用户名: 密码: 验证码:
面向高压电网的经济型故障限流器的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电网负荷密度的增大和总体容量的增长,短路电流超过断路器遮断水平已成为亟待解决的问题。研究性能优良,经济性好的新型故障电流限制器(Fault Current Limiter)对我国电网建设和发展具有重要意义。而基于常规电气设备的串联谐振经济型故障限流器,不仅可把短路电流限制到较低水平,而且具有运行可靠性高、无需外加控制而实现自动投切和技术经济性能好等明显优点,可望在高压电网中获得推广应用。
     为推进基于常规电气设备的非超导、非电力电子的经济型故障限流器的工程应用,本文对其在高压电网应用时面临的几个关键技术问题开展系统的研究。研究内容包含以下几个方面:基于金属氧化物限压器(Metal Oxide Varistor)和快速开关的串联谐振型故障限流器的研究,涉及到新型故障限流器的动态限流特性分析、实用拓扑改进和组件参数优化等;故障限流器对断路器瞬态恢复电压特性的影响与分析;大容量金属氧化物限压器MOV通风冷却结构设计与计算分析,涉及到MOV的通风冷却结构的优化和温度特性分析等;金属氧化物限压器流场与温度场直接耦合数值计算研究;基于电磁斥力机构的高压快速开关的仿真分析与研究,涉及到电磁斥力机构的有限元仿真分析和快速开关的测试试验;以及故障限流器工程应用计算和参数设计等。
     在综合分析现有各种串联谐振型故障限流器拓扑的基础上,提出一种基于MOV和快速开关的新型故障限流拓扑,通过计算比较加装FCL前后短路故障电流的大小,表明该故障限流器拓扑限流效果显著。以装设于10kV系统为例,通过电磁暂态分析程序仿真分析了其动态限流特性,并对各种影响故障限流器性能的因素进行了系统的研究,在此基础上进行了故障限流器的实用拓扑改进和组件参数优化设计,为10kV经济型故障限流器的工程应用和挂网运行提供理论依据。
     对基于MOV和快速开关的新型故障限流器进行拓扑组合,提出了一种复合型故障限流器,建立其等效分析模型。针对复合型故障限流器的不同运行模式、不同的安装位置,给出了断路器恢复电压上升率与限流模式下的限流比、串补模式下的串补度以及近区故障距离之间的数学农达式。系统研究了运行模式、安装位置以及故障类型等因素对断路器恢复电压上升率的影响。研究结果为复合型故障限流器的参数优化设计和断路器开断特性的选型,提供了分析基础和理论依据。
     大容量金属氧化物限压器(MOV)作为故障限流器的的关键组件,在系统短路故障时吸收短路能量而导致本体温度瞬间升高,MOV的运行可靠性依赖于其通风冷却结构的散热能力,因此,合理优化MOV通风冷却结构具有重要的工程实际意义。在前期大容量MOV结构设计和大量实验研究基础上,提出两种通风冷却结构优化方案。根据计算流体动力学原理并应用有限体积法,对初设方案以及两种优化方案的MOV流场和温度场进行了系统的计算分析。结果表明,相对于初设文案,方案及文案二的经过优化的通风冷却结构能使流体带走更多的MOV内产生的热量,其最热点温度分别下降了约35℃和约40℃, MOV芯柱的散热效果有了显著的提高。方案二在方案一的结构基础上,增加了径向冷却通风孔,其散热效果明显改善。在此基础上,对确定的优化结构作了进一步的计算和实验验证,表明了所提出的MOV优化结构的可行性以及所采用的温度场计算方法的可靠性。
     在上述提出的金属氧化物限压器优化设计方案二的基础上,利用有限体积法,建立了用于MOV本体冷却结构流场、温度场直接耦合计算的三维模型,并建讧简化的验证模型,得到了较为准确的MOV流场、温度场计算结果,解决了由于散热系数等耦合参量不能准确确定而导致的计算结果不精确的问题,验证了仿真模型的正确性。在此基础上,对影响MOV温度特性的主要因索进行了研究,分别就轴向通风道入口风速、径向冷却通道半径、散热金属导电环材料以及导电环厚度对MOV温度特性的影响进行了仿真分析。分析结果表明,在t<300s时段内,影响MOV冷却的首要因素足金属导电环的传导散热,加大入口风速对影响MOV的散热效果并不明显,增大冷却通道半径,反而消弱导电环的传导散热。在MOV芯柱高度和重量束条件满足的前提下加大导电环的厚度和选用热导率大的金属材质,可以得到更好的散热效果;在t>300s时段后,MOV冷却结构起主导作用的是对流换热,加大入口风速和增大冷却通道半径,可明显增强MOV的冷却效果。进而得出了一般性的MOV设计指导原则,为MOV本体冷却结构优化设计提供了理论依据。
     高压快速开关是决定经济型故障限流器的限流性能和可靠性的关键技术之一,其快速分、合闸时间等性能参数直接影响到整个故障限流器的限流效果和运行安全。本文建立了用于电磁斥力机构瞬态分析的二维有限元模型和耦合电路模型,通过对改变电磁斥力机构参数得到的不同仿真结果进行分析,得到了线圈匝数、铜盘厚度及半径、电容的容量和电压等参数对电磁斥力影响的规律,得出了针对电磁斥力机构一般性的设计指导原则。研制了基于电磁斥力机构的10kV高压快速开关样机,实测表明其分闸时间为4.8ms,合闸时间为16.2ms,满足经济型故障限流器对快速开关的分、合闸速度要求。
     论文最后结合工程应用实例,开展了经济型故障限流器工程应用计算和参数设计研究,给出了具体的设计参数并进行了参数校核计算。
     本文的研究成果为经济型故障限流器核心组件的研制提供了理论依据和新的分析方法,对推动经济型故障限流器在高压电网中的工程应用具有重要意义。
With the increase of the load density and capacity of the power grid in China, short circuit current has become evident large, compared to the breaking capacity of high voltage (HV) circuit breakers, and this has also become critical problem to need solving urgently. Hence, the investigation on the new type of fault current limiter with preferable performance in the technology and in the economy is of significance for the construction and development of the power grid. The economical-type fault current limiter (FCL) based on conventional electrical devices and components presents the following advantages, i.e., strong ability of the limitation to short-circuit current, better reliability in operation, and the auto-switching realization without additional control. Due to these, it is expected to be widely applied in the high-voltage system.
