用户名: 密码: 验证码:
交通流的随机因素分析和相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通拥堵和交通污染带来了巨大的社会压力和经济损失。如何有效地利用交通资源,改善交通供求关系,以科学的理论来指导交通建设和交通运营,成为国际社会广泛关注的重大问题。近几十年来,不同领域的研究者从不同的角度对交通流的特性进行了分析,建立了许多交通流模型,取得了大量成果。本文在现有交通流模型的基础上,针对诱发相变等复杂交通动力学现象的关键因素如随机噪声、空间非均匀性等进行着重分析,提出若干改进的模型,并进行相应的理论分析和数值模拟。此外,还探讨了格子流体力学模型在考虑某些实际因素时的相变问题。全文的主要工作如下:
     一、综合考虑实际中影响驾驶员加速行为的各种随机性因素提出了一种加权概率元胞自动机模型。
     在经典的NaSch模型和FI模型的基础上,综合考虑驾驶员和车辆的差异性及其外部噪声等随机因素的影响,基于概率论的思想提出了一种可广泛应用于不同道路条件(诸如限速与无限速高速公路)的加权概率元胞自动机模型(简称WP模型)。模型中,引入了一般的随机加速概率分布函数,更好地刻画了由各种随机因素所决定的驾驶特征。数值模拟表明:限速WP模型所得的结果与实测数据符合得相当好,时空演化斑图显示出一种新的均匀流(由高速和低速两类),并为区分两类均匀流给出了一种判据。最后,通过分析车间距的时间演化分布,进一步证实了该新均匀流的存在;对于无限速的WP模型,我们分别从基本图、时空演化斑图、车间距演化分布、速度分布四个角度将其与NaSch模型和FI模型进行了对比,结果表明,WP模型给出的流量与实测结果更为接近。所有这些结论充分表明了该模型形式简单,物理意义清晰,可以较好地描述实际交通现象。
     二、从新的概率论主方程的角度,结合三相流理论,研究了开放的空间不均匀的道路缩减瓶颈中引起的交通崩溃现象。
     将概率论主方程应用于描述在开放的空间不均匀的道路缩减瓶颈中引起的交通崩溃现象。出发点是Kerner的三相流理论,将交通崩溃与从自由流到同步流的一阶相变联系起来,同时将这种空间不均匀的道路结构假设为一个始终位于瓶颈附近的确定性的局部扰动。通过建立描写车辆集簇演化的主方程及相应的理论分析,我们得到了描写交通崩溃的平均延迟时间和成核率的表达式。最后通过一个具体的例子详细讨论了离开概率、势函数、势垒、平均延迟时间及相应的成核率与道路缩减程度及平均来流流率之间的关系。
     三、将优化速度模型应用于描述实际交通中由道路几何形状的变化——上(下)坡引起的交通拥堵的特征。
     通过引入计及空间位置、坡度以及可变安全间距的广义优化速度函数,拓展了经典的Bando优化速度模型,针对具有上(下)坡路段的限速交通流进行了研究。理论分析和数值模拟结果表明,具有上(下)坡路段的交通流基本图中,整条道路的流率随着密度单调递增,在某个临界点达到饱和,其后随着密度的进一步增加,流率维持其饱和值,直到超过另一临界密度后,流率随着密度的增加逐渐下降。在忽略驾驶员敏感度的轻微影响后,饱和流率的大小等于上(下)坡路段的最大流率,而且基本图与敏感度、坡度和坡长紧密相关。时空演化斑图给出了不同初始车辆数下由稀疏波和激波导致的不同交通相的分离。另外,通过对上(下)坡路段的模拟发现,在相同敏感度、坡度和坡长下,车辆在下坡路段对应的饱和流率和最大平均速度均大于上坡路段,这与实际道路交通情况一致。
     四、基子ITS的应用,提出考虑后车效应的格子流体力学模型,研究了前方任意辆车和后方一辆车对交通流的影响,并进一步探讨了后车效应的引入导致的交通流的各向异性问题。
     根据实际交通中前后车辆对当前车辆作用的不同,分别定义后向和前向优化速度函数,通过线性稳定性分析得到中性稳定性曲线,并在临界点附近采用约化摄动法导出了不稳定区域密度波演化的mKdV方程。研究结果表明:选用合适的后向优化速度函数,考虑后车效应将会提高交通系统的稳定性,相反,选取不恰当的后向优化速度函数则会增大交通拥堵。另外,通过对扭结—反扭结波传播速度的计算,我们发现:在不稳定区域内,一定权重下考虑后车因素会导致交通流密度波的传播速度为负值。进一步,我们详细讨论了此现象蕴含的交通流各向异性问题并给出合理的物理解释。
     五、从格子流体力学的角度分析了考虑车辆逐步加速特性时交通流的特征,重点讨论了优化速度函数的改变对系统稳定性的影响。
     基于实际交通中的车辆驾驶特性,提出了两种改进的格子流体力学模型。在模型中,通过引入计及车辆逐步加速效应,且与实测数据符合较好的新的优化速度函数,更合理地刻画了单车道交通流的动力学相变特性。线性稳定性分析表明:在考虑驾驶员逐步加速特性的情况下,交通流呈现出更为复杂的多重相变,且临界密度依赖于驾驶员敏感度和车辆密度,相变的复杂程度与优化速度函数的拐点数紧密相关。数值仿真结果与理论分析一致,证实了改进模型的正确性和有效性。
     最后,对全文进行了总结,并指出需要进一步研究的问题。
