用户名: 密码: 验证码:
大型发电机定子复杂结构内流体流动与传热特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型发电机内部物理场的研究是一个涉及多学科多专业的综合问题。由于发电机定子具有复杂的结构、转子的旋转运动以及多重物理场相互耦合,对电机内物理场的准确计算具有一定的理论难度和工程实际意义,已经成为国际电机领域难题之一。
     本文详细地分析了国内外关于电机内电磁场、流体场、温度场以及多耦合场研究的相关文献,论述了本研究课题的发展状况,指出在以往的研究中的不足之处,明确本论文的研究目的、研究意义以及研究内容。
     基于电磁场基本理论,找出发电机定子股线涡流损耗系数与股线结构尺寸的数值关系,指出并分析了定子股线特别是异结构股线涡流损耗沿定子径向高度的变化规律,对定子主绝缘厚度变化而导致的股线宽度变化情况下的股线涡流损耗的分布特性进行研究,提出主绝缘减薄即股线结构优化的理论方法。同时建立了发电机二维涡流电磁场的求解模型,通过数值计算揭示了定子铁耗沿径向高度的分布规律,改变了在以往的计算中假设铁耗在定子齿部和轭部平均的不准确做法。从损耗的角度保证了定子内部流体场以及温度场计算的准确性。
     提出电机内绕流性物体的概念,采用有限体积元法对单路通风方式下的大型发电机定子径向通风沟内具有绕流性物体的不可压缩粘性紊流流体场进行了数值计算,并对通风沟内有无绕流性物体的流体流动特性进行了比较,揭示了流体流速沿定子径向以及周向的分布特性,同时对管道内的流体流动进行了求解并将计算结果与实验结果进行了比较。解决了径向通风沟内散热系数难以确定的问题。
     分别采用流体场与温度场直接耦合以及间接耦合的手段对发电机定子传热特性进行数值研究,对径向通风沟内流体流动特性变化对定子温度场的影响进行数值分析,并且对通风沟内的流体流速、流体温度、表面散热系数以及定子温度的空间分布规律进行了研究,明确电机定子复杂结构内多场耦合的数值关系。根据定子采用异结构股线的发电机温度以及主绝缘温降的分布特性,给出对发电机定子线棒股线进行异构化的设计方法。
     基于耦合场原理,对大型发电机定子主绝缘结构形变下定子内部的传热特性进行分析,从电磁损耗、流体流动以及传热等多重角度证明对定子股线结构进行优化的可行性。此外,对定子排间绝缘的导热系数变化以及排间绝缘的部分结构老化情况下定子温度分布特性进行数值研究,明确排间绝缘对定子温度对称性的影响状况。
     通过本课题的研究可以使相应的研究更加详细和深入,不仅可以提高大型发电机物理场的计算精度,而且可以拓宽电机内耦合场研究的范畴,同时采用科学的股线结构和通风结构,在降低电机内损耗的同时,改善大型发电机的通风效果,可以有效地降低大型发电机的事故率,提升大型发电机的出力性能,提高大型发电机的运行可靠性和安全性。
The research of physical fields inside large generator is a synthesis problem which refers to multi-disciplines and multi-specialties. There are some difficulties and engineering significances to calculate physical fields in generator accurately because of complex stator structure, rotation of rotor and multi-coupled of physical fields, which has become one of the most difficult problems of international electrical machine field.
     In this dissertation, some documents about electromagnetic field, fluid field, temperature field and multi-couple fields are researched, the development of this issue is discussed and the shortcomings of research are given. The purposes, significance and contents of research for problem are confirmed.
     The numerical relationship of stator strands eddy loss of generator and strands structure is found based on electromagnetic field theory. The eddy loss variation orderliness of stator strands, especially different structure strands along radial direction high are indicated and analyzed. Strands eddy loss distribution characteristic under the condition of changing strands width because thickness variation of stator main insulation, and the theory method of main insulation thinning that is strands structure optimization is proposed. At the same time, the generator 2D eddy magnetic field solved model was built and the stator iron loss distribution orderliness along radial height are given by using of numerical calculation, which change the inaccurate assumption that the stator iron loss is average at the tooth and yoke respectively during computation. The calculation precision of fluid field and temperature field inside stator is enhanced from loss angle.