     In order to advance application of the economical-type FCL mentioned above in the high voltage power grid, in this dissertation the systematic studies on the key technical problems for the application of the economical-type FCL have been made. The studies cover several aspects as follows:investigation on a series resonant type of FCL based on Metal Oxide Varistor(MOV) and fast transfer switch, including the analysis of dynamic current limiting characteristic of new type of FCL, improvement of practical topology for FCL, and its optimization of component parameters; impact of FCL on the transient recovery voltage property of circuit breakers; calculation analysis and design for the ventilation structure of MOV with large capacity, including the optimization of the ventilation structure and the temperature characteristic analysis; numerical direct coupling calculation of both the flow field and temperature field in MOV; simulation analysis of high-voltage and fast transfer switch based on electromagnetic repulsion mechanism, including finite elements simulation of electromagnetic repulsion mechanism and the test for fast transfer switch;the engineering application calculation and its parameters design of FCL. These aspects are described below.
     Based on the analysis on the topologies of different types of the series resonant FCL, a new fault current limiter topology is proposed. This topology consists mainly of MOV and fast transfer switch. By comparing the calculated short circuit current before installing FCL with that after installing FCL, it is shown that the limitation of this topology to fault current is remarkable. For a10kV simulation system of installing the new fault current limiter, the dynamic performance of limitation of the new topology to the short circuit current is simulated by using EMTP code, and all the factors of influencing the performance of FCL are systematically analyzed. On the basis of the above, both the improvement for the practical topology and the optimization of the component parameters have been carried out. These provide fundamental theory for the engineering application of FCL.
     The topological combination for the new type of FCL based on MOV and fast transfer switch are carried out. Following this, a comprehensive fault current limiter is proposed and its equivalent model is established. For different running mode of the comprehensive FCL and for its different location in transmission line, an analytical expression has been presented for describing the relationship between the rate of rise of recovery voltage (RRRbr) of circuit breakers and current limit factor, series compensation degree, and short-line fault distance. Using the presented expression, the systematical calculations and analyses have been performed to reveal the influence of the several factors on RRRV. These several factors include the running mode, the location of the comprehensive FCL in transmission line, and fault type. The results obtained above provide the basic and theoretical reference for the parameter optimization of comprehensive FCL and for reliable selection of the breaking characteristics of IIV circuit breakers.