Recently, traffic has become a global exasperating problem, and the increasing traffic jams and traffic pollution are exerting great pressure on society and causing enormous economic losses. How to make effective use of existing transportation resources so as to improve the relationship between traffic demand and supply, and how to guide transport development and operation with the aid of scientific theories are of great importance, drawing general concern of the international community. Over the past decades, a lot of scholars in different fields have been conducting extensive research on this subject and proposing a variety of traffic flow theories, yielding an enormous amount of results. In this dissertation, based on the previous work, several improved mathematical models are presented through analyzing emphatically the stochastic factors and spatial inhomogeneity in real transportation systems, and the corresponding theoretical analysis and numerical simulation are performed. Moreover, the phase transtion in lattice hydrodynamic model with some real traffic effects considered is investigated. The main contents are as follows.
     Ⅰ. From a global viewpoint of the stochastic acceleration behavior of drivers, a weighted probabilistic cellular automaton model (the WP model, for short) is established by introducing a random acceleration probabilistic distribution function.
     Owing to the variety of vehicle acceleration behavior from a synthetic viewpoint, a weighted probabilistic cellular automaton model (the WP model, for short) for traffic flow is constructed on the basis of the classical NaSch model and FI model. A probabilistic distribution function for random acceleration, which can be widely used in treating general traffic situations, e.g., those with or without speed limit, is introduced. The numerical simulations show that the speed limit WP model leads to the results consistent with the empirical data rather well, and a new kind of traffic phenomenon called neo-uniform flow, consisting of the high-speed and low-speed ones, is resulted. Furthermore, we give the criterion for distinguishing the high-speed and low-speed neo-uniform flows and elucidate the mechanism of this kind of transportation characteristics. As for the non-speed-limit WP model, we compare the numerical results with those obtained with the NaSch model and FI model from four different aspects, and show that the maximum traffic flux is closer to the observed data. All these are helpful in understanding and depicting the realistic traffic behavior.
     Ⅱ. The traffic breakdown caused by the reduction of lanes at a highway bottleneck in the spatially inhomogeneous open road system is examined via a proposed stochastic master-equation model with the three-phase theory.
