用户名: 密码: 验证码:
烟气循环流化床脱硫塔物料内循环特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增强脱硫塔内循环,提高塔内颗粒浓度,是循环流化床半干法烟气脱硫工艺提高脱硫效率、提高钙利用率、降低造价的重要手段。不同位置发生的内循环对脱硫反应的贡献不同,因此提高脱硫塔内循环,并对内循环的有效性进行阐述,组织合理的内循环是需要研究的重要课题。
     目前循环流化床脱硫工艺主要依靠在塔顶部布置分离器,分离灰在塔内回落来增强内循环。本文首先对脱硫塔顶部物料回流过程进行了冷态试验,分析了物料回流并返混入主流的过程,回流颗粒在下落的过程中被主气流逐渐剥离向塔内扩散,返混沿径向可以分为三个区域:回流区、返混加速区和主流区。在一定的颗粒回流量下,相对最大回落长度与主气流速度基本呈指数型的递减分布;物料在塔内形成了浓度上部高,下部低的分布趋势,有效物料浓度进较低,可以采用外循环灰管的方式将分离物料在塔底送入,以提高利用率。
     提出了脱硫塔底部采用切向旋流和直流复合流化的方式,在冷态PDA试验台上对研究了表观气速、入口颗粒浓度以及切向旋流风率变化时塔内气固流动以及颗粒内循环特性。表观气速降低到0.68m/s,颗粒沉降作用明显,呈现环核流动特性。在塔底部,形成类似喷动床的流态,最高浓度为最低浓度的80倍,平均浓度比1.34m/s增加了220%。随着表观气速的降低,塔内颗粒逐渐集中于脱硫塔的主反应区域,物料的有效率提高。随着旋流流量的增加,在脱硫塔底部壁面附近区域出现回流区,这增强了气流扰动和气固混合,有利于增强物料的内循环。脱硫塔内高浓度区域集中于0.7R-1.0R之间。当旋流流量为30%时,壁面浓度与中心区域浓度比增加到180。随着旋流流量的增加,边壁高浓度区域也逐渐增大;物料浓度的有效率也逐渐增加,旋流的加入使塔内颗粒逐渐集中于塔的中下部。脱硫塔平均颗粒浓度随入口颗粒浓度的增加逐渐增加,且增加的幅度要大于入口颗粒浓度增加的幅度,塔内颗粒浓度的增加有利于颗粒的团聚,有利于颗粒在离心力作用下被分离而回落,明显增强了脱硫塔的内循环。颗粒粒径的径向分布中心高,壁面低,在0.8R-1.0R之间出现局部高峰。因此沿高度方向颗粒平均粒径逐渐减小,大颗粒的分离和回落现象主要集中于脱硫塔的中下部。
     提出了强化内循环脱硫塔的结构,底部采用夹层结构实现塔内壁面的旋转流动。研究了脱硫塔的阻力特性,旋流结构的流量分配以及塔内颗粒浓度分布特性。脱硫塔的阻力主要集中于喉口旋流段,占塔总阻力的60-80%,随表观空塔气速和入口颗粒浓度的增加旋流段阻力不断增加。旋流结构同时具有流量调节以及提高负荷适应性的作用,随着旋流入口的关闭,旋流流量逐渐减小,中心直流流量增大,塔内颗粒浓度逐渐降低。当表观空塔气速降低时,旋流流量降低,但颗粒沉降作用明显,塔内平均颗粒浓度得到明显的提高,可关闭部分旋流以满足塔内流态化的要求。
     将强化内循环脱硫塔应用于140MW机组,增加旋流结构后在塔内下部壁面区域形成了旋转流场,脱硫塔直管段内烟气流速呈现对称分布,脱硫塔内均匀性得到明显的提高。脱硫塔阻力主要集中于脱硫塔入口段,占总阻力的70-80%,增加旋流后阻力增加90-120Pa,占脱硫塔总阻力的20-25%。脱硫塔具有明显的内循环现象:相对于入口灰浓度,机组负荷为120MW,脱硫没投运时时脱硫塔底部壁面处的灰浓度增加了43%;机组负荷将为75MW时,在重力沉降和离心分离的作用下,脱硫塔底部距离壁面50mm和1050mm处灰浓度分别增加了122%和58%。脱硫投运后,颗粒粒径变大,增强了颗粒沉降和离心分离效应,塔内物料浓度得到极大的提高:塔底部距离壁面50mm处颗粒浓度提高了247倍,距离壁面300mm处浓度增加了337%。壁面有明显的物料回流存在,增加了反应的表面积提高了脱硫效率,壁面大量物料的回流和分离不断冲刷壁面,有效壁面了结垢现象。
The industry of flue gas desulfurization has large market and expanded space. The CFB-FGD is widely applied with its advantage. Internally circulating of a large number of solid is important in CFB-FGD, which can increase the particle concentration in the bed and increase the desulfurization efficiency and the utilization of the calcium sorbent. There are many methoad to enhence the internally circulating of the particle. Different types of method have different effect to the desulfurization reaction process. One of the important tasks is to discuss the validity of the internally circulating and realize the effective internally circulating of the sorbent.
     The separator in the outlet of the CFB is mainly used in desulfurization technology. The process of particle flow in the top of the bed is investigated in this thesis. Ways to improve uniformity of CFB-FGD are discussed in cold experimental apparatus. The falling particle is effected by the gas flow. The gas and solid flow in the CFB can be divided three regions: the back flow zone, back mixing and acceleration zone and the main flow zone. The max length of the particle falling decrease in exponential type with the increase of the superficial gas velocity. The pariticle concentration in top of the bed is heigher than the bottom. More solid concentrated in the middle and top of the bed., which decrease the validity of the sorbent to desulfurization reaction. In order to increase the utilization of sorbent, the calcium sorbent should be send to the bottom of the bed.
