用户名: 密码: 验证码:
福建邵武杉木成熟林碳储量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以福建邵武28年生杉木(Cunninghamia lanceolata)密度试验林为研究对象,通过林木实测数据拟合优选生物量估算模型,结合生态系统中乔木(叶、枝、去皮干、干皮、根蔸和根)、灌木、草本、凋落物和土壤的有机碳含量以及林分调查数据,系统研究了杉木成熟林生态系统的碳储量、空间分布格局及其与林分初植密度和立地指数的关系。取得了三个方面的重要结果:
     1.生物量估算模型的拟合与优选
     采用11种生物量模型,分别对杉木幼林龄(7年生)、中龄林(16年生)、成熟林(28年生)和不分林龄的单木各器官(叶、枝、干皮、去皮干、根蔸和根)和全株生物量进行拟合,共得到生物量估算模型308个。结果表明:(1)11种生物量模型都能较好的模拟杉木单木生物量,其中幂函数模型( W1 = aDb、( )W = a DHb和( )W = a D H)拟合效果最优,其次为指数模型( ( )W 8 = a expbD、W 9 = a exp(b D2)、( )W1 0 = a expbDH、W1 1 = a expbD H),再次之为多项式模型( W 4= a + bD + cD2、W 5= a + bD 2 + cD4、W 6= a + bDH + c DH、( )2 22W 7= a + bD H + c D H);共选出估算杉木幼林龄、中龄林和成熟林各器官和全株生物量的最优模型21个(18个器官模型,3个全株模型),不分林龄的杉木单木各生物量的最优模型7个(6个器官模型,1个全株模型),均为幂函数模型;(2)不同林龄的单木生物量最优模型的通用性较差,而不分龄林的单木生物量最优模型具有一定的通用性,精度较高,可用于估算不同林龄的单木生物量;(3)应用福建邵武单木生物量模型对江西28年生的成熟林单木各生物量的预测效果显示,不分林龄的大样本生物量模型精度比较高,可在较大范围应用。而区域小样本模型仅限于区域小范围应用。
     2.不同立地不同密度杉木成熟林土壤碳储量
     基于75个土壤剖面(0~100 cm)的数据,分析了不同密度(5个初植密度)和立地指数级(6个立地指数级)杉木成熟林土壤有机碳密度及其分布特征。结果表明:(1)不同初植密度和立地林分土壤有机碳含量存在显著差异(P<0.05),各林分整个土层(0~100 cm)的平均有机碳含量为0.9126%~1.3886%,其中初植密度为6667株·hm-220立地指数级的林分最高,初植为密度10000株·hm-214立地指数级的林分最低。土壤有机碳含量整体随深度增加而降低,但各林分的降幅不同,其中初植密度为5000株·hm-216立地指数级的杉木成熟林降幅最大,达84.22%。(2)不同初植密度和立地林分土壤有机碳密度差异极显著(P<0.01),其各土层的平均有机碳密度变化范围为4.9591~35.7399 Mg·hm-2。75个土壤剖面土壤碳密度随深度增加而降低,各林分整个土层(0~100 cm)平均土壤碳密度为114.2279~187.2361 Mg·hm-2,总平均值为150.3215 Mg·hm-2。(3)林分土壤有机碳表层富集明显,0~30 cm土层土壤碳储量占整个土层(0~100 cm)的57.08%。研究发现,土壤表层0~10 cm的碳密度与林地立地指数呈显著正相关关系(P<0.05),这一结论对林地质量评价和土壤管理具有重要意义。(4)林分密度和林地立地质量是影响土壤碳汇水平的主要因素。从碳汇林地经营角度考虑,在低立地指数级(SI≤14 m)林地造林时建议采用高初植密度≥6667株·hm-2),中等及以上立地指数级(SI≥16 m)的林地应采用低初植密度≤6667株·hm-2。
     3.杉木成熟林生态系统的碳储量及其空间分布特征
     福建邵武15个样地28年生的杉木各器官和成熟林生态系统各组分的含碳量和碳储量的研究结果表明:
     (1)杉木不同器官的有机碳含量差异极显著(P<0.01),各器官的平均有机碳含量变化范围为49.1829%~53.4352%,其由大到小为:叶(53.4352%)>去皮干(53.2206%)>根蔸(51.6617%)>枝(51.1115%)>干皮(50.9420%)>根(49.1829%)。各器官的有机碳含量的差异可能与杉木的生长规律有关,因此,应对林木分器官测定有机碳含量,以达到精确估算杉木成熟林碳储量的目的。研究发现,杉木去皮干的有机碳含量在树高垂直分布上差异不明显,可视为垂直均匀分布。林下地被物各层的有机碳含量由大到小为:凋落物层(47.6355%~52.8923%,平均为50.6268%)>灌木层(39.8711%~46.5126%,平均为44.0429%)>草本层(35.9797%~43.9649%,平均为40.5909%)。
     (2)不同初植密度和立地指数级的杉木成熟林各器官碳储量的平均值和分配率为:去皮干(78.8943 Mg·hm-2,58.0832%~64.6194%)>地下部分(22.8704 Mg·hm-2,16.0528%~20.9624)>干皮(13.1020 Mg·hm-2,9.3927%~10.7423%)>枝(7.0874 Mg·hm-2,4.0841%~7.5481%)>叶(5.5873 Mg·hm-2,3.0739%~5.6319%)。相同初植密度且林分密度相差不大的杉木成熟林,立地指数越高,杉木各器官的碳储量越大,其中79.0376%~83.9472%的碳储存于地上部分器官;相同初植密度和立地的杉木成熟林林分的碳储量的差异主要是由林分密度不同造成的。杉木单木各器官的碳储量是单木的生长状况和林分密度共同作用的结果。
     (3)不同初植密度和立地杉木成熟林生态系统各组分碳储量的平均值和分配率排序为:土壤(150.3215 Mg·hm-2,45.4608%~63.7434%)>乔木层(127.5417 Mg·hm-2,33.4074%~52.0212%)>凋落物层(4.8947 Mg·hm-2,1.0893%~2.2838%)>草本层(0.7065 Mg·hm-2,0.0797%~0.4246%)>灌木层(0.2103 Mg·hm-2,0.0070%~0.2685%)。高立地指数且单木生物量较高的林分,其乔木层的碳储量高于土壤层,立地指数级为20 m初植密度为1667和6667株·hm-2的林分以及立地指数级为22 m初植密度为1667和5000株·hm-2的林分,均为此类林分。在同一初值密度,林分密度相差不大的情况下,立地指数级正向影响乔木层及各组分总的碳储量。
Optimal biomass models were used to estimate biomass of Cunninghamia lanceolata mature plantation ecosystems (28-year old) in Shaowu, Fujian Province, with the measured data of trees' biomass. Carbon storage of mature plantation ecosystems was estimated with stand survey data and organic carbon contents of tree layer(including leaf, branch, peeled stem, bark, root head and root),shrub layer,herbaceous layer, litter and soil of the mature forest ecosystems. Carbon storage of mature plantation ecosystems and its spatial distribution was studied, as well the relationship between it and planting density-site index class. The main results were as follows:
     1. Selection of biomass estimate models for Chinese fir plantation