     Based on the Markov processes, a new stochastic approach to the spatially inhomogeneous open traffic system at a highway bottleneck caused by the reduction of lanes is developed. The model is in the context of three-phase traffic theory, where the breakdown phenomenon is associated with a first-order phase transition from the free flow phase to the synchronized flow phase. In addition, a permanent and motionless non-homogeneity that can be considered a deterministic vehicle cluster localized in a neighborhood of the bottleneck is assumed. An appropriate master equation for the car cluster evolution is derived. The mean time delay and the associated nucleation rate of traffic breakdown are found and the nucleation rate of traffic breakdown as a function of the reduction of lane numbers and the coming flow rate per lane is studied. The studied example further verifies the analytical results.
     Ⅲ. A generalized optimal velocity model is presented and applied to investigate the traffic charactersitics under the changed road conditions, i.e., the speed limit traffic for the roads with upgrade (or downgrade).
     Through introducing a generalized optimal velocity function to consider the spatial position, slope grade and variable safety headway, the effect of slope on a single-lane highway is investigated with a generalized optimal velocity model. The theoretical analysis and simulation results show that the flux of the whole road with the upgrade (or downgrade) increases monotonously with density, saturates at a critical density, then maintains this saturated value in a certain density range and finally decreases with density. The value of saturated flux is equal to the maximum flux of the upgrade (or downgrade) without considering the slight influence of the driver's sensitivity. And the fundamental diagrams also depend on the sensitivity, slope grade and slope length. The spatio-temporal pattern gives the segregation of different traffic phases caused by the rarefaction wave and shock wave for a certain initial vehicle number. The comparison between the upgrade and the downgrade indicates that the value of saturated flux of the downgrade is larger than that of the upgrade under the same condition. This result is in accordance with the real traffic.
     Ⅳ. Two extended cooperative driving lattice hydrodynamic models are proposed by considering the backward looking effect. The influnce of more preceding vehicles and one following vehicle on the studied vehicle is investigated. And the anisotropy of traffic flow is further discussed through examining the negative propagation velocity as the effect of following vehicle is involved.
     In light of the different influences of the preceding and following vehicles on the considered vehicle in real traffic, the proper forward and backward optimal velocities are defined, respectively. The neutral stability line is obtained by using the linear stability theory and it is found that considering the following vehicle effect and adopting the appropriate backward optimal velocity funciton could lead to the improvement of the traffic flow stability. The modified Korteweg-de Vries equations (the mKdV equation, for short) near the critical point are derived by using the nonlinear perturbation method to show that the traffic jam could be described by the kink-antikink soliton solutions for the mKdV equations. It is shown that in the unstable region, to a certain extent, the negative propagation velocity appears as the effect of following vehicle is involved. Moreover, the related anisotropy of traffic flow with the negative propagation velocity is discussed in detail and corresponding physical nature is explored.
     Ⅴ. Based on two extended lattice hydrodynamic models, the traffic characteristics are anaylzed with considering the effect of stepwise acceleration of a vehicle, in which emphasis is particularly laid on the investigation of the influence of optimal velocity function on the system stability.
     With the consideration of the behavior of stepwise vehicle acceleration, two extended lattice hydrodynamic models are proposed. A new optimal velocity function is introduced to take the stepwise acceleration into account and to fit the obtained results to observed data better than those with the original lattice hydrodynamic models, which leads to a better description of the dynamical phase transition for single-lane traffic flow. Linear stability analysis shows that the multiple phase transitions occur through considering the effect of stepwise acceleration, and their properties depend on the vehicle density and sensitivity. Moreover, it is concluded that the complexity degree of phase transition is closely related with the turning points of the introduced optimal velocity function. The validity and correctness of the presented model is confirmed by direct simulations.
     The final chapter of this dissertation is devoted to a summary and prospect of further study of the road traffic flow.
引文
[1].首部城市蓝皮书发布大城市交通拥堵问题突出,http://www.ce.cn/cysc/cysczh/200712/20/t20071220_13984389.shtml,2007-12-20.