     A concept of circular flow object in generator is indicated, and the incompressible viscosity fluid field with circular flow object inside stator radial ventilation duct of large generator under single path ventilation system is numerically calculated using finite volume method (FVM), fluid flow characteristic inside radial ventilation duct with circular flow object or not are compared, distribution characteristics of the fluid velocities along radial direction and circumferential direction of stator are given, meanwhile the fluid flow inside pipe is solved, the results calculated and measured results are compared. The problem that heat transfer coefficients were difficult to determine is solved.
     The heat transfer characteristics of generator stator are numerically researched using indirection and direction couple method of fluid field and temperature field respectively, the effect of fluid flow characteristic inside radial ventilation duct on stator temperature field is analyzed, and the space distribution orderliness of fluid velocities, fluid temperature, surface heat transfer coefficients inside ventilation duct and stator temperature are investigated, numerical relationship of multi-fields couple inside generator stator complex structure is ascertained. The design method of generator stator strands with different structure is given by distribution characteristic of generator temperature and main insulation temperature drops with different structure strands.
     Heat transfer characteristic inside large generator stator changing main insulation structure is analyzed based on coupled field theory, and the feasibility of stator strands structure optimization was proved from the multi-coupled angle of electromagnetic loss, fluid flow and heat transfer. Furthermore, the stator temperature distribution characteristics are researched numerically under condition of stator row insulation conductivity coefficient variation and part structure aging of row insulation, the effect of row insulation on symmetry of stator temperature is confirmed.
     The corresponding research can be made more detailed and deeply by the investigation, which not only improves the calculation precision of large generator physical fields but also extends research range of couple fields in generator. Scientific strands structure and ventilation structure are adopted, which can decrease the loss in the generator, improve the ventilation effect of large generator at the same time, reduce the accident rate, elevate the working performance and improve the operating reliability and security of large generator.
引文
[1]国家电力公司.新中国电力工业五十年[M].北京:中国电力出版社,1999:2-3.
    [2]金煦,袁益超,刘聿拯,等.大型空冷汽轮发电机冷却技术的现状与分析[J].大电机技术,2004,(4):33-37.
    [3] R.E.Joho. Advances in Synchronous Machines: a Turbo Generator View[J]. IEEE Power Engineering Review. 2002, 22(7): 7-11.
    [4] Ide, Kazuasa, Hattori, et al. A Sophisticated Maximum Capacity Analysis for Large Turbine Generators Considering Limitation of Temperature[J]. IEEE Transactions on Energy Conversion. 2005, 20(1):166-172.
    [5]胡敏强,黄学良.电机运行性能数值计算方法及其应用[M].南京:东南大学出版社,2003:1-10,31-44.
    [6] K. Preis, O. Biro, R. Dyczij-Edlinger, et al. Application of FEM to Coupled Electric, Thermal and Mechanical Problems[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3316-3319.
    [7] K. Preis, I. Bardi, O. Biro, et al. Numerical Analysis of 3D Magnetostatic Fields[J]. IEEE Transactions on Magnetics, 1991, 27(5): 3798-3803.
    [8] Eric Chauveau, El Hadi Za?m, Didier Trichet, et al. A Statistical Approach of Temperature Calculation in Electrical Machines[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1826-1829.
    [9] David J, Kukulka, Mohan Devgun. Transient Evaluation of Process Surfaces Used in Fouling Applications[J]. Heat Transfer Engineering, 2006, 27(6): 22-29.
    [10]丁舜年.大型发电机的发热与冷却[M].北京:科学技术出版社,1992:1-4,4-17,211-213.
    [11]廖毅刚,侯小全.全空冷汽轮发电机通风冷却研究[J].东方电机,2007,(5):1-12.
    [12]徐宁寿.高速旋转磁场在铁磁体中引起的表面损耗[J].清华大学学报(自然科学版),1963,10(1):97-120.
    [13]钟永琛,阎学文,吉崇庆,等.用有限元计算蓄能电机的电磁场问题—异步起动时阻尼条电流分布[J].天津大学学报,1980,(3):26-37.
    [14]傅自清,李金堂,黄兴民,等.实心磁极同步电动机起动时转子涡流场的有限元计算[J].中国电机工程学报,1983,(2):1-14.
    [15]张春镐,汤蕴璆,陈新祥.异步电机中的能流和功率传递[J].哈尔滨电工学院学报,1987,10(4):313-327.
    [16]郭立炜,汤蕴璆.汽轮发电机的非线性涡流场和运算电抗的数值计算[J].哈尔滨电工学院学报,1989,12(2):111-114.
    [17]汤蕴璆.电机内电磁场(第二版)[M].北京:科学技术出版社,1998:265-315,186-234.