     As the key component of FCL, MOV will absorb short-circuit energy during the short-circuit fault in power system, leading to the instantaneous temperature increase of itself. The heat transfer ability of air-cooling system is of critical importance for the MOV reliability. Therefore, it is very important to reasonably optimize the ventilation structure of MOV used in power system. In this dissertation, based on the structure design of large capacity MOV performed early and its corresponding experimental researches, two optimization designs about MOV structure (marked by MOV-1and MOV-2, respectively) have been proposed. With Computational Fluid Dynamics (CFD) principle and finite volume method, the fluid field velocity and temperature distribution of both basic MOV structure and the two optimized ones have been systematically calculated and analyzed. It is shown that when compared to those due to basic MOV structure, more heat can be taken away from the optimized MOVs and the decrease of the maximum temperature of the two optimized MOVs is about35℃and40℃, respectively, indicating evident improvement for the heat dissipation by MOV-1and MOV-2. In addition, the MOV-2is obtained by adding the radial air-cooling hole on the basis of the MOV-1, and its heat dissipation is obviously improved, compared to the MOV-1. According to this, a practical MOV-2has been constructed and its temperature increase has been determined experimentally. Good agreement between the determined temperature increase and the corresponding theoretical calculations by use of3D finite volume analysis is obtained, showing that the MOV-2can be implemented in power system and indicating the reliability of the calculations performed in this dissertation.
     With the finite volume method, the three dimensional analysis model used for the direct coupling calculation of the flow field and the temperature field of MOV is given. A simplified experiment model of MOV is established and the more accurate calculation results for the flow field and the temperature field of MOV are obtained. These examine the reliability of the simulation model and overcome the difficulty that the accurate results of the two fields of MOV can not be derived from other calculation methods because of being not able to exactly determine the coupling parameters, such as heat dissipation coefficient. Further, the influences of the major factors on MOVs temperature characteristics have been simulated and analyzed in detail. These major factors are the inlet wind velocity of the radial wind channel, the radial cooling channel radius, the materials used for the conductive ring and thickness of the conductive ring.
     It is shown that during the period of t<300s,the heat conduction of metal conductive ring is a dominative factor of influencing cooling of MOV, the effects of the increase of only inlet wind velocity on the cooling of MOV are not obvious, and the heat conduction of metal conductive ring is weakened by increasing the cooling channel radius. When the constraint conditions for the height and weight of MOV are satisfied, better cooling effect could be obtained by increasing thickness of the conductive ring and by constructing the conductive ring using metal material with larger thermal conductivity. During the period of t>300s, the heat convection play leading roles in the ventilation structure of MOV for the cooling of MOV, the cooling effect of MOV could be strengthened obviously through the increase of the inlet wind velocity and the cooling channel radius. Due to the above results, the general design rules for obtaining a preferable MOV have been given, which is the theoretical basis for optimizing cooling structure of MOV.
     The high voltage and fast transfer switch is one of the key facilities governing the current limiting performance and reliability of the economical-type fault current limiter. The parameters, such as the opening time, closing time, and so on, influence directly the current limiting effect and safety operation of the FCL. In this dissertation, a two dimensional finite element model and coupling circuit model for the analysis of the transient characteristics of the electromagnetic repulsion mechanism is presented. According to the results simulated using the different parameters, i.e., coil turns number, thickness and radius of copper dish, and capacity and voltage of energy storage capacitor, the influences of these parameters on the electromagnetic repulsion force are obtained. As a result, the general principles of designing the electromagnetic repulsion mechanism are given. Based on the simulation results, a10kV high voltage and fast transfer switch with an electromagnetic repulsion mechanism was developed.lt can open within4.8ms from the trigger signal, and the closing time is16.2ms, which satisfied the demands of economical-type FCL for open and close speed of the fast transfer switch.
     In the end, the research on engineering application calculation and its design parameters of economical-type FCL at convenience of installing the FCL in site has been made. Based on the research, the specific design parameters were obtained and the verification calculation of design parameters has been carried out.