    [2].交通拥堵令美经济一年损失630亿,http://www.sina.com.cn http://news.sina.com.cn/w/2004-09-09/10053627222s.shtml,2004-9-9
    [3].Helbing D.,Traffic and Related Self-driven Many Particle Systems.Reviews of Modern Physics,2001,73(4):1067-1141.
    [4].国外公交运营管理面面观(上),http://www.china.com.cn/news/txt/2007-10/08/content_9013314_2.htm,2007-10-8
    [5].京:公交IC卡面临二次搁浅,http://news.stock888.net/040615/101,1280,878518,00.shtml,2004-6-15
    [6].日媒:交通拥堵让北京市民每天损失1.1元,http://news.xinhuanet.com/world/2007-12/24/content_7302554.htm,2007-12-24.
    [7].中国尴尬的世界第一:交通死亡事故占全球15%,http://www.pcauto.com.cn/playcar/saft/info/0511/348730.html,2005-11-4.
    [8].唐孝威,张训生,陆坤权主编,交通流与颗粒流,杭州:浙江大学出版社,2004
    [9].北京拥堵列入国家重大科研项目,http://news.sohu.com/20061201/n246723512.shtml,2006-12-1.
    [10].Greeshields B.D.,Bibbins J.R.,Channing W.S.,and Miller H.H.,A Study of Traffic Capacity,Highway Research Board Proceedings,1935,14:448-477.
    [11].Adams W.F.,Road Traffic Considered as a Random Series,Institution Civil Engineers J/UK/,1936,4:121-130.
    [12].Greenshields B.B.,Schapiro D.,and Ericksen E.L.,Traffic Performance at Urban Street Intersections,Journal of the American Statistical Association,1949,44(245):142-144.
    [13].Hoogendoorn S.P.,State-of-the-art of Vehicular Traffic Flow Modelling,Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2001,215(4):283-303.
    [14] . Lighthill M.J., and Whitham G.B., On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 229 (1178): 317-345.
    [15] . Buchanan M., Physics Is Dead, Long Live Physics!, Nature Physics, 2008, 4(3): 159-159.
    [16] . Richards P.I., Shock Waves on the Highway, Operations Research, 1956,4 (1):42-51.
    [17] . Daganzo C.F., Requiem for Second-order Fluid Approximations of Traffic Flow, Transportation Research Part B, 1995,29 (4):277-286.
    [18] . Edie L.C., and Bavarez E., Generation and Propagation of Stop-start Traffic Waves, in: Vehicular Traffic Science, Proceedings of the Third International Symposium on the Theory of Traffic Flow, Edie L.C., Herman R., and Roghery R.(ed.), Elsevier, Amsterdam, 1967: 26-37.
    [19] . Payne H.J., Models of Freeway Traffic and Control, in: Mathematical Methods of Public System, Simulation Council Proceedings Series, Bekey G.A.(ed), 1971, 1(1): 51-61.
    [20] . Whitham G. B., Linear and Nonlinear Waves, New York: John Wiley & Sons, 1974.
    [21]. Ou Z.H, Dai S.Q., Dong L.Y., Wu Z., and Tao M.D., New Equilibrium Function of Traffic Flow. Physica A, 2006, 362:525-531.
    [22] . Payne H.J., FREFLO: A Macroscopic Simulation Model of Freeway Traffic, Transportation Research Record, 1979,772: 68-77.
    [23] . Payne H.J., A Critical Review of a Macroscopic Freeway Model, in: Research Directions in Computer Control of Urban Traffic Systems, ASCE, New York, 1979: 251-265.
    [24] . Rathi A.K., Lieberman E.B., and Yedlin M., Enhanced FREFLO: Simulation of Congested Environments, Transportation Research Board, 1987,1112: 67-71.
    [25]. Ross P., Traffic Dynamics, Transportation Research Part B, 1988,22 (6): 421-435.