     Ways to inprove the validity of pariticle is studied in cold experimental apparatus. When superficial gas velocity decrease to 0.68m/s, the phenomenon of solid sedimentation is obvious. Core-annular flow pattern appears. In the bottom of the bed, the ratio of maximum of the concentration to minimum reach 80. The average concentration increased 220% than the condition of the superficial gas velocity is 1.34m/s. so the validity of the solid invrease with the decrease of the superficial gas velocity.
     Composite fluidization of tangential swirl-once through flow is put forward to. It adds tangential swirl flow under the once-through fluidized of venturi. This is a valid way to improve the validity of the particle. The characteristics of flow under composite fluidization are studied The characteristics of gas-solid two-phase flow and particle circulation is studied in cold experimental apparatus.
     With the increase of the swirling flux, reflux appears near the wall. The gas turbulence and the mixing of the gas and the solid is enhenced. In the zone of r/R is 0.7 to 1.0, the solid concentration is higher. In the case of x=30%, the ratio of concentration near the wall to that in the core of the bed is 180. The zone of higher solid concentration become larger with the increase of the swirling flux, thus the validity of solid also increase. When the inlet particle concentration increase, the average concentration of particle also increase. The solid tend to aggregate, and can be easily separated with the centrifugal force. The internally circulating of particle is enhenced. The average particle size in the center is larger than that near the wall. In the area of 0.8R to 1.0R, the particle size peak value appears. Most of the larger particle concentrated in the bottom of the bed.
     A new internally circulating FGD tower is put forward to based of the experiment. In the bottom of the tower, new type of swirl structure is adopt. The resistance pressure character is studied. The most pressure drop is the venturi throat and the swirl region whose pressure drop is 60%-80% of the all. When shut off part of the swirling inlet, the swriling flow rate decrease. In the case of load of the power plant decrease, the swirling inlet can be shut off to increase the gas velocity in the bottom of the tower.
     The new internally circulating desulfurization tower was applied in a 140MW power plant. The distribution of the flow and solid concentration is studied in this power plant. The uniformity can be got more quickly. The solid concentration near the wall is 43% higher than that of inlet, when the power load is 120MW. With the decrease of the load, the extend of solid concentration increase become larger. When the desulfurization sytem is running, the size of the particle become larger and the solid concentration improed rapidly.
引文
[1]郝吉明,王书肖.燃煤SO_2控制技术手册[M]。北京:化学工业出版社,2001:10-11
    [2]2005年中国环境状况公报
    [3]赵旭东等.干法、半干法(钙基)烟气脱硫技术研究进展及趋势.化学工程.2003年8月:64-67
    [4]Joson Makani,CFB technology injects life into dry scrubbing,Power,137(10)(1993),79-81 。