    [18]张春镐,汤蕴璆,陈新祥.异步电机中的能流和功率传递[J].哈尔滨电工学院学报,1987,10(4):313-327.
    [19]郭立炜,汤蕴璆.汽轮发电机的非线性涡流场和运算电抗的数值计算[J].哈尔滨电工学院学报,1989,12(2):111-114.
    [20]马贤好,许善椿.汽轮发电机损耗计算的改进[J].黑龙江电力技术,1999,21(5):34-40.
    [21]李和明,李俊卿.电机中温度计算方法及其应用综述[J].华北电力大学学报.2005,32(1):1-5.
    [22]胡俊辉,许承千.大中型异步电机通风的研究和计算[J].大电机技术.1992,(1):24-29,60.
    [23]张大为,汤蕴璆.大型水轮发电机定子最热段三维温度场的有限元计算[J].哈尔滨电工学院学报,1992,(3):15-18.
    [24] Wei Yongtian, Fu Min. Finite Element Calculation of Rotorcentre Segment 3-dimensional Temperature Field of Large Hydrogenerator[C]. ICEM’96. Harbin, China. 1996. Harbin University of Science and Technology: 299-303.
    [25]李德基,白亚民等.绝缘老化对定子温升的影响[J].大电机技术,1988,(6):25-33.
    [26]胡敏强,陈贤珍,周克定.定子铁心三维温度场的有限元分析[J].华中理工大学学报,1990,18(4):15-22.
    [27]杜炎森,黄学良.大型汽轮发电机端部三维温度场研究[J].中国电机工程学报,1996,16(2):95-101.
    [28] Dengjun Yan, Minqiang Hu. The Finite Element Method of Computing Exact Inductance in Squirrel Cage Induction Motor[C]. ICEM 2000, 2000: 5-8.
    [29]饶芳权,顾国彪,李作之.蒸发冷却在大型发电机中的应用[J].中国工程师,1997,(6):12-13,18.
    [30] Ruoping Yao, Fangquan Rao. Analysis of 3D Thermal Field and Deformation in the Stator of Large Hydro-generators[C]. Sixth International Conference on Electrical Machines and System ICEMS 2003, 2003, 2: 714-716.
    [31] Ruoping Yao, Changhong Liu, Fangquan Rao. Analysis of 3D Thermal Field in the Stator of Large Hydro-generator with Evaporative-cooling System[C]. IEEE International Electrical Machines and Drives Conference, 2003, 2: 943-947.
    [32]姚若萍,饶芳权.蒸发冷却水轮发电机定子温度场计算[J].中国电机工程学报,2003,23(6):87-90,101.
    [33]陈琳,刘长红,姚若萍.流场分析轴向通风冷却电机的转子温度[J].大电机技术,2005,(4):12-15.
    [34] Liu Changhong, Yao Ruoping. A New Approach to Calculate Parameters of Induction Generator with Double Windings[J]. Journal of Shanghai Jiao Tong University (science), 2005, 10(2): 186-189.
    [35]袁佳毅,顾国彪,田新东.李家峡水电站400MW蒸发冷却水轮发电机定子绕组温升试验研究[J].大电机技术,2006,(2):23-25,66.
    [36] Lin R, Gu GB, Tian XD. Research of the Temperature Distribution of the Hollow Conductor in the Evaporative Cooling Hydro-generators[J]. Electric Power Components and System, 2005, 33(2): 145-158.
    [37] Ruan Lin, Gu Guobiao, Tian Xindong, et al. Analysis of the Key Techniques in Hydro-Generator with Inner Evaporative Cooling[C]. Sixth International Conference on Electrical Machines and System ICEMS 2003, 2003, 1: 14-16.
    [38]姚涛,侯哲,顾国彪.蒸发冷却技术应用于大型汽轮发电机的技术可行性[J].电工技术学报,2008,23(2):1-5,24.
    [39]温志伟,顾国彪,王海峰.浸润式与强迫内冷结合的蒸发冷却汽轮发电机定子三维温度场计算[J].中国电机工程学报,2006,26(23):133-138.
    [40]李伟力,项欢.汽轮发电机径切两向系统转子温度场的计算[J].大电机技术,1998,(2):15-18.
    [41] Li Weili, Zhou Feng, Chi Liming. Calculation of Rotor Ventilation and Heat for Turbo-generator Gadial and Tangential Air-cooling System[C].Proceedings of 1998 International Conference on Power System Technology (POWERCON’98), Aug. 21~23, 1998: 1030-1033.