    [26].Kuhne R.D.,Macroscopic Freeway Model for Dense Traffic-Stop-Start Wave and Incident Detection,in:Proceedings of the 9th International Symposium on Transportation and Traffic Theory,I.Volmuller,and R.Hamerslag(ed)(VNU Science Press,Utrecht,The Netherlands),1984,21-42.
    [27].Kerner B.S.,and Konhiiuser P.,Cluster Effect in Initially Homogeneous Traffic Flow,Physical Review E,1993,48(4):R2335-2338.
    [28].Kerner B.S.,Konhauser P.,and Schilke M.,Deterministic Spontaneous Appearance of Traffic Jams in Slightly Inhomogeneous Traffic Flow,Physical Review E,1995,51(6):6243-6246.
    [29].Kurtze D.A.,and Hong D.C.,Traffic Jams,Granular Flow,and Soliton Selection,Physical Review E,1995,52:218-221.
    [30].Komatsu T.S.,and Sasa S.,Kink Soliton Characterizing Traffic Congestion,Physical Review E,1995,55:5574-5581.
    [31].Michalopoulos P.G.,Yi P.,and Lyrintzis A.S.,Continuum Modelling of Traffic Dynamics for Congested Freeways,Transportation Research Part B,1993,27(4):315-332.
    [32].Aw A.,and Rascle M.,Resurrection of"Second Order" Models of Traffic Flow.SIAM Journal on Applied Mathematics,2000,60(3):916-938.
    [33].Rascle M.,An Improved Macroscopic Model of Traffic Flow:Derivation and Links with the Lightill-Whitham Model,Mathematical and Computer Modelling,2002,35:581-590.
    [34].Zhang H.M.,A Theory of Nonequilibrium Traffic Flow,Transportation Research Part B,1998,32(7):485-498.
    [35].Jiang R.,Wu Q.S.,and Zhu Z.J.,A New Continuum Model for Traffic Flow and Numerical Tests,Transportation Research Part B,2002,36(5):405-419.
    [36].薛郁,交通流的建模、数值模拟及其临界相变行为的研究,博士学位论文,上海:上海大学,2002.
    [37].Xue Y.,and Dai S.Q.,Continuum Traffic Model with the Consideration of Two Delay Time Scales.Physical Review E,2003,68:066123.
    [38].Siebel F.,and Mauser W.,On the Fundamental Diagram of Traffic Flow,SIAM Journal on Applied Mathematics,2006,66(4):1150-1162.
    [39].Siebel F.,and Mauser W.,Synchronized Flow and Wide Moving Jams from Balanced Vehicular Traffic,Physical Review E,2006,73:066108.
    [40].Zhang H.M.,Anisotropic Property Revisited--Does It Hold in Multi-lane Traffic?Transportation Research B,2003,37(6):561-577.
    [41].Nagatani T.,Modified KdV Equation for Jamming Transition in the Continuum Models of Traffic,Physica A,1998,261:599-607.
    [42].Bando M.,Hasebe K.,Nakayama A.,Shibata A.,and Sugiyama Y.,Dynamical Model of Traffic Congestion and Numerical Simulation,Physical Review E,1995,51(2):1035-1042.
    [43].Nagatani T.,Jamming Transitions and the Modified Korteweg-de Vries Equation in a Two-lane Traffic Flow,Physica A,1999,265:297-310.
    [44].Nagatani T.,Jamming Transition in a Two-dimensional Traffic Flow Model,Physical Review E,1999,59(5):4857-4921.
    [45].Nagatani T.,Jamming Transition in Traffic Flow on Triangular Lattice,Physica A,1999,271:200-221.
    [46].Nagatani T.,Jamming Transition of High-dimensional Traffic Dynamics,Physica A,1999,272:599-611.
    [47].薛郁,优化车流的交通流格子模型.物理学报,2004(53):25-30.
    [48].Biham O.,Middleton A.A.,and Levine D.,Self-organization and a Dynamical Transition in Traffic Flow Models,Physical Review A,1992,46(10):R6124-R6127.
