋磁矩分别在0.249~0.195μB和1.230~1.734μB之间。随着膜厚的减小,Co原子的轨道磁矩增加,而自旋磁矩下降。轨道磁矩与总磁矩的比值由0.101上升至0.168。随着薄膜厚度减小,轨道磁矩对总磁矩的贡献显著增加。
X-ray diffraction is one of the most important methods for structure analysis. Based on the X-Ray Diffraction and Scattering(XRDS) Station in National Synchrotron Laboratory(NSRL) in Hefei, China and D-line in Cornell High Energy Synchrotron Source(CHESS), several techniques of diffraction were developed, including of Grazing Incidence Diffraction(GID), Asymmetric Diffraction, Micro-beam Small Angle X-ray Scattering(μSAXS), and Micro-beam Grazing3 Incidence Wide Angle X-ray Scattering(μGIWAXS). And some thin films were investigated, including of ZnO, SiC thin films as semiconductor material and PI-b-PEO/resol complex, P3HT micron-wire as polymer material. At last, X-ray Magnetic Circular Dichroism (XMCD) was employed on Fe and Co nano ferromagnetic thin films. The main works are shown below.
     1. Building up of the beamline and station of XRDS in NSRL
     I was involved in the construction of the beamline and station, which were described here on the construction, facilities and performance. The focusing mirror and monochromter as the important facilities in the beamline were introduced detailed. Many new applications were developed in material science, including of the X-ray Reflectivity on the Si/C multilayer, the powder diffraction on the standard Si sample, the scattering from quasiperiodic structures in relaxor ferroelectrics, the structure of single crystal in insoluble coordination polymer and so on.
     2. Investigations of the ZnO and SiC thin films by multi diffractions
     The ZnO and SiC semiconductor thin films were investigated by GID and asymmetric diffraction. ZnO films, made in several series by Pulsed Laser Deposition (PLD), were investigated by GID for the lattice relaxation and interface structure in different depth. One series are the ZnO/Si with and without the SiC buffer layer, the other series are the ZnO/Al_2O_3 made in different temperatures and oxygen concentrations to look for the film with the best quality. The asymmetric diffraction was used to show the difference of orientations and density of screw and edge dislocations between the ZnO/Al_2O_3 and ZnO/SiC films. The correlation between the tilt and twist mosaics were also shown. Besides, the CCD detector was join into the GID and the different orientation and crystal quality were shown in a series of ZnO/Si(111) films with different temperatures. For the SiC films made in Molecular Beam Epitaxy (MBE), the GID was employed in the homoexpitaxy films to obtain the three layer structure model in the interface. Also, lattice relaxation and interface structure in different depth were shown in hereoepitaxy SiC/Si films. At last, the results from the asymmetric diffraction indicated the orientation of the SiC/Si film and the correlation between the tilt and twist mosaics.
     3. Investigations of the polymer material by the microbeam
     In the D-line, CHESS, the single-bounced capillary was used to obtain the micron-sized beam (about 15μm) with the high flux (about 1×10~(10)photons/s), low divergence (lower than 2 mrad) and 50nm resolution. The character of the microbeam was shown after the introduction of the line-up process. The PI-b-PEO/resol complex was characterized by the Microbeam Small Angle X-ray Scattering (μSAXS) and there are two kinds of grains with different size and structure. The details of the structure are obtained, including of the size, lattice, orientation and crystalline degree. For the P3HT microwire, the Microbeam Grazing Incidence Wide Angle X-ray Scattering (μGIWAXS) was employed to construct the structure model and distinguish the difference of orientations in the surface region, interface region and center region. The width of the microwire was shown from the beam scan and the orientation changing of the P3HT packing following with the round surface in the surface region was observed in the first time.
     4. XMCD effect in the nano-ferromagnetic thin films
     On the X-ray Magnetic Circular Dichroism (XMCD) station in NSRL, the soft X-ray was obtained with the energy range of 100-1000eV, resolution of 1000 in 1000eV and high flux (more than 10~8photons/s), and used in the conductor and semiconductor thin films. We investigated the XMCD effect in the Fe/MgO and Co/Au nano-ferromagnetic thin films. For the Fe/MgO film, the spin and orbital magnetic moments of the iron atoms were 0.069μ_B and 2.33μ_B, respectively. Compared with the different orbital magnetic moments in three orientations, [110], [100] and [010], the magnetic anisotropy on the surface is shown as the two-axis and one-axis anisotropic energy roughly equally. The series of the Co/Au films with different thickness are shown with magnetic moments. With the decrease of the 30nm, 10nm and 2nm thickness, the orbital magnetic moments are increased in the range of 0.195--0.249μ_B as the spin magnetic moments decreased in the range of 1.734--1.230μ_B. It means the ratio of the orbital and total magnetic moments are increased remarkably from 0.101 to 0.168.