    [42]李伟力,侯云鹏,周封,等.汽轮发电机径切两向空冷系统转子温度场的计算方法[J].中国电机工程学报,2000,20(8):74-78.
    [43]ЛиВейли,ХунЛянъцинъ,ЖенъХунлинъ,ЧенъШукан.ВлияниеМежвитковойИзоляцииОбмоткиРотораГидрогенераторанаегоТемпературноеПоле[J].Электричество, 2000, (8): 31-33.
    [44]李伟力,侯云鹏,程树康.定子绕组绝缘脱壳对大型发电机定子铁心温度场的影响[J].中国电机工程学报,2001,21(增刊):44-47.
    [45]李伟力,侯云鹏,周封,等.大型水轮发电机定子股线导热的数值分析[J].中国电机工程学报,2001,21(7):115-119.
    [46] Li Weili, Zhou Feng, Hou Yunpeng, et al. The Influence of End Part Leakage on Stator Temperature Field, ICEMS’2001, Aug. 18-20, 2001, Shen Yang, China: 111-115.
    [47]程树康,李伟力,侯云鹏.大型同步发电机三维非线性稳态温度场及其相关参数的数值计算[J].中国电机工程学报,2001,21(增刊):39-43.
    [48]李伟力,周封,侯云鹏,等.发电机定子绝缘老化故障的诊断和数值模拟[J].哈尔滨工业大学学报,2002,34(2):181-186.
    [49]程树康,李伟力,侯云鹏.基于耦合边界条件的发电机非线性温度场计算[J].电工技术学报,2002,17(4):1-6.
    [50]李伟力,赵志海,侯云鹏.大型同步发电机定子同相槽和异相槽的温度场计算[J].电工技术学报,2002,17(3):1-6,92.
    [51]李伟力,周封,侯云鹏,等.大型水轮发电机转子温度场的有限元计算及相关因素的分析[J].中国电机工程学报,2002,22(10):85-90.
    [52]程树康,李伟力,周封,侯云鹏.大型发电机定子绝缘老化后非线性温度场计算[J].哈尔滨工业大学学报,2003,35(1):62-65,72
    [53]付敏,李伟力,张东.水轮发电机气隙内磁场和转子温度场计算[J].哈尔滨工业大学学报,2003,35(9):1131-1134.
    [54] Zhou Feng, Li Weili, Cheng Shukang. Diagnosis and Numerical Simulation of Large Hydra-generator under Steady-state after Heating Faults of Insulation Aging[C]. Industry Applications Conference, The 39th Annual IAS Meeting (IAS’2004) October 3-7, 2004: 708-713.
    [55]周封,熊斌,李伟力,等.基于三维流体场的大型电机定子三维温度场的数值分析[J].中国电机工程学报,2005,25(24):128-132.
    [56] Feng Zhou, Weili Li, Bin Xiong, et al. Analysis of 3D Stator Thermal Field base on Coupled Fluid Field Calculation of Stator and Rotor for Hydro-generator[C]. WSEAS Transactions on Power Systems 2006: 323-330.
    [57]吴德义.大型空冷汽轮发电机通风结构中气体运动流场的合理建模[J].大电机技术,2005,(6):8-10.
    [58] F. N. Isaac, A. A. Arkadan, A. El-Antably. Magnetic Field and Core Loss Evaluation of ALA-rotor Synchronous Reluctance Machines taking into account Material Anisotropy[J]. IEEE Transactions on Magnetics, 1998, 34(5): 3507-3514.
    [59] O. Drubel, S. Kulig. Eddy Current in the Totor of Turbo-generators during 3-phase Short Circuits[C]. ICEM 2000. Espoo Finland. August 2000. Helsinki University of Technology: 883-887.
    [60] D. Albertz, G. Henneberger. Calculation of 3D Eddy Current Fields using Both Electric and Magnetic Vector Potential in Conducting Regions[J]. IEEE Transactions on Magnetics, 1998, 34(5): 2644-2647.
    [61] Jung Ho Lee, Jung Chul Kim, Dong Seok Hyun. Dynamic Characteristics Analysis of Synchronous Reluctance Motor Considering Saturation and Iron Loss by FEM[J]. IEEE Transactions on Magnetics, 1998, 34(5): 2629-2632.
    [62] M.Anxo Prieto Alonso, X.M.LópezáFernández, Manuel Pérez Donsión. Harmonic Effects on Rise of A Squirrel Cage Induction Motor[C]. ICEM 2000. Espoo Finland. August 2000. Helsinki University of Technology: 144-147.