     In this paper, 11 kinds of biomass models were used to estimate the single-tree biomasses in a young (7-year old), middle-aged (16-year old), mature Chinese fir plantation (28-year old) and the mixed-age Chinese fir stand, respectively. There were 308 biomass models fitted totally. The results showed that: (1) The power function models( W1 = aDb、( )bW = a D H) present the best fitting results followed by exponential models( ( )W 8 = a expbD、W 9 = a exp(b D2)、( )W1 0 = a expbDH、( )W1 1 = a expbD H) and the polynomial models ( W 4= a + bD + cD2、W 5= a + bD 2 + cD4、( )W 6= a + bDH + c DH、2 22W 7= a + bD H + c D H)with the least effective fitting results. 21 optimal biomass models for individual organ of tree and total single-tree in young, middle-aged and mature Chinese fir plantation were chosen, including 18 for organ and 3 for total single-tree. 7 optimal biomass models of individual tree regardless of ages were chosen, which contained 6 for organ and 1 for total single-tree. All of the optimal biomass models were in the form of power function ones; (2) The optimal biomass models of single-tree with different ages had poor generality, but the ones regardless of ages had a certain generality with high accuracy, which can be used for estimating the biomasses of single-tree with different ages; (3) To predict single-tree biomass of mature Chinese fir plantation (28-year old) in Jiangxi Province, optimal biomass models of single-tree in Shaowu, Fujian Province, which was based on a large sample of forest biomass, showed relatively high accuracy and can be applied in a large range. The regional model with small sample is limited to small application area.
     2. Soil organic carbon storage and vertical distribution of mature Chinese fir plantation with different planting density and site index
     There were 5 planting densities and 6 site index classes in mature Chinese fir plantation. Based on 75 soil profiles (0~100 cm), the storage and distribution of soil organic carbon for the plantation was studies. The results were as follow: (1) Soil organic carbon contents in different planting density-site index class levels were significantly different among stands (P<0.05). The average soil organic carbon content of the whole soil section (0~100 cm) for the stands was 0.9126%~1.3886%. The average soil organic carbon content was the highest in the stand with planting density 6667 hm-2 and Site Class 20 m, and the lowest with planting density 10000 hm-2 and Site Class 14 m. Soil organic carbon contents generally decreased with depth, but decreasing amplitude was different for the stands, and decreasing amplitude of the stand with planting density 5000 hm-2 and Site Class 16 m, is highest (84.22 %). (2) Soil organic carbon densities in different planting density-site index class levels were significantly different among stands (P<0.01). The average soil carbon density in every soil layer of the stands changed greatly, with a range of 4.9591~35.7399 Mg·hm-2. Soil carbon density decreased generally with the depth, too. For the whole soil section (0~100 cm), the average soil carbon density in the stands varied from 114.2279~187.2361 Mg·hm-2, their total mean values were 150.3215 Mg·hm-2. (3) The soil organic carbon assembled obviously in surface layer soils. The carbon storage contribution rate of the soil layer 0~30 cm was up to 57.08%. Carbon density of soil surface 0~10 cm and site index showed significant positive correlation (P<0.05). The conclusion played an important role in the evaluation of woodland quality and soil management. (4) Planting density and site quality were the main factors, which effected on soil carbon sink levels. If the management purpose was to have large carbon sink capacity of the plantations, the suitable planting density should be chosen with site quality. Low site index classes (SI≤14 m) of woodland should be combined with high planting density (≥6667 hm-2), medium and high classes (SI≥16 m) with low density (≤6667 hm-2).