引文
1.周公度,郭可信 晶体和准晶体的衍射 1999北京大学出版社
    2.马礼敦,杨福家 同步辐射应用概论 2001复旦大学出版社
    3.Jens Als-Nielson and Des McMorrow,Elements of Modern X-Ray Physics.2001 John Wiley &Sons Ltd,New York.
    4.James,R.W.The Optical Principles of X-rays.1958 Bell and Sons,London
    5.A.C.Thompson,D.Vaughan et.al X-ray data booklet 2001 University of California Berkeley
    6.Templeton,D.H.Handbook on synchrotron radiation,vol.3,chap.6.1991 Elsevier Science Publishers B.V.
    7.Mills,D.M..Third-generation hard X-ray synchrotron radiation.2002 John Wiley & Sons,
    8.I.H.Munro,Synchrotron radiation research in the UK,J Synchrotron Radiat.4,1997 344-358
    9.Sterling W.Cornaby,Ph.D.Dissertation.The handbook of X-ray single-bounce monocapillary optics including optical design and synchrotron applications.2008 Cornell University.
    10.Glenn F.Knoll,Radiation Detection and Measurement.2000 John Wiley & Sons.
    11.James R.Janesick,Scientific Charge-Coupled Devices.2001 SPIE Publications
    12.S.M.Gruner,M.W.Tare,and E.F.Eikenberry,Charge-coupled device area x-ray detectors Rev Sci Instrum 2002 73 (8), 2815-2842
    13. A. Kazimirov, D. M. Smilgies, Q. Shen, X. H. Xiao, Q. Hao, E. Fontes, D. H. Bilderback, S. M. Gruner, Y. Platonov, and V. V. Martynov, Multilayer X-ray optics at CHESS. J Synchrotron Radiat 2006 13,204-210
    14. W. B. Yun, P. J. Viccaro, B. Lai, and J. Chrzas, Coherent Hard X-Ray Focusing Optics and Applications Rev Sci Instrum 1992 63 (1), 582-585
    15. C. G. Schroer, Focusing hard x rays to nanometer dimensions using Fresnel zone plates. Physical Review B 2006 74 (3) ,033405
    16. D. H. Bilderback, D. J. Thiel, R. Pahl, and K. E. Brister, X-Ray Applications with Glass-Capillary Optics. J Synchrotron Radiat 1994 1,37-42
    17. Q. F. Xiao and S. V. Poturaev, Polycapillary-Based X-Ray Optics, Nucl. Instrum Meth A 1994 347 (1-3), 376-383
    18. N. Gao, I. Y. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence, Appl Phys Lett 1996 69(11), 1529-1531
    19. D. X. Balaic, K. A. Nugent, Z. Barnea, R. Garrett, and S. W. Wilkins, Focusing of X-Rays by Total External Reflection from a Paraboloidally Tapered Glass-Capillary," J Synchrotron Radiat 1995 2,296-299
    20. D. H. Bilderback and R. Huang, X-ray tests of microfocusing mono-capillary optic for protein crystallography, Nucl Instrum Meth A 2001 467,970-973
    21. R. Huang and D. H. Bilderback, Simulation of microfocused image size from a one-bounce glass capillary, Nucl Instrum Meth A 2001 467,978-981
    22. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, A compound refractive lens for focusing high-energy X-rays, Nature 1996 384, 49-51
    23. S. Suehiro, H. Miyaji, and H. Hayashi, Refractive Lens for X-Ray Focus, Nature 1991 352, 385-386
    24. O. Hignette, P. Cloetens, G. Rostaing, P. Bernard, and C. Morawe, Efficient sub 100 nm focusing of hard x rays, Rev Sci Instrum 2005 76 (6) 063709
    25. C. Bergemann, H. Keymeulen, and J. F. van der Veen, Focusing X-ray beams to nanometer dimensions, Physical Review Letters 2003 91 (20), 204801
    26. C. Ollinger, C. Fuhse, A. Jarre, and T. Salditt, Two-dimensional X-ray waveguides on a grating, Physica B-Condensed Matter 2005 357 (1-2), 53-56
    27. H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, Nanometer linear focusing of hard x rays by a multilayer Laue lens, Physical Review Letters 2006 96(12),
    28. A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary," J Synchrotron Radiat 2007 14, 326-330
    29. R. Huang and D. H. Bilderback, Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits," J Synchrotron Radiat 2006 13, 74-84
    30. Rong Huang and Donald H Bilderback, Secondary Focusing for Micro-Diffraction Using One-Bounce Capillaries, Eighth International Conference on Synchrotron Radiation Instrumentation, AIP Confrence Proceedings, 2004 712-715
    31. R. S. Becker, J. A. Golovchenko and J. R. Patel, X-Ray Evanescent-Wave Absorption and Emission Phys.Rev.Lett. 1983 50. 153.