    [5]XiaoXun Ma et al,Use of limestone for SO_2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed.Chemical Engineering Science,55(2000),4643-4652a。
    [6]米浩林,马国骏.回流式烟气循环流化床脱硫技术[J]。热力发电.1998,(2):57-59,61
    [7]Graf,R.et al.50,000 Hours of Commercial Operating Experience with Advanced-Design Reflux Circulating Fluid Bed as Reference for The World Largest Dry/semidry Flue Gas Desulfurization Unit(300MWe) Equivalent Boiler Capacity)to Be Built by WULLF Power-Gen Conference,June 26-28,1996,Budapest,Hungary.
    [8]R.E.Graf et al.10000 Hours Commercial Operating Experience with Advanced Design Reflux Circulating Fluid Bed Scrubbing Employing Slaked Lime Reagent EPRI/EPA/DOE SO_2 Control Symposium.Miami,Florida,USA.1995:28-31
    [9]管菊根.烟气循环流化床脱硫技术[J].电力环境保护,1999,15(4):55-58.
    [10]Karsten Felsvang,Peter Boolsen,The GSA dry scrubbing technology for retrofit applications,Environmental Progress,18(2)(1995),75-79.
    [11]樊保国等.常温循环流化床烟气脱硫技术的研究.能源技术.2000,21(2):73-77
    [12]黄震.65t/h锅炉循环流化床烟气脱硫系统及经济技术分析.环境工程.2001,19(6):39-42
    [13]赵旭东等.75t/h锅炉双循环流化床烟气脱硫装置研制及应用.中国电力.2002年3月:62-65
    [14]董勇等.双循环流化床烟气悬浮脱硫装置试验研究及工业应用。燃烧科学与技术.2003年12月:525-528
    [15]董勇等.双循环流化床烟气悬浮脱硫工艺。电站系统工程.2002年11月:9-10
    [16]董勇等.循环流化床烟气悬浮脱硫装置脱硫机理研究.潍坊学院学报.2002年11月:57-60
    [17]郝晓文.循环流化床悬浮脱硫复合流化与分离循环方式的试验研究[D].山东大学硕士学位论文,2004
    [18]滕斌.半干法烟气脱硫的实验及机理研究[D]。浙江大学博士学位论文。2004
    [19]黄震.65t/h锅炉循环流化床烟气脱硫系统及经济技术分析[J].环境工程.2001,19(6):39-42
    [20]李永华,冯兆兴,董建勋等。排烟循环流化床脱硫试验研究[J].中国电力.2004,37(12):70-73
    [21]Jiang M X,Keener T C,Khang S J.The use of a circulating fluidized bed absorber for the control of sulfur dioxide emissions by calcium oxide sorbent via in situ hyration.Powder Technology.1995,85:115-126
    [22]张凡,张伟,杨霓云等.半干半湿法烟气脱硫技术研究。环境科学研究.2000,13(1):61-64
    [23]王政民.有纵向旋流分离器的内循环流化床燃烧炉.中国专利,CN2336195Y.1999-09-01
    [24]赵长遂.旋涡流化床悬浮段气固悬浮流试验研究.东南大学学报.1990,20(2)
    [25]王怀彬,张子栋,董勇,等.内循环流化床锅炉技术及发展前景[J].热能动力工程,1996,11(2):95-100
    [26]赵明举,曹青,宋旗跃,谢克昌.不均匀布风的内循环流化床特性研究[J].煤炭转化,2002,25(4):50-53
    [27]康齐福等,内循环旋流床基础试验研究,中国工程热物理学会燃烧学术会议论文集,1987
    [28]李晓东,严建华,倪明江等。环形旋涡流化床悬浮空间气固流动特性的试验研究[J]。动力工程,1998,18(4):47-52
    [29]安恩科,徐通模.循环流化床锅炉(CFB)边壁下降流的生成机理.动力工程,1997,17(6):69-72
    [30]安恩科.谭厚章,李军等.CFB主床的床顶结构对边壁下降流的影响.热力发电,1998,(6):4-6
    [31]安恩科,谭厚章,李军等.CFB流化床边壁下降流的实验研究及内循环模型。动力工程,1999,19(1):9-11
    [32]安恩科.CFB主床的床顶结构对边壁下降流的影响[J].热力发电,1998,(6)
    [33]吕建燄,李定凯,祁海鹰.影响循环流化床烟气脱硫效率的床结构因素分析[J].锅炉技术,2004.35(36):35-38
    [34]Suneel K.Gupta and Franco Berruti,Evaluation of the gas--solid suspension density in CFB risers with exit effects.Powder Technology,2000,108:21-31
    [35]E.H.van der Meer,R.B.Thorpe J.F.Davidson.Flow patterns in the square cross-section riser of a circulating fluidised bed and the effect of riser exit design.Chemical Engineering Science 2000,55:4079-4099
    [36]Brereton,C.M.H.,and Grace,J.R.End effects in circulating fluidized bed hydrodynamics.In A.A.Avidan,Circulating Fluidized Bed Technology Ⅳ.New York:A.I.Ch.E.pp:137-144
    [37 Lim,K.S.,Zhu J.X.and Grace J.R.Hydrodynamics of gas-solid fliuidization.International Journal of Multiphase Flow,21(Suppl.),141-193
    [38]A.T.Harris,J.F.Davidson,R.B.Thorpe.The influence of the riser exit on the particle residence time distribution in a circulating fluidised bed riser.Chemical Engineering Science,2003,58:3669-3680