    [63] M. Shanel, S.J Pickering, D. Lampard. Application of Computational Fluid Dynamics to the Cooling of Salient Electrical Machines[C]. ICEM 2000. Espoo Finland. August 2000. Helsinki University of Technology: 338-342.
    [64] E. Gurevich, P. Oshurkov. Determination of Rotor Winding Temperature of the Turbogenerator with the Brushless Excitation System[C]. ICEM 2000. Espoo Finland. August 2000. Helsinki University of Technology: 156-160.
    [65] R. Krok, R. Miksiewicz, W. Mizia. Modeling of Temperature Fields in Turbogenerator Rotors at Asymmertrical Load[C]. ICEM 2000. Espoo Finland. August 2000. Helsinki University of technology: 1005-1009.
    [66] A.Di Gerlando, R.Perini. Analytical Evaluation of the Stator WindingTemperature Field of Water-cooled Induction Motors for Pumping Drives[C]. ICEM 2000.Espoo Finland. August 2000. Helsinki University of technology: 130-134.
    [67] R. Krok, R. Miksiewicz. Monitoring of Temperature Fields in Rotors during Turbogenerator Operation[C]. ICEM 2000. Espoo Finland. August 2000. Helsinki University of technology: 888-892.
    [68] A. F. Armor, M.V.K. Chari.用三维有限元法计算大型汽轮发电机定子铁心的热流[J].国外大电机,1980,(6):27-31.
    [69] K. Preis, O. Biro, R. Dyczij-Edlinger, et al. Application of FEM to Coupled Electric, Thermal and Mechanical Problems[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3316-3319.
    [70] K. Preis, I. Bardi, O. Biro, et al. Numerical Analysis of 3D Magnetostatic Fields[J]. IEEE Transactions on Magnetics, 1991, 27(5): 3798-3803.
    [71] Eric Chauveau, El Hadi Za?m, Didier Trichet, et al. A Statistical Approach of Temperature Calculation in Electrical Machines[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1826-1829.
    [72] Kay Hameyer, Johan Driesen, Herbert De Gersem, et al. The Classification of Coupled Field Problems[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1618-1621.
    [73] J. Xypteras, V. Hatziathanassiou. Thermal Analysis of an Electrical Machine taking into account the Iron Losses and the Deep-bar Effect[J]. IEEE Transaction on Energy Conversion, 1999, 14(4): 996-1003.
    [74] C. Kral, T.G. Habetler, R.G. Harley. Rotor Temperature Estimation of Squirrel Cage Induction Motors by means of a Combined Scheme of Parameter Estimation and a Thermal Equivalent Mode. IEEE International Electric Machines and Drives Conference, IEMDC'03. Madison, Wisconsin, USA, 2003: 931~937.
    [75] Y.J. Liu, Y. Lee, H.K. Jung, et al. 3D Thermal Stress Analysis of the Rotor of an Induction Motor[J]. IEEE Transactions on Magnetic. 2000, 36(4-1): 1394-1397.
    [76] Yachi Chen, Chunglung Chen. CFD Modeling for Motor Fan System[C]. IEEE International Electric Machines and Drives Conference, IEMDC’03. Madison, Wisconsin, USA, 2003: 764-768.
    [77] B.D.J. Maynes, R.J. Kee, C.E. Tindall, et al. Simulation of Airflow and Heat Transfer in Small Alternators using CFD[J]. IEE Proceedings Electric Power Applications. 2003, 150(2): 146-152.
    [78] R.E.Joho. Advances in Synchronous Machines: A Turbo Generator view[J]. IEEE Power Engieering Review. 2002, 22(7): 7-11.
    [79] Ide, Kazuasa, Hattori, et al. A Sophisticated Maximum Capacity Analysis for Large Turbine Generators Considering Limitation of Temperature[J]. IEEE Transactions on Energy Conversion. 2005, 20(1): 166-172.
    [80] Y.Taniyama, Y.Kabata, Y. Hashidate, et al. Improvement of Ventilation Analysis in Turbine Generator[J]. American Society of Mechanical Engineers, Fluids Engineering Division. 2005, 2(1): 605-612.
    [81] M.Fujita, Y.Kabata, T. Tokumasu, et al. Air-cooled Large Turbine Generator with Multiple-pitched Ventilation ducts[C]. 2005 IEEE International Conference on Electric Machines and Drives, San Antonio, TX, United States. 2005: 910-917.
    [82]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社.2004:24-62,
    [83]王松玲.流体力学[M].北京:中国电力出版社,2004:1-10.