    32. S. Dietrich and H. Wagner, Critical Surface Scattering of X Rays and Neutrons at Grazing Angles Phys.Rev.Lett. 1983 51,1469.
    33. G. H. Vineyard, Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces Phys. Rev. B, 1982 26 4146.
    34. A. M. Afanas'ev and M. K. Melkonyan, X-ray diffraction under specular reflection conditions. Ideal crystals, Acta Crystallogr. A 1983 39,207.
    35. P. L. Cowan , Diffraction of evanescent x-rays: Results from a dynamical theory Phys. Rev . B , 1985 32,5437.
    36. Isao Kojima, Boquan Li and T. Fujimoto, High resolution thickness and interface roughness characterization in multilayer thin films by grazing incidence X-ray reflectivity, Thin Solid Films 1999 355-356, 385-389
    37. L.G. Parratt, Surface Studies of Solids by Total Reflection of X-RaysPhys. Rev. 1954,95 359.
    38. S.K.. Sinha, E.B. Sirota and S. Garoff, X-ray and neutron scattering from rough surfaces Phys. Rev.B 1988 38 2297.
    1.Liu N Q,Zhang W,J iang D K,et al.Compensation of the influence of the 6 T Wiggler on the 0.8 GeV storage ring in the National Synchrotron Radiation Laboratory.Nucl.Instr.and Meth.A 1999 434,467-472
    2.潘国强,徐朝银,赵伟昌,吴冠原.合肥同步辐射光源特性计算 中国科学技术大学学报1997,27,62
    3.Xu C.Y.,Pan G.Q.,Xu F.Q.,Wei S.Q.,Tian Y.C.Zhao D.M.Wang.F.X-ray beamlines at the superconducting wiggler of N SRL.Nucl.Instrum.Methods.A 2001 467-468,639-642
    4.赵飞云,徐朝银,吴冠原,赵伟昌,潘国强,徐军,王峰.合肥光源超导wiggler前端区真空科学与技术学报,1999 19,340
    5.徐朝银,潘国强,吴冠原,王峰,赵飞云X射线衍射和散射光束线设计 中国科学技术大学学报,1999 29(2),181-188.
    6.刘绍义,徐朝银,潘国强,王峰,赵殿明.X射线环面聚焦镜压弯调整与面形测量.核技术,2001 24,571
    7.Susini J.Design parameters for hard X-ray mirrors:The European Synchroton Radiation Facility case.Opt.Eng,1995 34,361-376.
    8.王峰,徐朝银,潘国强,赵飞云,黄志刚,范荣,王丽秋 同步辐射X射线双晶单色仪能量扫描 光学精密工程,2001 9(4),401-404.
    9.Xu C.,Zhao W.,Pan G.,Liu Y.,Wu G.,Li H.,Zhao D.A double-crystal monochromator for EXAFS measurement at NSRL.Nucl.Instrum.Methods.A 1999 410,293-296.
    10.范荣,徐朝银,潘国强,黄志刚,董晓浩.NSRL衍射和散射线站硬X射线参数测量.核技术 2003 26,732-735.
    11.范荣 硕士毕业论文2004中国科技大学
    12.Pan G.,Xu C.,Fan R.,Gao C.,Lou X.,Teng M.,Huang Q.,Niu L.Design and performance of U7B beamline and X-ray diffraction and scattering station at NSRL and it s preliminary experiments in protein crystallography,Nucl.Inst r,and Meth.A,2005 540,480-486.