     3. Characteristics of carbon storage and the spatial distribution in Chinese fir plantation ecosystem
     Carbon content and storage of different organs and components of ecosystem were studied in 15 plots of a 28-year old Chinese fir plantation in Shaowu, Fujian. The results showed that: (1) Organic carbon densities in different organs of Chinese fir were significantly different (P<0.01). The average organic carbon contents in different organs were in the range of 49.1829%~ 53.4352%, the descending order: leaf (53.4352%)> peeled stem (53.2206%)> root head (51.6617%)> branch (51.1115%)> bark (50.9420%)> root (49.1829%). Organic carbon content of various organs may be related to differences in the growth pattern of the fir. Therefore, the response to measure organic carbon content of each organ, was in order to estimate accurately carbon storage of mature Chinese fir plantation. Peeled stem in vertical distribution of organic carbon content was no significant difference, which could be regarded as uniformly distributed vertically. The organic carbon contents in different layers of the forest floor were in the order as: litter layer (47.6355%~52.8923%, an average of 50.6268%)>shrub layer (39.8711%~ 46.5126%, an average of 44.0429%)>herb layer (35.9797%~43.9649%, an average of 40.5909%).
     (2) The means and distribution sequence of the carbon storage in each organ of plantation ecosystem with different initial planting densities and site index classes was that peeled stem (78.8943 Mg·hm-2, 58.0832%~64.6194%)>underground parts (22.8704 Mg·hm-2, 16.0528%~20.9624)>bark (13.1020 Mg·hm-2, 9.3927%~ 10.7423%)>branch (7.0874 Mg·hm-2, 4.0841%~7.5481%)>leaf (5.5873 Mg·hm-2, 3.0739%~5.6319%). With the same planting density and stand densities difference little among the plantations, the higher the site index class of the plantation, the greater carbon storage of different organs in the one. 79.0376%~83.9472% of carbon stored in aboveground organs; differences of carbon storage in mature fir plantations with the same planting density and site index class were mainly caused by the stand density. Carbon storage of Chinese fir plantation in different organs was the result of the interaction of individual growth and plant stand density.
     (3) The means and distribution sequence of the carbon storage in each component of plantation ecosystem with different initial planting densities and site index classes was that soil (150.3215 Mg·hm-2, 45.4608%~63.7434%)>tree layer(127.5417 Mg·hm-2, 33.4074%~52.0212%)>litter layer (4.8947 Mg·hm-2, 1.0893%~2.2838) >herb layer (0.7065 Mg·hm-2, 0.0797%~0.4246%)>shrub layer (0.2103 Mg·hm-2, 0.0070%~0.2685%). The carbon storage in tree layer was larger than one in the soil of plantation ecosystem, which was high site index class with high biomass of individual tree. Such stand were studied in this paper, including site index class of 20 m with the initial planting density of 1667 hm-2, site index class of 20 m with the initial planting density of 6667 hm-2, site index class of 22 m with the initial planting density of 1667 hm-2 and site index class of 22 m with the initial planting density of 5000 hm-2. With the same planting density and stand densities difference little among the plantations, the higher the site index class of the plantation, the greater carbon storage of tree layer and total layers in the one.
引文
鲍士旦.土壤农化分析第三版.北京:中国农业出版社, 2000, 27~28
    蔡传胜.城市林业认识与建设初探.内蒙古林业调查设计, 2009, 32(5): 18~21
    曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化.地理研究, 2002, 21(5): 551~560
    陈楚莹,廖利平,汪思龙.杉木人工林生态系统碳素分配与贮量的研究.应用生态学报, 2000, 11(增刊): 175~178