    [39]马健,张伟,马天星,金小蜂.炉顶结构对循环流化床锅炉颗粒内循环影响的实验研究[J].锅炉技术,2007,38(3):23-28
    [40]B.V.Reddy,P.K.Nag,Effect of riser exit geometry on bed hydrodynamics and heat transfer in a circulating fluidized bed riser column,International Journal of Energy Research 25(1)(2001) 1-8.
    [41]R.Mabrouk,J.Chaouki,C.Guy.Exit effect on hydrodynamics of the internal circulating fluidized bed riser[J].Powder Technology(2007),doi:10.1016/J.powtec.2007.07.008
    [42]D.-R.Bai,Y.Jin,Z.-Q.Yu,J.-X.Zhu,Axial distribution of the crosssectionally averaged voidage in fast fluidized beds,Powder Technology 71(1)(1992) 51-58.
    [43]金燕,郑洽于.出口几何结构对循环流化床锅炉性能影响的试验研究[J].工程热物理学报, 1990,20(1):129-132
    [44]Q.-Y.Zheng,H.Zhang,Experimental study of the effect of bed exits with different geometric structure on internal recycling of bed material in CFB boilers,4th International Conference On Circulating Fluid Beds,AIChE,New York,1993,pp.175-180.
    [45]金燕,郑洽余.利用出口几何结构改善循环流化床锅炉性能[J].中国电力,1998,31(4):70-71
    [46]金燕,郑洽余,杨瑞昌.循环流化床锅炉的出口端头效应及其强化[J].锅炉技术,1999,30(10):10-13
    [47]金燕,郑洽余.强化循环流化床锅炉出口端头效应的试验研究.电站系统工程,2000,16(5):262-264
    [48]许友好等.快速流化床反应器颗粒流动特性的研究.石油炼制与化工,第25卷,第10期,1994年
    [49]魏飞等.流动方向对循环流化床中颗粒混合行为的影响。化工冶金,第18卷,第2期,1997年5月
    [50]Chen yeon Chu,Shyh Jye Hwang.Attrition and sulfation of calcium sorbent and solids circulation rate in an internally circulating fluidized bed[J].Powder Technology,2002,127:185-195
    [51]Chen yeon Chu,Shyh Jye Hwang.Flue gas desulfurization in an internally circulating fluidized bed reactor[J].Powder Technology,2005,154:14-23
    [52]杨柳春,内循环流化床烟气脱硫装置研究[J].化学工程,2007,34(7):50-53
    [53]杨柳春,杨文奇,童志权。内循环流化床烟气脱硫装置结构及流化性能[J].环境科学,2003,24(5):39-43
    [54]高建民,秦裕琨,李广生,等.内循环多级喷动脱硫塔内颗粒浓度[J].化工学报,2006,57(10):2297-2302
    [55]樊保国,项光明.祁海鹰,陈昌和,徐旭常.常温循环流化床烟气脱硫影响脱硫效率的参数及机理[J]。燃烧科学技术,2001,7(3):228-232
    [56]J.Klingspor et al.,A Kinetic Study of the Dry SO_2-limestone Reachtion at Low Tmperature, Chem.Eng.Commun.,22,81-103,1983
    [57]吴颖海,张建平,黄震,冯斌,李大骥。变速循环流化床烟气脱硫试验和机理分析[J].环境科学,2000,2期:54-57
    [58]Newton Gerald H,John Kramlich,Roy Payne.Modeling the SO_2-Slurry Droplet Reaction.AICHE Journal.1990,36(12):1865-1872
    [59]H.T.Karlsson et al.,Tentative Modeling of Spray-Dry Scrubbing of SO_2,Chem.Eng.Technol,10,104-112,1987
    [60]吴忠标,谭天恩.石灰浆滴脱硫-干燥关系的模拟研究[J]。高校化学工程学报,1993,7(2):27-31
    [61]谭忠超,项光明,陈昌和,徐旭常,宋素敏.循环流化床排烟脱硫系统中液滴蒸发[J].清华大学学报(自然科学版),2000,40(4):62-65
    [62]樊保国.循环流化床烟气脱硫试验研究[D].北京:清华大学,1996
    [63]樊保国,项光明,陈昌和,徐旭常,陈锐.循环流化床烟气脱硫机理研究[J].环境科学,1998,119(3):14-17
    [64]James K,Neathery.Model for Flue-gas Desulfurization in a Circulating Dry Scruber[J].AICHEJ,1996,42(1):259-268
    [65]马双忱,赵毅,华伟.烟气循环流化床脱硫数学模型及应用[J].中国电机工程学报,2004,24(10):228-232
    [66]谭忠超,项光明,陈昌和,徐旭常.循环流化床排烟脱硫模型[J].环境科学1999。20(3):21-25
    [67]颜岩,彭晓峰,贾力,王补宣.循环流化床烟气脱硫过程特性分析[J].应用基础与工程科学学报,2003,11(1):77-85
    [68]赵旭东,双循环流化床烟气悬浮脱硫技术工业化试验及机理研究[D],哈尔滨工业大学博士学位论文,2002,哈尔滨。
    [69]赵毅,许佩瑶,张艳,付东.气力输送状态下利用高活性脱硫剂的循环流化床烟气脱硫模型[J].动力工程,2006,26(3):420-426
    [70]许佩瑶,赵毅,张艳,汪黎东.快速流态化下烟气循环流化床脱硫数学模型[J],中国电机工程学报:2006,26(9):54-61
    [71]张艳.烟气循环流化床联合脱硫脱氮模型和机理研究[D].保定,华北电力大学硕士学位论文,2004