     The achievements obtained in this dissertation provide the fundamental theory and new analysis methodologies for the development of core component of economical-type FCL and are of great significance for promoting the engineering application of economical-type Fault Current Limiter in high voltage power grid.
引文
[1]熊炜,卢宏振.广东电力系统短路电流水平及限制措施研究[J].贵州工业大学学报(自然科学版).2002,31(5):32-35.
    [2]阮前途.上海电网短路电流控制的现状与对策[J].电网技术,2005,29(2):81-86.
    [3]傅霞飞,张政陵,陈坚,等.华中电网未来短路水平及控制[J].电网技术1994,18(5):23-27.
    [4]王非,李群炬.京津唐电网限制短路电流问题探时[J].华北电力技术,2007,(4):17-20.
    [5]李光琦.电力系统暂态分析[M].北京:中国电力出版社,1985.
    [6]单渊达,慕志恒, 栾兆文,等.电能系统基础[M].北京:机械工业出版社,2001.
    [7]杨杰,陈希英,邵建雄.三峡水电站短路电流水平及限制措施分析[J].电网技术,1997,21(7):17-20.
    [8]江道灼,放志香,卢旭日,等.短路限流技术的研究与发展[J].电力系统及其自动化学报,2007,19(3):8-19,87.
    [9]高凯平.限制短路电流的方法[J].电力安全技术.2000, 2(3):54.
    [10]叶琳,戴彦.短路电流限制技术在浙江电网的应用[J].华东电力,2005,33(5):23-26.
    [11]谢泽权,限制短路电流技术的探讨[J].广东电力,1997, (2):29-31.
    [12]寥菁,杨高才,谢振欣“十二五”期间湖南电网短路电流限制措施分析[J].湖南电力,2010,30(1):55-57.
    [13]袁娟,刘文颖,董明齐,等.西北电网短路电流的限制措施[J].电网技术2007,31(10):42-45.
    [14]CIGRE Working Group A3.10 Reports. Fault current limiters in electrical medium and high voltage system[C]. CIGRE Technical Brochure,2003.
    [15]Itio D.6.6kV/1.5kA-Class superconducting fault current limiter development [J]. IEEE Transactions on Magnetics, 1992,28(1):438-441.
    [16]刘卫东,蒋晓华,张节容,等.超导故障电流限制器的研究和开发现状分析[J].电工技术杂志.2001,(8):11-12,21.
    [17]林玉宝,林良真.超导故障限流器及其研究现状[J].电工电能新技术.1997,(3):14-19.
    [18]张绪红,周有庆.超导故障限流器的结构及特点[J].低温与超导.2002,30(4):20-24.
    [19]叶 林,林良真.超导故障限流器的电力应用研究进展[J].电力系统自动化.1999,23(7):53-57.
    [20]Ronald Kreutz, Joachim Bock, Frank Breuer, et al. System technology and test of CURL 10, a 10 kV,10 MVA resistive high-tc superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity,2005,15(2): 1961-1964.
    [21]石晶,邹积岩,何俊佳,等.故障电流限制技术及研究进展[J].电网技术,1999,23(12):63-66.
    [22]Hiroshi Yamaguchi, Kazushi Yoshikawa, Masahiro Nakamura, et al. Current limiting characteristics of transformer type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity,2005,15(2): 2106-2109.
    [23]H. Yamaguchi, T. Kataoka. Effect of magnetic saturation on the current limiting characteristics of transformer type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity,2006,16(2): 691-694.
    [24]Toshitada Onishi, Masahiro Kawasumi, Ken-ichi Sasaki, et al. An experimental study on a fast self-acting magnetic shield type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity,2002,12(1): 868-871.
    [25]Kazuhiro Kajikawa, Katsuyuki Kaiho, Noriharu Tamada. Design and current limiting simulation of magnetic-shield type superconducting fault current limiter with high tc superconductors[J]. IEEE Transactions on Magnetics, 1996, 32(4):2667-2670.
    [26]J. Nakatsugawa, S. Nogwhit, A. Ishiyama. Magnetic characteristics of a high-T, superconducting cylinder for magnetic shielding type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity.1999,9(2): 1373-1376.