    [49].Nagatani T.,Stabilization and Enhancement of Traffic Flow by the Next-nearest-neighbor Interaction,Physical Review E,1999,60:6395-6401.
    [50].葛红霞,基于诱导信息的交通流动力学特性与非线性密度波研究,博士学位论文,上海:上海大学,2006.
    [51].Chowdhury D.,Santen L.,and Schadschneider A.,Statistical Physics of Vehicular Traffic and Some Related Systems,Physics Reports,2000,329:199-329.
    [52].Pipes L.A.,An Operational Analysis of Traffic Dynamics,Journal of Applied Physics,1953,24(3):274-281.
    [53].Pipes L.A.,Car Following Models and the Fundamental Ddiagram of Road Traffic,Transportation Research,1967,1(1):21-29.
    [54].Chandler R.E.,Herman R,and Montroll E.W.,Traffic Dynamics:Studies in Car Following,Operations Research.,1958,6(2):165-184.
    [55].Herman R.,and Potts R.B.,Single Lane Traffic Theory and Experiment,in Proceedings of the Symposium on Theory of Traffic Flow,Elsevier,New York,1959,147-157.
    [56].Gazis,D.C.,Herman R.,and Rothery R.W.,Nonlinear Follow-the-lead Models of Traffic Flow,Operations Research,1961,9(4):545-567.
    [57].Newell G.F.,Nonlinear Effects in the Dynamics of Car Following,Operations Research,1961,9(2):209-229.
    [58].Muramatsu M.,and Nagatani T.,Soliton and Kink Jams in Traffic Flow with Open Boundaries,Physical Review E,1999,60(1):180-187.
    [59].Nagatani T.,Density Wave in Traffic Flow,Physical Review E,2000,60(4):3564-3570.
    [60].Helbing D.,and Tilch B.,Generalized Force Model of Traffic Dynamics,Physical Review E,1998,58:133-138.
    [61].Jiang R.,Wu Q.S.,and Zhu Z.J.,Full Velocity Difference Model for a Car-following Theory,Physical Review E,2001,64:017101.
    [62].Bando M.,Hasebe K.,Nakanishi K.,and Nakayama A.,Analysis of Optimal Velocity Model with Explicit Delay,Physical Review E,1998,58(5):5429-5435.
    [63].Del Castillo J.M.,and Benitez F.G.,On the Functional Form of the Speed-density Relationship-Ⅰ:General Theory;Ⅱ:Empirical investigation,Transportation Research Part B,1995,29(5):272-389,391-406.
    [64].薛郁,董力耘,袁以武,戴世强,考虑车辆相对运动速度的交通流演化过程的数 2002,51(3):492-495.
    [65] . Xue Y., Dong, L.Y., and Dai S.Q., The Effect of the Relative Velocity on Traffic Flow, Communications in Theoretical Physics, 2002,38(2):230-234.
    [66] . Dong L.Y., and Meng Q.X., Effect of the Relative Velocity on the Optimal Velocity Model, Journal of Shanghai University (English Edition), 2005,9 (4):283-285.
    [67] . Treibe M., Hennecke A., and Helbing D., Congested Traffic States in Empirical Observations and Microscopic Simulations, Physical Review E, 2000,62(2): 1805-1824.
    [68] . Ge H.X., Dai S.Q., Dong L.Y., and Xue Y., Stabilization Effect of Traffic Flow on an Extended Car-following Model Based on an Intelligent Transportation System Application, Physical Review E, 2004, 70(6):066134.
    [69] . Li Z.P., and Liu Y.C., Analysis of the Stability and Density Waves of Traffic Flow Model in an ITS Environment, The European Physical Journal B, 2006, 53(3):367-374.
    [70] . Hasebe K., Nakayama A., and Sugiyama Y., Dynamical Model of a Cooperative Driving System for Freeway Traffic, Physical Review E, 2003,68(2):026102.