    [72]张艳,烟气循环流化床联合脱硫脱氮模型和机理研究[D],华北电力大学硕士学位论文,河北,保定,2004
    [73]白丁荣,金涌,俞芷青等。快速流化床截面平均空隙率轴向分布及其影响因素[J],化学反应工程与工艺,1990,6(1):63-71
    [74]白丁荣,甘俊,金涌,俞芷青.快速流态化的存在区域[J],石油化工,1992,21(5):318-322
    [75]岑可法,倪明江,骆仲泱等,循环流化床锅炉理论设计与运行[M],北京:中国电力出版社,2004
    [76]岑可法.锅炉燃烧试验研究方法及测量技术[M]。北京:水利电力出版社,1987:77-78
    [77]Dual PDA Reference Guide[R].DANTEC Company.1995:125-150
    [78]王士军。670t/h褐煤锅炉燃烧器区域流场特性的PDA试验研究[D].哈尔滨工业大学硕士学位论文,1999:18-20
    [89]秦裕琨,吴少华,高继慧,高建民,李争起.内循环多级喷动流态化烟气脱硫塔.CN1724121A.2005
    [80]刘文铁,阮根健,孙洪宾。锅炉热工测试技术[M].哈尔滨:哈尔滨工业大学出版社.1989:51-53
    [81]吴永生,方可人.热工测量及仪表[M].北京:中国电力出版社.1995,:185,186
    [82]Yang Y,Jin Y,Yu Z,Zhu J-X,and Bi H T.Local Slip Behaviour in the Circulating Fluidized Bed,AIChE Symp.Ser.,89(286),81-90
    [83]白丁荣,蒋大洲,金涌,俞芷青.循环流化床颗粒内循环流动结构的实验研究,第六届全国流态化文集,武汉:武汉华中理工大学,1993:1-7
    [84]高建民.博士学位论文,哈尔滨工业大学,哈尔滨2007:34-37。
    [85]孙国刚.循环流化床提升管气固流动的非均匀特性.中国科学院化学冶金所博士学位论 文.1998:38-41
    [86]郝晓文.大型烟气脱硫循环流化床旋直复合流化和均匀性研究.山东大学博士学位论文,2007:78-79
    [87]Chen C-J,Jaw S-Y.Fundamentals of turbulence modeling.Washington DC:Taylor & Francis,1998.ⅹⅰ:91-92,119,69,71,63,64
    [88]陶文铨.数值传热学[M].西安:西安交通大学出版社.2001:333
    [89]窦国仁.湍流力学(上册)[M]。北京:高等教育出版社.1985:99
    [90]Markatos N C,The mathematical modeling of turbulence flow[J].Appl Math Modeling,1986.10:190-220
    [91]Orszag S A.Numerical simulation of turbulence flows.In:Frost W,Moulden T H,eds.Handbook of turbulence.New York:Plenum Press,1977,281-313
    [92]Frziger J H.High-level simulation of turbulent flow.In:Essers J A,ed.Computational methods for turbulent flows,transonic and viscous flows.Washington DC:hemisphere,1983:93-182
    [93]Launder B E,Spalding D B.The numerical computation of turbulent flows.Comput Methods Appl Mech Eng.1974.3:269-289
    [94]Amano R S.Development of a turbulence near-wall model and its application to separated and reattached flows[J].Numer Heat Transfer.1984.7:59-75
    [95]Ramadhyani S.Two-equation and second-moment turbulence models for convective heat transfer.In:Minkowycs W J,Sparrow E M.eds[J].Advances in numerical heat transfer.Washington DC:Taylor & Francis.1997.1:171-199
    [96]岑可法,樊建人。工程气固多相流动的理论及计算[M].杭州;浙江大学出版社.1990
    [97]Chen wang.Second-moment closure modeling of turbulence in a non-inertial frame[J].Fluid Dynamics Research,20(1997):43-65
    [98]岑可法,倪明江,严建华等.气固分离理论及技术[M].杭州:浙江大学出版社,1999
    [99]王东,锅炉改造中方形卧式分离器的研究与开发[D].浙江大学硕士学位论文,2003
    [100]刘大有.两相流体动力学[M].北京:高等教育出版社.1992:7-9
    [101]王迎慧.磁流化床气固两相流动特性及其应用的研究[D]。东南大学博士学位论文.2004:16
    [102]孙其诚。模拟气固流态化系统的拟颗粒模型[D].中国科学院化工冶金研究所博士学位论文.1999:15-17
    [103]Ishii M.,Thermo fluid Dynamic Theory of Two-phase Flow[M].Eyrolles,Paris,1975
    [104]盖德.希特斯洛尼。多相流动和传热手册[M].北京:机械工业出版社.17-33,457-471,487-517,198
    [105]Soo,S.L,Multiphase Fluid Dynamics,Science Press,New York,1990 100 Drew,D.A.and Lahey,T.T.,Particulate TWo-phase Flow,Butterworth-Heinemann,Boston,1993
    [106]Drew,D.A.and Lahey,T.T.,Particulate Two-phase Flow,Butterworth Heinemann,Boston,1992
    [107]Enwaid,H.,Peiran,E.and Almstedt.,A.E.,Eulerian two-phase flow theory applied to fluidization[J].Int.J.Multiphase Flow,1996,22:21-66
    [108]Harlow,F H.,and Amsden,A.A.,Numerical calculation of multiphase fluid flow[J].Comput.Phys.,1975,17:19-52