    13.Welnak,C.,Chen,G.J.Cerrini,F.SHADOW:a synchrotron radiation and X-ray optics simulation tool.Nucl.Instrum.Methods.A 1994,347,344-347.
    14.Hammersley,A.1999,FIT2D,version 10.31.Tech.Rep.,ESRF,Grenoble,France
    15.Huber Diffraktionstechnik GmbH&Co.http://www.xhuber.de
    16.Marresearch GmbH.http://www.marresearch.com..http://www.mar-usa.com
    17.Bede Co.http://www.bede.co.uk
    18.李锐鹏,范荣,刘科,徐朝银,盛六四,潘国强NSRL衍射和散射站的性能及在材料科学中的典型应用 中国科学技术大学学报 2007 37,407
    19.刘宏林 硕士毕业论文2004中国科技大学
    20.Guo Z.,Tai R.,Xu H.,Gao C.,Luo H.,Pan G.,Hu C.,Lin D.,Fan R.,Li R.,Yah R.,Zhang X.,Namikawa K.Study of the microscopic structures in 0.72Pb(Mg_(1/3)Nb_(2/3))O_3-0.28PbTiO_3relaxor ferroelectrics by means of X-ray diffraction.J Appl.Phys.2007 101,053505.
    21.刘宏林,范荣,柯燕雄,潘国强.[Gd_2(BDC)_3(H2O)_2]_n和[Ho_2(BDC)_3(H2O)_2]_n的合成和结构.中国科学技术大学学报,2006 36 417
    22.L.J.Farrugia http://www.chem.gla.ac.uk/~louis/software/wingx/
    23.Sheldrick G M.Phasing annealing in SHELXL-90:direct methods for larger structures.Acta.Cryst.A 1999 46,110-119.
    1.D.Dijkkamp,T.Venkateasan,X.D.Wu.Appl Phys Lett,1987 51 619
    2.Gree.J.A.,H.J.Van Hook.Mater Res Soc Symp Proc,1990 191 171
    3.J.A.Greer,M.D.Tabal J.Vac.Sci.Technol.A,1995 13 1175
    4.赵九蓬,李壵,刘丽,新型功能材料设计与制备工艺2003
    5.姜晓明,贾全杰,郑文莉等,高能物理与核物理2000 24 1185
    6.Z K Tang,G K L Wong,P Yu,et al.,Appl.Phys.Lett.1998 72 3270
    7.M N Islam,T B Ghosh,K L Chopra,et al.Thin Solid Films,1998 326 60
    8.Dosch H.Phys Rev,B 1987 35 2137
    9.许小亮,施朝淑,物理学进展,2000 20 356
    10.V.Srikant,V.Sergo,and D.R.Clarke,J.Am.Ceram.Soc.78,(1995).1931
    11.V.Srikant,E.J.Tarsa,D.R.Clarke,and J.S.Speck,J.Appl.Phys.77,(1995).1517
    12.Y.Sun,O.Brandt,T.Liu,A.Trampert,K.Ploog,J.Bi(a|¨)sing and A.Krost,Appl.Phys.Lett.2002 81,4928
    13.T A Lafford,B K Tanner and P J Parbrook,J.Phys.D:Appl.Phys.2003 36 A245-A248
    14.H.Heinke,V.Kirchner,S.Einfeldt,and D.Hommel,X-ray diffraction analysis of the defect structure in epitaxiai GaN Appl.Phys.Lett.2000 77,2145
    15.Q.S.Paduano,1,A.J.Drehmanl,D.W.Weyburnel,J.Kozlowski,J.Serafinczuk,J.Jasinski,and Z.Liliental-Weber Phys.stat.sol.2003 7,2014-2018
    16.T.Metzger,R.Hopler,E.Born,O.Ambacher,M.Stutzmann,R.Stommer,M.Schuster,H.Gobel,S.Christiansen,M.Albrecht,Philos.Mag.A 1998 77,1013
    17.G.K.Williamson and W.H.Hall,1953 Acta Metall.1,22
    18.M Vickers,M Kappers,R Datta,C McAleese,T M Smeeton,F Rayment,C Humphreys,M E Vickers,M J Kappers,R Datta,C McAleese,T M Smeeton,F Rayment and C J Humphreys J.Phys.D:Appl.Phys.2005 38 A99-A104
    19.X.H.Zheng,H.Chen,Z.B.Yan,Y.J.Han,H.B.Yu,D.S.Li,Q.Huang,J.M.Zhou 2003 25563-67
    20.孙柏 博士论文 中国科学技术大学2007
    21.刘金峰 博士论文 中国科学技术大学2007
    22.Fissel A.,Phy.Rep.2003,379 149-255.