    [71]. Ge H.X., Zhu H.B., and Dai S.Q., Effect of Looking Backward on Traffic Flow in a Cooperative Driving Car Following Model, The European Physical Journal B, 2007, 54(4):503-507.
    [72] . Mason A.D., and Woods A.W., Car-following Model of Multispecies Systems of Road Traffic, Physical Review E, 1997,55 (3):2203-2214.
    [73] . Tang T. Q., Huang H. J., and Gao Z. Y., Stability of the Car-following Model on Two Lanes, Physical Review E, 2005, 72:066124.
    [74] . Davis L.C., Multilane Simulations of Traffic Phases, Physical Review E, 2004,69(1): 016108.
    [75] . Sasaki M., and Nagatani T., Transition and Saturation of Traffic Flow Controlled by Traffic Lights, Physica A, 2003,325:531-546.
    [76] . Nagai R., Hanaura H., Tanaka K., and Nagatani T., Discontinuity at Edge of Traffic Jam Induced by Slowdown, Physica A, 2006,364:464-472.
    [77].Hanaura H.,Nagatani T.,and Tanaka K.,Jam Formation in Traffic Flow on a Highway with Some Slowdown Sections,Physica A,2007,374:419-430.
    [78].Masukura S.,Nagatani T.,Tanaka K.,and Hanaura H.,Theory and Simulation for Jamming Transitions Induced by a Slow Vehicle in Traffic Flow,Physica A,2007,379:263-273.
    [79].Kurata S.,and Nagatani T.,Spatio-temporal Dynamics of Jams in Two-lane Traffic Flow with a Blockage,Physica A,2003,318:537-550.
    [80].Nagai R.,Nagatani T.,and Taniguchi N.,Traffic States and Jamming Transitions Induced by a Bus in Two-lane Traffic Flow,Physica A,2005,350:548-562.
    [81].Jiang R.,and Wu Q.S.,The Night Driving Behavior in a Car-following Model,Physica A,2007,375:297-306.
    [82].Chopard B.,and Droz M.,Cellular Automata Modelling of Physical Systems,祝玉学,赵学龙(译),物理系统的元胞自动机模拟,北京:清华大学出版社,2003.
    [83].贾斌,高自友,李克平,李新刚著,基于元胞自动机的交通系统建模与模拟,北京:科学出版社,2007.
    [84].Cremer M.,and Ludwig J.,A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations,Mathematics and Computers in Simulation,1986,28:297-303.
    [85].贾斌,交通瓶颈处车流复杂动态特性的元胞自动机模拟,博士学位论文,合肥:中国科技大学,2003.
    [86].Maerivoet S.,and Moor B.D.,Cellular Automata Models of Road Traffic,Physics Reports,2005,419:1-64.
    [87].Wolfram S.,Theory and Application of Cellular Automata,World Scientific,Singapore,1986.
    [88].Nagel K.,and Herrmann H.J.,Deterministic Models for Traffic Jams,Physica A,1993,199(2):254-269.
    [89].Nagel K.,and Schreckenberg M.,A Cellular Automaton Model for Freeway Traffic,Journal of Physics I(France),1992,2(12):2221-2229.
    [90].Nagel K.,and Paczuski M.,Emergent Traffic Jams,Physical Review E,1995, 51(4):2909-2918.
    [91].Takayasu M,and Takayasu H.,l/f Noise in a Traffic Model,Fractals,1993,1:860-866.
    [92].Benjamin S.C.,Johnson N.F.,and Hui P.M.,Cellular Automaton Models of Traffic Flow Along a Highway Containing a Junction,Journal of Physics A,1996,29:3119-3127.
    [93].Barlovic R.,Santen L.,Schadschneider A,and Schreckenberg M.,Metastable States in Cellular Automata for Traffic Flow,The European Physical Journal B,1998,5(3):793-800.