    陈庆强,沈承德,易惟熙,等.土壤碳循环研究进展.地球科学进展, 1998, 13(6): 555~563
    邓秋香,赵瑛,伍禄军,等.广西大青山12年生杉木人工林的生物生产力.广西林业科学, 2008 , 37 (4): 187~190
    段爱国,张建国,何彩云,等.杉木人工林生物量变化规律的研究.林业科学研究, 2005, 18 (2): 125~132
    段文霞,朱波,刘锐,等.人工柳杉林生物量及其土壤碳动态分析.北京林业大学学报, 2007, 29(2): 55~59
    方海波,田大伦,康文星.杉木人工林间伐后林下植被生物量的研究.中南林学院学报, 1998, 18 (1) : 6~9
    方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science, 2001, 291: 2320-2322)的若干说明.植物生态学报, 2002, 26(2): 243~249
    方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报, 2001, 43(9): 967~973
    方精云,郭兆迪.寻找失去的陆地碳汇.自然杂志, 2007, 29(1): 1~6
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报, 1996, 16(5): 497~508
    方精云,刘国华,朱彪,等.北京东灵山三种温带森林生态系统的碳循环.中国科学D辑地球科学, 2006, 36(6): 533~543
    方晰,田大伦,项文化,等.杉木人工林林地土壤CO2释放量及其影响因子的研究.林业科学, 2005, 41 (2): 1~7
    方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布.林业科学, 2002, 38(3): 14~19
    方运霆,莫江明,黄忠良等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征.热带亚热带植物学报, 2003, 11(1): 47~52
    冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓.生态学报, 2006, 26 (11):3870~3877
    冯宗炜,陈楚莹,张家武,等.湖南会同县两种森林群落的生物生产力.植物生态学与地植物学丛刊, 1982, 6 (4): 257~267
    冯宗炜,陈楚莹,张家武.湖南全国地区马尾松林生物量的测定.林业科学, 1982, 18 (2): 127–134
    顾峰雪,曹明奎,温学发,等.亚热带针叶林水碳通量的模拟及其与观测的对比研究.中国科学D
    辑地球科学, 2006, 36(增刊I): 224~233 管东生, Peart M R.华南南亚热带不同演替阶段植被的环境效应.环境科学, 2000, 21(5): 1~5
    光增云.河南省森林碳储量及动态变化研究.林业资源管理, 2006, (4): 56~60, 48
    国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况.林业资源管理, 2010, (1): 1~8
    郝庆菊,王跃思,宋长春,等.三江平原湿地CH4排放通量研究.水土保持学报, 2004, 18(3): 194~199
    侯琳,雷瑞德.秦岭火地塘林区油松林下主要灌木碳吸存.生态学报, 2009, 29 (11): 6077~6084
    胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报, 2006, l7(4): 709~714
    黄昌勇.土壤学.北京:中国农业出版社, 2000. 32~49
    黄从德,张健,杨万勤,等.四川人工林生态系统碳储量特征.应用生态学报, 2008, 19(8) : 1644~1650
    黄从德,张国庆,唐宵,等.四川省马尾松人工林土壤有机碳密度研究.水土保持研究, 2009, 16(2): 46~49, 55
    黄从德,张健,杨万勤,等.四川省森林植被碳储量的空间分异特征.生态学报, 2009, 29(9): 5116-5121
    江东,王礼茂.森林碳循环研究中的空间信息技术.甘肃科学学报, 2005, 17(2): 88~92
    江泽慧,范少辉,冯慧想,等.华北沙地小黑杨人工林生物量及其分配规律.林业科学, 2007, 43(11): 15~20
    蒋有绪,卢俊培等著.中国海南岛尖峰岭热带林生态系统.北京:科学出版社, 1991. 218~234
    焦秀梅.湖南省森林植被碳贮量及地理分布规律[D].株洲:中南林学院, 2005
    焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报, 2005, 16(12): 2248~2252
    康冰,刘世荣,蔡道雄,等.南亚热带杉木生态系统生物量和碳素积累及其空间分布特征.林业科学, 2009, 45(8): 147~153
    康博文,刘建军,党坤良.秦岭火地塘林区油松林土壤碳循环研究.应用生态学报, 2006, 17 (5): 759~764
    康文星,田大伦,闫文德等.杉木林杆材阶段能量积累和分配的研究.林业科学, 2004, 40 (5) : 205~209
    雷加富.中国森林资源.北京:中国林业出版社. 2005: 172
    雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究.生态学杂志, 2004, 23 (4) : 25~33
    黎燕琼,郑绍伟,宿以明,等.岷江上游干旱河谷引种番麻的生态适应性及生物量预测模型.生态学报, 2009 , 29 (9): 4820~4826
    李铭红,于明坚,陈启常等.青冈常绿阔叶林的碳素动态.生态学报. 1996, 16(6): 645~651
    李强,马明东,刘跃建,等.几种人工林土壤有机碳和养分研究.土壤通报, 2008, 39(5): 1034~1037
    李淑花,石军南,吴梅俏.二代杉木人工林生物量及其垂直分布研究.森林工程, 2007, 23 (1) : 1~4
    李文华,李飞.中国森林资源研究.北京:中国林业出版社, 1996
    李轩然,刘琪璟,陈永瑞,等.千烟洲人工林主要树种地上生物量的估算.应用生态学报, 2006, 17 (8) : 1382~1388
    李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究. 植物生态学报. 1998, 22(2): 127~134
    李意德,曾庆波,吴仲民.尖峰岭热带山地雨林生物量的初步研究.植物生态与地植物学报, 1992, 16(4): 293~300
    李意德,曾庆波,吴仲民等.我国热带天然林植被C贮存量的估算.林业科学研究, 1998, 11(2): 156~162
    李志辉,陈少雄,黄丽群,等.林分密度对邓恩桉生物产量及生产力的影响.中南林业科技大学学报, 2007, 27(5): 1~5
    林培松,高全洲.韩江流域典型区几种森林土壤有机碳储量和养分库分析.热带地理, 2009a, 29 (4): 329~334
    刘广,张晓丽.森林生态系统碳通量遥感估算中若干问题的探讨.世界林业研究, 2007, 20(6): 17~22
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报, 2000, 20(5): 733~740
    刘华,雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展.西北植物学报, 2005, 25(4): 835~843
    刘兴良,刘世荣,宿以明,等.巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应.林业科学, 2006, 42 (2): 1~7