    23.郝跃,彭军,杨银堂 编著 碳化硅宽带隙半导体技术.北京:科学出版社,2000.
    24.王科范 刘金锋邹崇文 等.真空科学与技术学报 2005 25 75
    25.T.A.Lafford,P.A.Ryan,D.E.Joyce,et al.phys.star.sol.a,2003,195(1) 265
    1.J.S.Lamb,S.Comaby,K.Andresen,L.Kwok,H.Y.Park,X.Y.Qiu,D.M.Smilgies,D.H.Bilderback,and L.Pollack,"Focusing capillary optics for use insolution small-angle X-ray scattering," J Appl Crystallogr 40,193-195(2007).
    2.Sterling Cornaby,Thomas Szebenyi,Rong Huang,and Donald H Bilderback,"Design of Single-Bounce Monocapillary X-ray Optics," Advances in X-ray Analysis 50(2006).
    3.Sterling Cornaby PH.D.dissertation Cornell Univ.2008
    4.Paris,I.Zizak,H.Lichtenegger,P.Roschger,K.Klaushofer,and P.Fratzl,"Analysis of the hierarchical structure of biological tissues by scanning X-ray scattering using a micro-beam,"Cellular and Molecular Biology 46(5),993-1004(2000).
    5.Mingqi Li,Katsuji Douki,Ken Goto,Xuefa Li,Christopher Coenjarts,Detlef M.Smilgies,and Christopher K.Ober Spatially Controlled Fabrication of Nanoporous Block Copolymers Chem.Mater.2004,16,3800-3808
    6.Markus Templin,Achim Franck,Alexander Du Chesne,Heike Leist,Yuanming Zhang,Ralph Ulrich,Volker Sch(a|¨) dler,Ulrich Wiesner Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases SCIENCE 278 1997 1795
    7.Allgaier,J.;Poppe,A.;Willner,L.;Richter,D.Macromolecules 1997,30,1582-1586.
    8.Y.Meng,G.Dong,F.Zhang,Y.Shi,H.Yang,Z.Li,C.Yu,B.Tu,D.Zhao,Angew.Chem.Int.Ed. 2005, 44, 7053.
    9. Phong Du, Mingqi Li, Katsuji Douki, Xuefa Li, Carlos B. W. Garcia, Anurag Jain, Detlef-M. Smilgies, Lewis J. Fetters, Sol M. Gruner, Ulrich Wiesner, and Christopher Ober: "Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of Top-Down and Bottom-Up Approaches", Advanced Materials 16, 953-957 (2004).
    10. Sivakumar Nagarajan, Mingqi Li, Rajaram A. Pai, Joan K. Bosworth, Peter Busch, Detlef-M. Smilgies, Christopher K. Ober, Thomas P. Russell, and James J. Watkins: "An Efficient Route to Mesoporous Silica Films with Perpendicular Nanochannels", Adv. Mater. 20, 246-251 (2008).