    [109]Gidaspow,D.,Seo,Y.C.,and Ettebadieh,B.,Hydrodynamics of fluidization:experimental and theoretical buble sizes in a two-dimensional bed with a jet[J].Chem.Eng.Comm.,1983,22:253-272
    [110]Savage,S.B.,Jeffrey,D.J.,The Stress Tensor in Granular Flow at High Shear Rates[J].Fluid Mech.1981,110:255-272
    [111]Jenkins,J.T.,Savage,S.B.,A Theory for the Rapid Flow of Identical,Smooth,Nearly Elastic Spherical Particles[J].J.Fluid Mech.1983,130:187-202
    [112]Lun,C.K.K.,Savage,F B.,Jefrey,D.J.,and Chepumiy,N.,Kinetic Theories for Granular Flow:Inelastic Particles in Couette Flow and Slightly Inelastic Particles in A General Flow Field[J].Fluid Mech.1984,140:223-256
    [113]Johnson,P C.and Jackson,R.,Frictional-collisional Constitutive Relations for Granular Materials,with Application to Plane Sheafing[J].Fluid Mech.,1987,176:6793
    [114]Campbell,S.C.,Wang,D.G,Particle Pressure in Gas-fluidized Beds[J].Fluid Mech.,1991,227:495-508
    [115]Ding,J.,Gidaspow,D.,A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow[J].AIChE Journal.1990,36:523-538
    [116]Gidaspow,D.,Multiphase Flow and Fluidization-Continuum and Kinetic Theory Descriptions[J].Academic Press,San Diego,1994
    [117]吴春亮.稠密颗粒两相流的理论与数值模拟[D].中山大学博士学位论文.2004
    [118]Fariborz Taghipour,Naoko Ellis,Clayton Wong.Experimental and Computational Study of Gas-solid Fluidized Bed Hydrodynamics[J].Chemical Engineering Science,2005,60(24):6857-5657
    [119]Ranjeet P.,Utikar,Vivek V.Ranade.Single Jet Fluidized Beds:Experiments and CFD Simulations with Glass and Polypropylene Particles[J].Chemical Engineering Science.2007,62(1):167-183
    [120]Veeraya Jiradilok,Dimitri Gidaspow,Somsak Damronglerd.Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in A Riser[J].Chemical Engineering Science.2006,61(17):5544-5559
    [121]Guodong Jin,Dayou Liu.Modeling and Simulation of Liquid Pulsed Particulate Fluidized Beds[J].Powder Technology.2005,154(2-3):138-155
    [122]Pedro Arce,Martin Aznar.Modeling the Thermodynamic Behavior of Poly(lactide-co-glycolide) Supercritical Fluid Mixtures with Equations of state[J].Fluid Phase Equilibria.2006,244(1-5):16-25
    [123]Guodong Jin,Yongsheng Nie,Dayou Liu.Numerical Simulation of Pulsed Liquid Fluidized Bed and Its Experimental Validation[J].Powder Technology.2001,119(2-3):153-163
    [124]Gidaspow,D.,Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions[J],Academic press,San Diego,1994
    [125 Lun,C.K.K.,Savage,S.B.,Jeffrey,D.J.,Kinetic Theories for Granular Flow:Inelastic Particles in Couette Flow and Slightly Inelastic Particles in General Flow Field[J].Fluid Mech.,1984:140,223-256
    [126]G.T.Csanady.Turbulent Diffusion of Heavy Particles in the Atmosphere[J].Atmos.Science,1963,20:201-208
    [127]M.Syamlal.The Particle-Particle Drag Term in a Multiparticle Model of Fluidization[J].National Technical Information Service.1987.OE/MC/21353-2373,NTIS/DE87006500.
    [128]魏星,李伟力.凡风仙等.脱硫塔气固两相流场优化的数值模拟研究[J].中国电机工程学报,2006,26(7):12-18
    [1] Zhao Xudong, Xiang Guangming Ma Chunyuan,etal. Using carbide slag as desulfurater in dry flue gas desulfurization system[J].Chemical Engineering,2006,34(9):59-62
    