    吕晓涛,唐建维,何有才,等.西双版纳热带季节雨林的生物量及其分配特征.植物生态学报, 2007, 31 (1): 11~22
    罗云建,张小全.多代连栽人工林碳贮量的变化.林业科学研究, 2006, 19(6): 791~798
    马明东,江洪,罗承德,等.四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究,植物生态学报, 2007, 31(2): 305~312
    马钦彦,陈遐林,王娟等.华北主要森林类型建群种的含碳率分析.北京林业大学学报, 2002, 24(5-6): 96~100
    齐玉春,罗辑,董云社,等.贡嘎山山地暗针叶林带森林土壤温室气体N2O和CH4排放研究.中国科学D辑, 2003, 32(11): 934~94l
    钱能智,叶镜中.福建省洋口林场杉木混合家系人工林的生物量.南京林业大学学报, 1992 , 16(3) : 19~24
    秦建华,姜志林.森林在大气碳平衡中的作用.世界林业研究, 1997, (4) : 18~25
    阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律.生态学杂志, 1997, 16(6): 17~21
    桑卫国,马克平,陈灵芝.暖温带落叶阔叶林碳循环的初步估算.植物生态学报, 2002, 26(5): 543~548
    沈文清,刘允芬,马钦彦,等.千烟洲人工针叶林碳素分布\碳贮量及碳汇功能研究.林业实用技术, 2006b, 8: 6~8
    沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展.江西农业大学学报, 2006a, 28(2): 312~317
    宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究.江西科学, 2003, 2l (3): 206~210
    孙丽英,李惠民,董文娟,等.在我国开展林业碳汇项目的利弊分析.生态科学, 2005, 24(1): 42~45
    孙伟,林光辉,陈世苹,等.稳定性同位素技术与Keeling曲线法在陆地生态系统碳/水交换研究中的应用.植物生态学报, 2005, 29(5): 851~862
    唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学, 2000, 36 (专刊1): 19~27
    唐霄.四川森林植被碳储量估算及其空间分布特征[D].四川农业大学, 2007
    陶贞,沈承德,高全洲,等.高寒草甸土壤有机碳储量和CO2通量.中国科学D辑:地球科学, 2007, 37(4): 553~563
    田大伦,方晰,项文化.湖南会同杉木人工林生态系统碳素密度.生态学报, 2004 , 24 (11): 2382~2386
    田大伦,盘宏华,康文星,等.第二代杉木人工林生物量的研究.中南林学院学报, 1998, 18 (3): 11~16
    佟金权.不同地位指数不同密度杉木人工林生产力的比较[J].福建农林大学学报, 2008, 37 (4): 369~373
    佟金权.杉木人工林广义干曲线模型及其生物生产力研究.中国林业科学研究院硕士学位论文, 1999 , 36~37
    王军邦.中国陆地净生态系统生产力遥感模型研究.杭州:浙江大学, 2004
    王维枫,雷渊才,王雪峰,等.森林生物量模型综述[J].西北林学院学报, 2008, 23 (2): 58–63
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报, 2001, 12(1): 13~16
    王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力.生态学杂志, 2000b, 19(4): 72~74
    王效科.冯宗炜.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报, 2001a, 12(1): 13~16
    王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展.世界林业研究, 2008, 21(5): 72~74
    王雪军,黄国胜,孙玉军,等.近20年辽宁省森林碳储量及其动态变化.生态学报, 2008, 28(10): 4757~4764
    王妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展.世界林业研究, 2006, 19(3): 12~17
    王义祥.福建省主要森林类型碳库与杉木林碳吸存.福建农林大学硕士学位论文, 2004
    魏安世,林寿明,李志洪.基于TM数据的森林植物碳储量估测方法研究.中南林业调查规划, 2006, 25(4): 44~47
    魏文俊,王兵,郭浩.基于森林资源清查的江西省森林贮碳功能研究.气象与减灾研究, 2008, 31(4): 18~23
    吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究.应用生态学报, 1998, 9(4): 341~344
    邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型.应用生态学报, 2007, 18 (1): 1~8
    徐雯佳,刘琪,马泽清,等.江西千烟洲不同恢复途径下白栎种群生物量.应用生态学报, 2008 , 19 (3) : 459~466
    徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展, 2007, 26(6): 1~10
    薛立,杨鹏.森林生物量研究综述.福建林学院学报, 2004, 24(3): 283~288
    薛立.珠江流域生态公益林营建和生态效益研究(M).中国林业出版社, 2008
    杨万勤,张健,胡庭兴,等.森林土壤生态学.成都:四川科学技术出版社, 2006: 335~341
    杨学云.浅议我国人工林的近自然林经营.中南林业调查规划, 2005, 24(4):7~9
    应天玉,李明泽,范文义.哈尔滨城市森林碳储量的估算.东北林业大学学报, 2009, 37(9): 33~35
    于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展.中国科学D辑地球科学, 2004, 34(增刊II): 15~29
    于占源,杨玉盛,陈光水.紫色土人工林生态系统碳库与碳吸存变化.应用生态学报, 2004, 15(10): 1837~1841
    曾慧卿,刘琪,冯宗炜,等.红壤丘陵区林下灌木生物量估算模型的建立及其应用.应用生态学报, 2007 , 18 (10) : 2185~2190
    张德全,桑卫国,李曰峰,等.山东省森林有机碳储量及其动态的研究.植物生态学报, 2002, 26(增刊): 93~97
    张国庆,黄从德,郭恒,等.不同密度马尾松人工林生态系统碳储量空间分布格局.浙江林业科技, 2007, 27(6): 10~14
    张仁华,孙晓敏,朱治林,等.遥感区域地表植被二氧化碳通量的机理及其应用.中国科学(D辑), 2000, 30(2): 215~224
    张文娟,王绍强,常华,等.遥感在土壤碳储量估算中的应用.地理科学进展, 2005, 24(3): 118~126
    张小全,侯振宏.森林、造林、再造林和毁林的定义与碳计量问题.林业科学, 2003, 39 (2): 1451~1452
    张小全,李怒云,武曙红.中国实施清洁发展机制造林和再造林项目的可行性和潜力.林业科学, 2005, 41(5): 139~143
    张一平,窦军霞,孙晓敏,等.热带季节雨林林冠碳通量不同校正方法的比较分析.应用生态学报, 2005, 16(12): 2253~2258
    赵广东,王兵,杨晶,等. LI-8100开路式土壤碳通量测量系统及其应用. 2005, 33(4): 363~366
    赵坤,田大伦.会同杉木人工林成熟阶段生物量的研究.中南林学院学报, 2000 , 20 (1): 7~13.
    赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述.西北林学院学报, 2008, 23(1): 59~63
    赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析.地理科学, 2004, 24(1): 50~54
    赵士洞,罗天祥.区域尺度生物生产力估测方法.资源科学, 1998, 20(1): 24~34
    赵双菊,张一平.热带森林碳通量研究综述.南京林业大学学报(自然科学版), 2005, 29(4): 96~100
    周存宇,张德强,王跃思,等.鼎湖山针阔叶混交林地表温室气体排放的日变化.生态学报, 2004, 24(8): 1741~1745
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡.植物生态学报, 2000, 24(5): 518~522
    Alaback PB. Biomass regression equations for understory plants in coastal Alaska: Effects of species and sampling design on estimates. Northwest Science, 1986, 60 : 90~103
    Aubinet M, Grelic A, Ibrom A, et a1. Estimates of annual net carbon and water exchange of European forests: The EUROFLUX methodology. Adv Ecol Res, 2000, 30: 113~175
    Balboa-Murias Miguelángel, Rodríguez-Soalleiro Roque, Merino Agustín, et a1. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. Forest Ecology and Management, 2006, 237: 29~38
    Baldocchi D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, 9: 479~492
    Baldocchi DD, Wilson KB. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modeling, 2001, 142: 155~184
    Baldoeehi DD, Meyers TP. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and gaseous deposition fluxes over vegetation. Agriculture and Forest Meteorology, 1998, 90: 1~26
    Baties N H. Total carbon and nit rogen in the soils of the world. European Journal of Soil Science, 1996, 47: 151~163
    Birdsey RA, Plantinga AJ, Heath LS. Past and prospective carbon storage in United States forests.Forest Ecology and Management, 1993, (59): 33~40
    Bowling DR, Tans PP, Monson RK. Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biology, 2001, 7: 127~145
    Brandeis TJ , Delaney M , Parresol BR , et al. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management, 2006 , 233 : 133~142
    Brown SL, Schroeder P, Kem JS. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 1999, (123): 81~90
    Buchmann N, Brooks JR, Flanagan LB, et al. Carbon isotope discrimination of terrestrial ecosystems. In: Griffiths H ed. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. BIOS Scientific Publisher. Oxford, England, 1998, 203~221
    Buchmann N, Cuehl JM, Barigah TS, et al. Interseasonal comparison of CO2 concentrations, isotopic composition and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia, 1997a, l10: 120~131
    Buchmann N, Ehleringer JR. CO2 concentration profiles and carbon and oxygen isotopes in C3 and C4 crop canopies. Agricultural and Forest Meteorology, 1998, 89: 49~58
    Buchmann N, Kao WY, Ehleringer JR. Influence of stand structure on carbon-13 of vegetation, soils and canopy air within deciduous and evergreen forests in Uath, United States. Oecologia, 1997b, l10: 109~l19
    Cao MK, Prince SD. Increasing terrestrial carbon uptake from 1980s to the 1990s with changes in climate and atmospheric CO2. Global Biogeochemical Cycles, 2002, l6(4): l~l1
    Cao MK, Tao B, Li KR, et a1. Interannual variation in terrestrial ecosystem carbon fluxes in China from l98l-1998. Acta Botanica Sinica, 2003, 45(5): 552~560
    Cao MK, Zhang QF, Shugart HH. Dynamic responses of African ecosystem carbon cycling to climate change. Climate Research, 2001, 17: 183~193
    Carter AJ, Scholes RJ. Spatial Global Database of Soil Properties. IGBP Global Soil Data Task CD-ROM. International Geosphere-Biosphere Programme (IGBP) Data Information Systems. Toulouse, France. 2000
    Carvalho J.A. Jr, Higuchi N., Araujo T.M. and Santos J.C. Combustion completeness in a rainforest clearing experiment in Manaus, Brazil. Journal of Geophysical Research-Atmospheres, 1998, 103, 13195~13199
    Chen JQ, Falk M, et al. Biophysical controls of carbon flows in three successional Douglas firs stands based on eddy-covariance measurements. Tress physiology, Heron publishing-Victoria, Canada, 2002, 22:169~177
    Ciais P, Tans PP, Trolier M, et al. A large northern hemi sphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 1995, 269: 1098~1102
    Clough BF, Scott K. Allometric relationships for estimating aboveground biomass in six mangrove species. Forest Ecology and Management, 1989, 27: 117~127
    Collatz GJ, Ball JT, Grivet C, et a1. Regulation of stomatal conductance and transpiration: a physiological model of canopy processes. Agricultural and Forest Meteorology. 1991, 54: 107~l36
    Dawson TE, Mambelli S, Plamboeck AH, et a1. Stable isotopes in plant ecology. Annual Review of Ecology and Systermatics, 2002, 33: 507~599
    De Fries RS, Field CB, Fung I, et al. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochemical Cycles, 1999, 13: 803~815
    Dixon RK, Brown S, Houghton RA, et al.Carbon Pools and Flux of Global Forest Ecosystems. Science, 1994, 263: 185~190
    Dixon RK, Wisniewski J. Global forest systems: an uncertain response to atmospheric pollutants and global climate change. Water Air Soil Pollut, 1995, 85: 101~110
    Ehleringer JR, Bowling DR, Flanagan LB, et a1. Stable isotope and carbon cycle processes in forests and grasslands. Plant Biology, 2002, 4:181~189