    11. Michal Kruk and Chin Ming Hui 'Thermally Induced Transition between Open and Closed Spherical Pores in Ordered Mesoporous Silicas" J. AM. CHEM. SOC. 2008, 130, 1528-1529
    12. M. Park, J. Park, T. Hyeon, K. Char, Effect of Interacting Nanoparticles on the Ordered Morphology of Block Copolymer/Nanoparticle Mixtures Journal of Polymer Science: Part B: Polymer Physics, Vol. 44, 3571-3579 (2006)
    13. Adam C. Finnefrock, Ralph Ulrich, Alexander Du Chesne, Christian C. Honeker,Kai Schumacher, Klaus K. Unger, Sol M. Gruner, and Ulrich Wiesner Metal Oxide Containing Mesoporous Silica with Bicontinuous ~aPlumber_s Nightmare Morphology from a Block Copolymer Hybrid Mesophase Angew. Chem. Int. Ed. 2001,40, 1207
    14. Peter F. W. Simon, Ralph Ulrich, Hans W. Spiess, and Ulrich Wiesner, Block Copolymer-Ceramic Hybrid Materials from Organically Modified Ceramic Precursors Chem. Mater. 2001,13,3464-3486
    15. Carlos B. W. Garcia, Yuanming Zhang, Surbhi Mahajan, Francis DiSalvo, and Ulrich Wiesner Self-Assembly Approach toward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block Copolymer Mesophases J. AM. CHEM. SOC. 2003, 125,13310-13311
    16. Lei Zhu, Ping Huang, William Y. Chen, Qing Ge, Roderic P. Quirk, and Stephen Z. D. Cheng , Edwin L. Thomas, Bernard Lotz, Benjamin S. Hsiao, Fengji Yeh, and Lizhi Liu Nanotailored Crystalline Morphology in Hexagonally Perforated Layers of a Self-Assembled PS-b-PEO Diblock Copolymer Macromolecules 2002, 35, 3553-3562
    17. Do Hwan Kim, Joong Tark Han, Yeong Don Park, Yunseok Jang, Jeong Ho Cho, Minkyu Hwang, and Kilwon Cho Single-Crystal Polythiophene Microwires Grown by Self-Assembly Adv. Mater. 2006,18, 719-723
    18. Hoichang Yang, Scott W. LeFevre, and Chang Y. Ryu Zhenan Bao Solubility-driven thin film structures of regioregular poly(3-hexylthiophene) using volatile solvents APPLIED PHYSICS LETTERS 90, 172116,2007
    19. H. Yang, T. Shin, Z. Bao, C. Ryu Structural Transitions of Nanocrystalline Domains in Regioreguiar Poly(3-Hexyl thiophene) Thin Films Journal of Polymer Science: Part B: Polymer Physics, Vol. 45,1303-1312 (2007)
    20. Richard D. McCullough The Chemistry of Conducting Polythiophenes Adv. Mater. 1998, 10, 93
    21. Rui Guo, Haiying Huang, Yongzhong Chen, Yumei Gong, Binyang Du, and Tianbai He, Effect of the Nature of Annealing Solvent on the Morphology of Diblock Copolymer Blend Thin Films Macromolecules 2008, 41, 890-900
    22. Richard D. McCullough, Stephanie Tristram-Nagle, Shawn P. Williams,t Renae D. Lowevt and M ani kandan J a yaramant Self-orienting Head-to-Tail Poly( 3-alkylthiophenes) New Insights on Structure-Property Relationships in Conducting Polym J. Am. Chem. Soc. 1993,115,4910491
    23. Youngkyoo Kim, Jenny Nelson, James R. Durrant, Donal D. C. Bradley, Kyuyoung Heo, Jinwoo Park, Hwajeong Kim, Iain McCulloch, Martin Heeney, Moonhor Ree and Chang-Sik Polymer chain/nanocrystal ordering in thin films of regioreguiar poly(3-hexylthiophene) and blends with a soluble fullerene Soft Matter, 2007, 3, 117-121
    1.S.S.P.Parkin,N.More,K.P.Roche,et al.Phys.Rev.Lett.,1990,64(19) p2304
    2.S.N.Okuno,K.Inomata.Phys.Rev.Lett.1994,72(10) p1553
    3.G.Sch(u|¨)tz,W.Wagner,W.Wilhelm,et al.Phys.Rev.Lett.1987,58(7) p737
    4.C.T.Chen,F.Sette,Y.J.Ma,S.Modesti.Phys.Rev.B.1990,42(11) p7262
    5.N.V.Smith,C.T.Chen,F.Sette,et al,Phys.Rev B.1992,46(2)p1023
    6.B.T.Thole,P.Carra,G.van der Laan,et al.Phys.Rev.Lett.1992,8(12)p1943
    7.P.Carra,B.T.Thole,M.Altarelli,at al.Phys.Rev.Lett.1993,70(5) p694
    8.J.stohr,H.Konig.Phys.Rev.Lett.1995,75(20) p3748
    9.R.Wu,D.S.Wang,A.J.Freeman,et al Phys.Rev.Lett.1993,71(21) p3581.