    [2] Zhao Xudong, Xiang Guangming,Li Zhenshan,etal. Material Balance Calculation and Experimental Research of Dry FGD Process[J],Journal of Combustion Science and Technology,2006,12( 1): 15-20
    
    [3] Anthony E J, McCleave R, Gandolfi E, et al. Industrial-scale demonstration of a new sorbent reactivation technology for fluidized bed combustors[J].J Environmental Management, 2003,69(2): 177-185
    
    [4]Ma Chunyuan, Dong Yong, Xu Xiren, etal. Study on Semi-dry Suspension FGD of Dicyclic Fluidized Bed and its Engineering Practice [J].Environmental Engineering, 2002, 20(6): 27-31
    
    [5] Suneel K. Gupta and Franco Berruti, Evaluation of the gas—solid suspension density in CFB risers with exit effects[J]. Powder Technology, 2000, 108:21-31
    
    [6] E.H.van der Meer,R.B.Thorpe J.F.Davidson.Flow patterns in the square cross-section riser of a circulating fluidised bed and the effect of riser exit design[J]. Chemical Engineering Science 2000,55:4079-4099
    
    [7] Jin Yan, Zheng Qiayu. Experimental study on Enhancing Exit and Effect of CFB Boiler[J],Power System Engineering,2000,16(5):262-264
    