    Ehleringer JR.Carbon and water relation in desert plants, an isotope perspective. In: Ehleringer JR, Hall AE, Farquhar GD eds. Stable Isotope and Plant Carbon-Water Relation, Academic Press, San Diego, 1993, 155~172
    Fang JY, Chen AP, Peng CH, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292:2320~2322
    Fang JY, Liu GH, Xu SL. Forest biomass of China:an estimation based on the biomass-volume relationship. Ecological Applications, 1998b, (8): 1084~1091
    Fang JY, Wang GG, Liu GH, et al.Forest biomass of China: an estimate based on the biomass-volume relationship.Ecological Applications, 1998a, 8(4): 1984~1991
    Farquhar GD, Von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149: 78~90
    Flanagan LB, Brooks JR, Varney GT, et a1. Carbon isotopic discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystem. Global Biogeochemical Cycles, 1996, 10: 629~640
    Flanagan LB, Brooks JR, Varney GT, et a1. Discrimination against concentration and stable oxygen isotope ratio of atmospheric CO2 in boreal forest ecosystems. Global BiogeochemCycles, 1997, l1: 83~98
    Foken T, Wichura B. Tools for quality assessment of surfacebased flux measurements. Agriculture and Forest Meteorology, 1996, 78: 83~105
    Fujimori T, Kawanabe S, Saito H, et al. Biomass and primary production in forests of three major vegetation zones of the Northwestern United States. Journal of Japan Forest Society, 1976, 58 (10): 360~373
    Gmeme M, Hall J, Susank W, et a1. Stragies to estimate national forest carbon stocks from inventory data: the 1990 New Zealand baseline. Global Change Biology, 2001(7): 389~403
    Goldstein AH, Hultrman NE, Fracheboud JM, et a1. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada(CA). Agriculture and Forest Meteorology, 2000, 101: 113~129
    Goodale CL, Apps MJ, Birdsey RA, et al. Forest carbon sinks in the northern hemisphere. Ecological Applications, 2002, 12: 891~899
    Guo JF, Yang YSH, Chen GSH, et a1. Soil C and N Pools in Chinese Fir and Evergreen Forests and their Changes with Slash Burning in Mid-Subtropical China Broadleaf. Pedosphere, 2006, 16(1): 56~63
    Harwood KG, Gillon JS, Roberts A, et a1. Detenninants of isotopic coupling of CO2 and water vapour within a Quercus petraea forest canopy.Oecologia, 1999, l19: 109~l19
    Hazlett PW, Gordon AM, Sibley PK, et a1. Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario. Forest Ecology and Management, 2005, 219: 56~68
    Hollinger DY, Goltz SM, et a1. Seasonal patterns and environmental control of carbon dioxide and water vapor exchange in an ecotonal boreal forest. Global Change Biol, 1999, 5: 891~902
    Houghton RA. Aboveground Forest Biomass and the Global Carbon Balance. Global Change Biology, 2005, 11(6): 945~958
    Ito A, Oikawa T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation. Ecological Modeling, 2002, 151: l43~176
    Ji JJ, Yu L. A simulation study of coupled feedback mechanism between physical and biogeochemical processes at the surface. Chinese Journal of Atmospheric Sciences, l995, 23(4): 439~448
    Kauppi PE, Mielikainen K, Kuusela K. Biomass and Carbon Budget of European Forests, 1971 to 1990. Science, 1992, 256(5053): 70~74
    Keeling CD. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 1958, 13: 322~334
    Keling CD. The concentration and isotopic of carbon dioxide in rural marine air. Geochimiea et Cosrnochimica Acta, 1961, 24: 277~298
    Kolchugina, Tatyana P, Ted S Vinson. Comparison of two methods to assess the carbon budget of forest biomass in the former Soviet Union. Water, Air, and Soil Pollution, 1993, 70: 207~221
    Lal R. Forest soils and carbon sequestration. Forest Ecology and Management, 2005, 220: 242~258
    Liu S R. Nitrogen cycling and dynamic analysis of man-made larch forest ecosystem. J Plant Soil, 1995, 168/169 : 391~397
    Malhi Y, Baldocchi DD, Javis PG. The carbon balance of tropical, temperate and boreal forest. Plant, Cell and Environment, 1999, 22(6): 715~740
    Massman WJ, Lee X. Eddy covariance flux correction and uncertainties in long-term studies of carbon and energy exchanges. Agriculture and Forest Meteorology, 2002, 113: 121~144
    Monsi M. Mathematical models of plant communities∥Eckardt F E ed. Functioning of terrestrial ecosystems at the primary production level:Proceeding Copenhagen Symposium, Natural Resources Research. 1968, Paris: UNESCO, 5: 349~358
    Mooney H, Roy J, Saugier B. (eds.) Terrestrial Global Productivity: Past, Present and Future. Academic Press, San Diego, 2001
    Ometto JPHB, Flanagan LB, Martinelli LA, et al. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochemical Cycles, 2002, 16(4): l~l0, 56
    Pataki DE, Ehleringer JR, Flanagan LB, et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemieal CIycles, 2003, 17(1): 22, l~l4
    Paton D, Nuńez J, Bao D, et al. Forage biomass of 22 shrub species from Monfragüe Natural Park (SW Spain) assessed by log-log regression models. Journal of Arid Environment, 2002, 52 (2): 223~231
    Plattner GK, Joos F, Stocker TF. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochemical Cycles, 2002, 16(4): 1096
    Post WM, Emanuel WR. Soil carbon pools and world life zones. Nature, 1982, 298 : 156~159