    [27]Massimo Fabbri, Antonio Morandi, Francesco Negrini, et al. magnetic-shield-type fault current limiter equivalent circuil[J]. IEEE Transactions on Applied Superconductivity,2004,14(3):1966-1973.
    [28]H. Kado, M.Ichikawa. Performance of a high-tc superconducting fault current limitcr-design of a 6.6kV magnetic shielding type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity, 1997,7(2): 993-996.
    [29]孙晶,宗曦发,等.感应屏蔽型高温超导故障电流限制器模型机研究[J].中国电机工程学报,2002,22(10):81-84.
    [30]J. R. Cave, D. W. A. WillCn, R. Nadi, et al. Testing and Modelling of Inductive Superconducting Fault Current Limiters[J]. IEEE Transactions on Applied Superconductivity,1997,7(2):832-835.
    [31]Attila Gyore, Sandor Semperger, Easzlo Farkas, et al. Improvement of functionality and reliability by inductive UTS fault current limiter units[J]. IEEE Transactions on Applied Superconductivity,2005,15(2):2086-2089.
    [32]M. Ichikawa, H. Kado, M. Shibuya, et al.Inductive type fault current limiter with Bi-2223 thick film on a MgO cylinder[J]. IEEE Transactions on Applied Superconductivity, 2003,13(2):2004-2007.
    [33]Y. S. Cha. Semi-empirical correlation for quench time of inductively coupled fault current limiter[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2):1974-1977.
    [34]V. Kcilin, I. Kovalcv, S. Kmglov, et al. Model of NTS three-phase saturated core fault current limiter[J]. IEEE Transactions on Applied Superconductivity. 2000,10(1):836-839.
    [35]张绪红,周有庆,吴桂清,等.饱和铁心型超导限流器的仿真设计方法[J]. 电网技术,2004,28(6):49-52.
    [36]范则阳,何喜元,李敬东,等.一种新的饱和铁心型高温超导故障限流器的设计方法[J].华北电力技术,2003,(12):16-19.
    [37]王付胜,刘小宁.饱和铁心型高温超导故障限流器数学模型的分析与参数设计[J].中国电机工程学报,2003,23(8):135-139.
    [38]刘焕柳,李兴源,刘俊勇.高温超导故障限流器的数学模型及数字仿真[J].中国电机工程学报,1996,16(4):250-253.
    [39]Takashi Yazawa, Hiroshi Koyama, Kenji Tasaki, et al.66 kV-class high-te superconducting fault current limiter magnet model coil experiment[J]. IEEE Transactions on Applied Superconductivity,2003,13(2):2040-2043.
    [40]Tsutomu Hoshino. Khosru-Mohammad Salim, Massanori Nishikawa. DC reactor effect on bridge type superconducting fault current limiter during load increasing[J]. IEEE Transactions on Applied Superconductivity,2001,11(1): 1944-1947.
    [41]Takashi Yazawa, Yasumi Ootani, Masahiro Sakai, et al. Development of 66 kV/750 a high-tc superconducting fault current limiter magnet[J]. IEEE Transactions on Applied Superconductivity,2004,14(2):786-790.
    [42]Tsutomu Hoshino, Khosru Mohammad Salim, Itsuya Muta, et al. Experiment using variable reactor of rectifier type superconducting fault current limiter with a short circuited trigger coil[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2):626-629.
    [43]Tsutomu Hoshino, Itsuya Muta, Taketsune Nakamura, et al. Non-inductive variable reactor design and computer simulation of rectifier type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity, 2005,15(2):2063-2066.
    [44]J. D. Rogers, H. J. Boenig, P. Chowdhuri, et al. Superconducting fault current limiter and inductor design[J]. IEEE Transactions on Magnetics, 1983,19(3): 1054-1058.
    [45]叶林,林良真.桥式超导故障限流器的短路试验研究[J].电力系统自动 化,1999,23(18):9-11.
    [46]刘尚,张志丰文,刘昕,等.一种新型桥式高温导限流器的研究[J].电气应用,2005,24(11):28-33.
    [47]叶林,林良真.超导真.超导故障限流器在电力系统的应用研究[J].中国电机工程报,2000,20(7):1-4.
    [48]林良真,肖立业.超导电力技术新进展及其未来发展的思考[J].物理,2006,36(6):491-493.