    10.R.Wu,A.J.Freeman.Phys.Rev.Lett.1994,73(14) p1994
    11.M.M.Schwickert,et al.Phys.Rev.B.1998,58 pR4289
    12.P.M.Oppeneer,et al.Phys.Rev.B.2003,67 p052401
    13.H.-Ch.Mertins,et al.Phys.Rev.Lett.2001,87 p047401
    14.M.M.Schwickert,G.Y.Guo,M.A.Tomaz.Phys.Rev.B.1998,58(8)pR4289
    15.N.D.Mermin,H.Wagner.Phys.Rev.Lett.1966,17(22) p1133
    16.P.Gambardella,A.Dallmeyer,K.Maiti,et al.Letter to Nature,2002,416p301
    17.S.Brice Profetaa,M.A.Arrioa,E.Troncb,et al.J.Magn.Magn.Mate.2005,288 p354
    18.王其武,刘文汉.X射线吸收精细结构及其应用.北京:科学出版社,1994,p52
    19.G.C.King,M.Tronc,F.H.Read,et al.J Phys B.1997,10(12) p2479
    20.A.P.Hitchcock,C.E.Brion.J.Electron Spectrosc Relat Phenom,1980,15(1) p1
    21.J.G..Chen.Surf.Scie.Repo.,1997,30(1-3) p1
    22.R.Nakajima,J.St(o|¨)hr,Y.U.Idzerda,et al.Phys.Rev.B,1999,59(9) p6421
    23.R.Nakajima,J.Stohr,Y.U.Idzerda,et al.Phys.Rev.B,1999,59(9) p6421
    24.C.T.Chert,Y.U.Idzerda,H.J.Lin,et al.Phys.Rev.Lett.1995,75(1) p152
    25.P.M.Satya.PhD Dissertation,2004 University of Tennessee
    26.http://sun.phy.cuhk.edu.hk/~surface/XPSPEAK/Xpspeak41.zip
    27.H.H.Li,J.Wang,R.P.Li,et a.l Chinese Science Bulletin 2005 50 p1
    A.Fert,P.Grunberg,Barthelemy,et al.J.Magn.Magn.Mater.1995,140 p144 1
    28.S.S.P Parkin,N.More,K.P.Roche.Phys.Rev.Lett.1990,64 p2304
    29.M.Brockmann,S.Miethaner,R.Onderka,et al.J.Appl.Phys.1997,81 p5047
    30.C.T.Chen,Y.U.Idezerda,H.J.Lin,et al.Phys Rev Lett.1995,75(1) p152
    31.R.Wu,A.J.Freeman.Phys Rev Lett.1994,73(14) p1994
    32.P.Gambardella,A.Dallmeyer,K.Maiti,et al.Letter to Nature,2002,416 p301
    33.J.H.van Vleck.Phys.Rev.1937,52 p1178
    34.P.Bruno.Phys.Rev.B.1989 39 pR865
    35.L.Gvan der.J.Phys:Condens.Matter.1998 10 p3239
    36.Y.V.Goryunov,I.A.Garifullin,T.Muhge,et al.J.Experi.Theore.Phys.1999,88 p377
    37.J.L.Costa,J.L.Menendez,A.Cebollada,et al.J.Magn.Magn.Mater.2000,210 p341
    38.M.Brockmann,S.Miethaner,R.Onderka,et al.J.Appl,Phys.1997,81 p5047
    39.近角聪信.铁磁性物理.2002,兰州:兰州大学出版社p288
    40.D.Weller,J.Stohr,R.Nakajima,et al.Phys.Rev.Lett.1995,75 p3752
    41.D.Weller,M.G.Samant,J.Stohr,et al.J.Appl.Phys.1994,75 p5807
    42.H.A.Durr,G.van der Laan,J.Vogel,et al.Phys.Rev.B.1998,58 p11853
    43.C.Scheck,S.Evans,R.Schad,J.Appl.Phys.2003,93 p7634
    44.王劼,李红红,王峰,等.核技术.2005,28(7)p489
    45.J.G.Chen.Surf.Sci.Rep.1997,30 p15
    46.C.T.Chen,Y.U.Idzerda,H.J.Lin,et al.Phys.Rev.Lett.1995,75 p152
    47.冯倩,黄志高,都有为.物理学报.2003,152 p2906
    48.F.May,M.Tischer,D.Arvanitis,et al.Phys.Rev.B.1996,53 p1076
    49.H.Ebert.Phys.Rev.B.1996,53 p16067

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700