    Prentice IC. The Carbon Cycle and Atmospheric Carbon Dioxide. Climate Change 2001: The Scientific Basis IPCC, Cambridge University Press, Cambridge, UK, 2001, pp. 183–237
    Raich JW, Rastetter EB, Melillo JM, et a1. Potential net primary productivity in south America: Application of a global mode1. Ecological Application, 1991, 4: 399~429
    Retzlaff WA , Handest JA , ?'Malley DM . Whole-tree biomass and carbon allocation of juvenile trees of loblolly pine (Pinus taeda): influence of genetics and fertilization. Canadian Journal of Forest Research, 2001, 31 (6): 960~970
    Running SW, Coughlan JC. A general model of forest ecosystem processes for regional applications, ?. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modeling, 1988, 42: 125~154
    Schimel DS, House JI, Hibbard KA, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414(6860): 169~172
    Schlesinger WH . Evidence from chronosequence studies for a low carbon-storage potential of soil. Nature , 1990, 348 : 232~234
    Schmid HP, Grimmond CSB, Cropley F, et a1. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agriculture and Forest Meteorology. 2000, 103: 357~374
    Silver WL, Ostertang R, Lugo AE. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands.Rest. Ecol, 2000, 8: 394~407
    Ter-Mikaelian MT, Korzukhin MD. Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 1997, 97: 1~24
    Tremblay S, PériéC, Ouimet R. Changes in organic carbon storage in a 50 year white spruce plantation chronosequence established on fallow land in Quebec. Canadian Journal of Forest Research, 2006, 36: 2713~2723
    Turnipseed AA, Blanken PD, Anderson DE, et a1. Energy budget above a high-elevation subalpine forest in complex topography.Agriculture and Forest Meteorology, 2002, 110: 177~201
    Uchijima Z, Seino H. Agroclimatic evaluation of net primary productivity of natural vegetations (?) Chikugo model for evaluating net primary productivity. Journal of Agricultural Meteorology (Japan), 1985, 40(4): 343~352
    Vallet P , Dhote JF , Moguédec GL , et al . Development of total aboveground volume equations for seven important forest tree species in France. Forest Ecology and Management, 2006, 229: 98~110
    Walker BH, Steffen WL, Canadell Jeds. The Terrestrial Biosphere and Global Change, IGBP book series 4. Cambridge University Press, 1999, l~18
    Wang XF,Yakir D. Using stable isotopes of water in evaporation studies. Hydrological Processes, 2000, 14: 1407~1421
    Wang YS, Hu YQ, Ji BM, et a1. An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland. Advances in Atmospheric Sciences, 2003, 20(1): 119~127
    Wang YS, Wang YH. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Advances in Atmospheric Sciences, 2003, 20(5): 842~844
    Watanabe T, Yamanoi K, Yasuda Y. Testing of the bandpass eddy covariance method for a long-term measurement of water vapor flux over a forest. Boundary-Layer Meteorology, 2000, 96: 473~49l
    Whittaker RH, Likens GE. Methods of assessing terrestrial productivity. New York, USA: Springer-Verlag, 1975: 305~328
    Williams DG, Cable W, Huhine K, et a1. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance technique. Agricultural and Forest Meteorology, 2004, 125: 241~258
    Wilson K, Goldstein A, Falge E, et a1. Energy balance closure at FLUXNET sites. Agriculture and Forest Meteorology, 2002, 113: 223~243
    Wilson KB, Boldocchi DD. Seasonal and interannual variability of energy fluxes over a broad-leaved temperate deciduous forest in North America. Agriculture and Forest Meteorology, 2000, 100: 1~18
    Xiao DM, Wang M, Wang YS, et a1. Fluxes of soil carbon dioxide,nitrous oxide and firedamp in broad-leaved Korean pine forest. Journal of Forestry Research, 2004, 15(2): 107~112
    Xu Q, Rui WY, Bian XM, et al. Regional differences and characteristics of soil organic carbon density between dry land and paddy field in China. Agricultural Sciences in China, 2007, 6(8): 981~987
    Yakir D, Stemberg LL. The use of stable isotopes to study ecosystem gas exchange. Oecologia, 2000, 123: 297~311
    Yakir D, Wang XF. Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurement. Nature, 1996, 380: 515~517
    Yepez EA, Wiliams DG, Scott RL, el a1. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. agricultural and Forest Meteorology, 2003, 119: 53~68
    Zhang J, Ge Y, Chang J, el a1. Carbon storage by ecological service forests in Zhejiang Province, subtropical China. Forest Ecology and Management, 2007, 245: 64~75
    Zhao K, Tian DL. Study of the biomass and productivity of mature Chinese fir stand in Huitong County. Journal of Central South Forestry University, 2000, 20(1): 7~13
    Zhao M, Zhou GS. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management, 2005, 207: 295~313
    Zheng H, Ouyang ZhY, Xu WH, el a1. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management, 2008, 255: 1113~1121
    Zhou ChY, Wei XH, Zhou GY, el a1.Impacts of a large-scale reforestation program on carbon storage dynamics in Guangdong, China. Forest Ecology and Management, 2008, 255: 847~854
    Zianis D, Mencuccini M. On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 2004 , 187: 311~332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700