    [49]李明,张小青.电力系统故障限流器技术的研究[J].电气时代,2005, (4):54-56.
    [50]钱家骊,刘卫东,关水刚.非超导型故障电流限制器的技术经济分析[J].电网技术,2004,28(9):42-43,61.
    [51]陈刚,江道灼,吴兆麟.固态短路限流器的研究与发展[J].电力系统自动化,2003,27(10):89-94.
    [52]赵中原,吕征宇,江道灼.新型固态限流器三相主电路拓扑及控制策略研究[J]..中国电机工程学报,2005, 6(12):42-46.
    [53]陈 刚,汪道灼,蔡永华,等.具有旁路电感的新型固态限流器的研究[J].中国电机工程学报,2004, 24(7):200-205.
    [54]Slade PG, Wu JL, Stacey EJ, et al. The utility requirements for a distribution fault current limiter[J]. IEEE Transactions on Power Delivery,1992,7(2): 507-515.
    [55]谭凌云,吴兆麟.一种配电网用固态三相短路限流器的研究[J].浙江大学学报,2002,36 (1):101-104.
    [56]Ueda T, Morita M, Arita H, et al. Solid state current limiter for power distribution system[J]. IEEE Transactions on Power Delivery,1993,8(4): 1796-1801.
    [57]石晶,邹积岩,何俊佳.电力系统的限流串联补偿原理与实现[J].华中理工大学学报,1999,20(8):75-77.
    [58]路敏,桑妲,戴峥.电网串联谐振式电流限制器应用探讨[J].华东电力,2010,38(2):254-257.
    [59]Karady G G. Principles of fault current limitation by a resonant LC circuit[J]. IEEE Proceedings-C,1992,139(1):1-6.
    [60]洪健山,关永刚,徐国政.不同故障下串联谐振式FCL对高压断路器恢复电压的影响[J].高压电器,2009,45(5):24-27.
    [61]Karady G. Concept of a combined short circuit limiter and series compensator[J]. IEEE Transactions on Power Delivery,1991,6(3):1031-1037.
    [62]Sugimoto S. Principle and characteristics of a fault current limiter with series compensation [J]. IEEE Transactions.95 SM 458-6 PWRD,1996,11(3): 842-847.
    [63]郑敏,李兴源,刘俊勇,等.具有串联补偿作用的新型故障限流器的拓扑结构和仿真[J].中国电机工程学报,1999,19(6):52-55.
    [64]袁清芳,李兴源.具有可控串联补偿的新型故障限流器的研究[J].电工技术学报,2004, 19(1):40-43.
    [65]Boening H J, Mielke C H, Burley B L, et al. The bridge-type fault current controller of a new FACTS controller[C]. Proceedings of PES Summer Meeting, 2002,455-460.
    [66]王冠,李庆民.非超导桥式故障限流器的仿真分析与改进[J].电力系统及其自动化学报,2005,17(1):59-61.
    [67]王华听,习贺勋,汤广福,等.面向超高压电网的故障限流器的应用研究[J].高电压技术,2007,33(5):99-113.
    [68]王华听,习贺勋,汤广福,等.谐振型故障限流器阻抗特性仿真和参数优化[J].电力系统自动化,2007,31(5):61-64.
    [69]王华昕,习贺勋,汤广福,等.谐振型限流器最优投切策略研究[J].电网技术,2008,32(4).36-39,51.
    [70]董力,李庆民,刘卫东,等.两次电流转移型短路电流限制器的研究[J].电工技术学报,2004,19(3):21-24.
    [71]李庆民,肖茂友,娄杰,等.ZnO避雷器式故障限流器的实用拓扑设计[J].电力系统及其自动化学报,2007, 19(3):46-50.
    [72]娄杰,李庆民,肖茂友,等.基于快速开关的串联谐振型故障限流器的仿真[J].高电压技术,2006,32(5):80-83.
    [73]HENRY Shawn, BALDWIN Thomas. Improvement of power quality by means of fault current limitation[C].Proceedings of the Thirty-Sixth Southeastern Symposium,2004,280-284.
    [74]肖茂友,李庆民,娄杰,等.两种经济型故障限流器的工作特性比较[J].电力系统及其自动化学报,2005, 17(4):71-75.