    [8]Dong Yong, Ma Chunyuan, Qin Yukun. Experimental Study of Gas-Solid Flows in a Circulating Fluidized Bed of Flue Gas Desulfurization by the Use of a Particle Dynamics Analyzer,Journal of Engineering for Thermal Energy and Power,2004,19(5):450-453
    
    [9] Dong Yong, Study on Separation and Circulation of Reactive Product in CFB-FGD[D].Harbin: Dissertation for the Doctoral Degree Harbin Institute of Technology.
    
    [10] Jin Yong, Zhu Jingxu, Wang Zhanwen, etal. Fludization Engineering Principle [M].Beijing: Tsinghua Press, 2001: 122-123
    [1]Dong yong, Qin Yukkun, Ma Chunyuan, et al. Several Semi-Dry Flue Gas Desulfurization Process for Power Plant[J],Power System Engineering, 2003,19(2):40-42(in Chinese).
    
    [2]Lin Jun, Wang Fan, Zhang Fan. Numerical Analysis of Semi-Dry Flue Gas Desulphurization[J].Research of Environmental Sciences, 2005, 18 (6): 34—36
    
    [3]He Dakuo, Wang Fuli, Li Zhenzhong. Simulation study on desulfurization efficiency of flue gas in circulating fluidized beds[J].Journal of Power Engineering, 2005,25(4):582-586
    
    [4]Wang Qinhui, Zhao Xiaodong, Shi Huixian,et al.PIV(Particle Image Velocimetry Measurements of Particle Movement in a Circulating Fluidized Bed[J]. Journal of Engineering For Thermal Energy and Power,2000,18(4):378-381
    
    [5]MaL, Inghamd B, Wen X, Nummerical modeling of the fluid and particle penetration through small sampling cyclones[J]. J Aerosol Sci, 2000,31(9): 1097-1119.
    
    [6]Jolius Gimbun, Chuah T. G., Fakhur' I- Razi A., et al. The influence of temperature and inlet velociy on cyclone pressure drop: a CFD study[J]. Chemical Engineering and Processing,2005,44:7-12
    
    [7]Huang Shengzhu, Zhu Lin, Ma Chunyuan.Numerical Simulation of the Flow Field and Performance of an Innovative Cyclone Separator with a Downward Discharge of Gases[J]. Journal of Engineering For Thermal Energy and Power,2006,21(1):70-74
    
    [8]FLUENT INC. User's guide V6.0[M]. Lebanon:FLUENT Inc,1998.
    
    [9]Wei Xing, Li Weili, Fan Fengxian, et al. Numerical Simulation Study on the Optimization of Gas-solid Two-Phase Flows in a Desulfurization Tower[J]. Proceeding of the CSEE,2006,26(7):12-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700