    [84]尚进.工程流体力学[M].北京:中国电力出版社,2000:181-184.
    [85]周云龙,洪文鹏.工程流体力学[M].北京:中国电力出版社,2004:59-64.
    [86]胡晟,谭茀娃,金如麟.1000MW级汽轮发电机转子端部线圈温升的分析计算[J].大电机技术,1999,(6):1-5.
    [87]章本照,印建安,张宏基.流体力学数值方法[M].北京:中国机械工业出版社,2002:116-181.
    [88] A.F. Armor, M.V.K. Chari. Heat Flow in the Stator Core of Large Turbine Generators by the method of Three-dimensional Finite Elements. Part I: Analysis by Scaler Potential Formulation. Part II: Temperature Distribution in the Stator Iron[J]. IEEE trans.on PAS. 1976, 95(5): 1648-1668.
    [89] D. Sarkar, P.K. Mukherjee. Use of 3-dimensional Finite Element for Computation of Temperature Distribution in the Stator of an Induction Motor[C]. IEE Proceedings-B. 1991, 138(2): 75-86.
    [90]孔祥春,李伟力.股线绝缘对水轮发电机定子绕组最热段温度的影响[J].电机与控制学报.1997,1(4):228-230.
    [91]汪耕,李希明等.大型汽轮发电机设计、制造与运行[M].上海科学技术出版社,2000:1-6,146-172.
    [92]陶文铨.数值传热学[M].(第2版).西安:西安交通大学出版社,2004:336-340.
    [93] V.Kotrba.电机径向通风沟的气流和传热[J].国外大电机,1990,(6):32-37.
    [94]程福秀,林金铭.现代电机设计[M].北京:机械工业出版社,1992:169-183.
    [95]周封,李伟力,侯云鹏.涡流分布对大型同步发电机定子温度场的影响[J].大电机技术,2001,(3):1-5.
    [96]李伟力,付敏,周封,等.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J].中国电机工程学报,2000,20(5):14-17,21.
    [97]苏联电机技术(汽轮发电机分册)[M].哈尔滨电机厂股份有限责任公司内部资料:103-108.
    [98]郭有光,王雪帆,逐渐过,等.电机定子线棒股线间环流的简化计算模型[J].华中理工大学学报,2000,28(5):86-88.
    [99]李和明,万书亭,李永刚.基于定子绕组并联支路环流特性的发电机故障识别方法[J].电力系统自动化,2005,29(6):75-78,107.
    [100]夏海霞,李桃,倪光正.发电机通风系统流场及转子温度场分析[J].电机与控制学报,2007,11(5):473-476.
    [101]栾茹,李英姿,傅得平.1600kW多相整流异步发电机定子温度分布的研究[J].大电机技术,2007,(5):14-17.
    [102]樊亚东,文习山,李晓萍,等.水轮发电机定子三维温度场仿真计算[J].电站系统工程,2006,22(2):51-52,60.
    [103]侯立,梁茂芝,王艳萍.大型水轮发电机定子线棒绝缘厚度减薄研究[J].防爆电机,2004,(3):24-27,39.
    [104]鲍棋铭,高乃奎,马小芹,等.大型发电机主绝缘老化的热分析研究[J].中国电机工程学报,2003,23(7):99-101,106.
    [105]宋建成,成永红,高乃奎,等.基于动态力学分析的大电机主绝缘老化诊断[J].中国电机工程学报,2002,22(5):99-104.
    [106]何智江.三峡左岸电站发电机定子线棒主绝缘技术特点[J].大电机技术,2003,(6):1-4.
    [107]李德基.发电机发热分析计算及其应用[M].四川:四川大学出版社,1994:158-163.
    [108] Yoshida H, Umemoto K. Insulation Diagnostics for Rotating Machine Insulation[J]. IEEE Trans on EI, 1986, 21(6): 1021-1026.
    [109]魏永田,孟大伟,温嘉斌.电机内热交换[M].北京:机械工业出版社,1998:327-329.
    [110]王延安,侯云鹏,李伟力.大型水轮发电机定子绕组内股线绝缘热老化下的定子温度场计算[J].大电机技术,2002,(1),8-12.
    [111]李伟力,孔祥春,王文华.匝间绝缘对水轮发电机转子最热段温度场的影响[J].哈尔滨理工大学学报,1998,3(2):28-31.
    [112]宋建成,成永红,赵绍兴,等.300MW汽轮发电机主绝缘老化诊断[J].中国电力,2000,33(6):40-44,58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700