    [75]刘洪顺,李庆民,徐亮,等.氧化锌避雷器式故障限流器对电力系统暂态稳定的影响[J].电力自动化设备,2007, 27(8):51-54.
    [76]刘之方.500kV吕补与可控串补中限压器(MOV)的研究[D].北京:华北电力大学,2002.
    [77]王子建,何俊佳,尹小根,等.基于电磁斥力机构的1OkV快速真空开关[J].电工技术学报,2009,24(11):68-75.
    [78]刘洪顺,李庆民,娄杰,等.电感型FCL对断路器恢复电压上升率的影响[J].电工技术学报,2007,22(12):84-91.
    [79]Evenson Calixte, Yasunobu Yokomizu, Ilirotaka Shimizu, et al. Reduction effect of semiconductor type fault current limiter on interrupting duty of a circuit brcaker[C]. Proceedings of the Power Conversion Conference 2002, PCC Osaka,2002 (3):1423-1428.
    [80]Evenson Calixte, Yasunobu Yokomizu, Ilirotaka Shimizu, et al. Interrupting condition imposed on a circuit breaker connected with fault current limiter[CJ. IEEE/PES Transmission and Distribution Conference and Exhibition 2002, Asia Pacific,2002 (1):408-412.
    [81]Calixte E, Yokomizu Y, Shimizu H, et al. Reduction of rating required for circuit breakers by employing series-connected fault current limiters[J). IEE Proc.-Gener. Transm. Distrib.,2004,151(1):36-42.
    [82]钱家骊,关永刚,徐国政,等.整流式故障电流限制器对高压断路器开合能力的影响[J].清华大学学报,2005,45(10):1309-1312.
    [83]魏斌,MOV在低温环境下的电气特性及应用研究[D].武汉:华中科技大学.2007.
    [84]章梓雄。董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [85]郭荣良,郭清南,祝世兴.流体力学及应用[M].北京:机械工业出版社,1996.
    [86]钟声玉,王克光.流体力学和热工理论基础[M].北京:机械工业出版社,1980.
    [87]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992.
    [88]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2004.
    [89]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):129-134.
    [90]霍菲阳,李勇,李伟力,等.大型空冷汽轮发电机定子通风结构优化方案的计算与分析[J].中国电机工程学报,2010, 30(6):69-75.
    [91]温惠,谭震宇,唐宗华,等.金属氧化物限压器冷却结构设计及其三维温度场仿真分析[J].高电压技术,2011,37(9):2328-2336.
    [92]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [93]刘兴发.MOA设计与热特性研究[D].武汉:华中科技大学,2007.
    [94]刘昌宇,黄梅,李刚.500kV串补保护检验方法的设计[J].电力系统保护与控制,2008,36(15):65-68.
    [95]李伟力,靳慧勇,丁树业,等.大型同步发电机定子多元流场与表面散热系数数值计算与分析[J].中国电机工程学报,2005,25(23):138-143.
    [96]路义萍,李伟力,马贤好,等.大型空冷汽轮发电机转子温度场数值模拟[J].中国电机工程学报,2007,27(12):7-13.
    [97]路义萍,阴文豪,谈和平,等.汽轮发电机转子三维温度场耦合计算[J].工程热物理学报,2008,29(4):659-661.
    [98]李伟力,李勇,杨雪峰,等.大型空冷汽轮发电机定子端部温度场与流体场的计算与分析[J].中国电机工程学报,2009,29(36):80-87.
    [99]温志伟,顾国彪,王海峰.浸润式与强迫内冷结合的蒸发冷却汽轮发电机定子三维温度场计算[J].中国电机工程学报,2006, 26(23):133-138.
    [100]李进良,李承曦,胡仁喜.精通FLUENT6.3流场分析[M].北京:化学工业出版社,2009.
    [101]张国智,胡仁喜,陈继刚ANSYS10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [102]刘洪顺,李庆民,邹亮,等.安装故障限流器的输电线路潜供电弧特性与 单相重合闸策略[J].中国电机工程学报,2008, 28(31):62-67.
    [103]姚学玲,杜志航,陈景亮,等.不同源阻抗8/20us冲击电流下的MOV动态性能仿真[J].高电压技术,2010, 36(9):2120-2125.
    [104]Jinliang He. Rong Zeng, Shuiming Chen, et al. Thermal characteristics of high voltage whole-solid-insulated polymeric ZnO surge arrester[J]. IEEE Transactions on Power Delivery,2003,18(4):1221-1227.
    [105]鲁莽,何金良,刘励.110kV复合绝缘外套氧化锌避雷器的散热性能[J].高电压技术,1997,23(3):65-66.
    [106]贺子鸣,陈维江,陈秀娟,等.多柱芯体并联结构避雷器暂态热特性计算方法[J].高电压技术,2012, 38(8):2129-2136.
    [107]张哲任,徐政,徐韬,等.采用有限体积法的特高压直流输电系统接地极稳态温度场仿真分析[J].高电压技术,2012, 38(2):328-334.
    [108]李俊卿,符建民,张平平.汽轮发电机水路堵塞时定子流体场和温度场的数值仿真[J].高电压技术,2012,38(6):1313-1320.
    [109]李俊卿,王丽慧.汽轮发电机空心股线堵塞时定子温度场的数值仿真[J].中国电机工程学报,2009, 29(12):70-74.
    [110]李俊卿,许燕萍,刘彦丰.汽轮发电机定子流体场和温度场耦合计算与分析数值仿真[J].大电机技术,2012 (4):30-34.
    [111]杨世铭,陶文铨.传热学[M].北京:高等教出版社,2006.
    [112]李伟力,陈玉红,霍菲阳,等.大型水轮发电机转子旋转状态下磁极间流体流动与温度场分析[J].中国电机工程学报,2012,32(9):132-139.
    [113]李伟力,孙佳慧,孙宏丽.汽轮发电机稳态与负序工况下转子涡流损牦计算和温度场分析[J].电工技术学报,2012, 27(9):174-182.
    [114]李伟力,陈婷婷,曲凤波,等.高压永磁同步电动机实心转子三维温度场分析[J].中国电机工程学报,2011,31(18):55-60.
    [115]李庆民,刘卫东, 徐国政,等.高压快速转换开关的研制[J].高压电器,2003,39(6):6-7.
    [116]娄杰,李庆民,孙庆森,等.快速电磁斥力机构的动态特性仿真与优化设计[J].中国电机工程学报, 2005, 25(6):23-29.
    [117]陈金祥,董恩源,邹积岩.具有串联补偿作用的新型故障限流器(FCL)的研究[J].电工技术学报,2001,16(1):48-51.
    [118]Yukimori K, Kenichi K, Hiroyuki S et al. Development of the high speed switch and its application[C]. Conference Record of IAS Annual Meeting (IEEE Industry Applications Society), 1998.
    [119]Ahn K Y, Kim S H. Modelling and analysis of a high-speed circuit breaker mechanism with a spring-actuated cam[J]. Proceedings of the Institute of Mechanical engineers, 2001,215(Part C):663-672.
    [120]李庆民,刘卫东,钱家骊,等.电磁推力机构的一种分析方法[J].电工技术学报,2004,19(2):20-40.
    [121]Basu S, Srivastava K D. Analysis of a fast acting circuit breaker mechanism Part I:electrical aspects[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(3):1197-1203.
    [122]Basu S, Srivastava K D. Analysis of a fast acting circuit breaker mechanism Part H:electrical aspects[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(3):1203-1211.
    [123]小山健一,竹内敏惠.24kV快速真空断路器的开发[C].电气学会论文志,2001,121B(9):1187-1192.
    [124]陈振声.快速可控型真空断路器的特性及应用[J].电气技术,2005,(10):35-40.
    [125]田鹏,一种永磁保持式新型高速斥力机构的研究[D].大连:大连理工大学,2011.
    [126]毛海涛,陆恒云.快速电磁斥力机构的有限元分析[J].高电压技术,2009,35(6):1420-1425.
    [127]王子建,基于快速真空开关的电弧电流转移型故障限流器[D].武汉:华中科技大学,2009.
    [128]江壮贤,庄劲武,王晨,等.基于电磁斥力原理的高速触头机构仿真分析与设计[J].电工技术学报,2011,26(8):172-177.
    [129]马信山,张济世,电磁场基础[M].北京:清华大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700