    [94].Li X.B.,Wu Q.S.,and Jiang R.,Cellular Automaton Model Considering the Velocity Effect of a Car on the Successive Car,Physical Review E,2001,64(6):066128.
    [95].Knospe W.,Santen L.,Schadschneider A.,and Schreckenberg M.,Towards a Realistic Microscopic Description of Highway Traffic,Journal of Physics A,2000,33:L477-L485.
    [96].Jiang R.,and Wu Q.S.,Cellular Automata Models for Synchronized Traffic Flow,Journal of Physics A,2003,36(2):381-390.
    [97].Kerner B.S.,Klenov S.L.,and Wolf D.E.,Cellular Automata Approach to Three-phase Traffic Theory,2002,35(47):9971-10013.
    [98].Lee H.K,Barlovic R.,Schreckenberg M.,and Kim D.,Mechanical Restriction Versus Human Overreaction Triggering Congested Traffic States,Physical Review Letters,2004,92(23):238702.
    [99].Emmerich H.,and Rank E.,An Improved Cellular Automaton Model for Traffic Flow Simulation,Physica A,1997,234(3-4):676-686.
    [100].Dong L.Y.,Xue Y.and Dai S.Q.,One.dimensional Cellular Automaton Model of Traffic Flow Based on Car-following Idea,Applied Mathematics and Mechanics,2002,23(4):331-337.
    [101].Li K.P.,and Gao Z.Y.,Cellular Automata Model of Traffic Flow Based on the Car-following Model,Chinese Physics Letters,2004,21(11):2120-2123.
    [102].雷丽,薛郁,戴世强,交通流的一维元胞自动机敏感驾驶模型,物理学报,2003,52(9): 2121-2126.
    [103].Ez-Zahraouya H.,Jetto K.,and Benyoussef A.,The Effect of Mixture Lengths of Vehicles on the Traffic Flow Behaviour in One-dimensional Cellular Automaton,The European Physical Journal B,2004,40(1):111-117.
    [104].Ebersbach A.,Schneider J.,Morgenstem I.,and Hammwohner R.,The Influence of Trucks on Traffic Flow on the Nagel - Schreckenberg Model,International Journal of Modern Physics C,2000,11(4):837-842.
    [105].邝华,孔令江,刘慕仁,多速混合车辆单车道元胞自动机交通流模型的研究,物理学报,2004,53(9):2894-2898.
    [106].Zhao X.M.,Jia B.,and Gao Z.Y.,A New Approach for Modelling Mixed Traffic Flow with Motorized Vehicles and Non-motorized Vehicles Based on Cellular Automaton Model.arXiv:0707.1169v1[physics.sot-ph](http://arxiv.org/abs/0707.1169).
    [107].Li X.G.,Jia B.,Gao Z.Y.,and Jiang R.,A Realistic Two-lane Cellular Automata Traffic Model Considering Aggressive Lane-changing Behavior of Fast Vehicle.Physica A,2006,367:479-486
    [108].葛红霞,祝会兵,戴世强,智能交通系统的元胞自动机交通流模型,物理学报,2005,54(10):4621-4626.
    [109].Meng J.P.,Dai S.Q.,Dong L.Y.,and Zhang J.F.,Cellular Automaton Model for Mixed Traffic Flow with Motorcycles,Physica A,2007,380:470-480.
    [110].Krug J.,and Ferrari P.A.,Phase Transition in Driven Diffusive Systems with Random Rates,Journal of Physics A,1996,29:L465-471.
    [111].Li X.G.,Gao Z.Y.,Jia B.,and Jiang R.,Segregation Effect in Symmetric Cellular Automata Model for Two-lane Mixed Traffic,The European Physical Journal B,2006,54:385-391.
    [112].Fukui M.,and Ishibashi Y.,Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed,Journal of the Physics Society of Japan,1996,65(6):1868-1870.
    [113].Wang B.H.,Wang L.,and Hui P.M.,Analytical Results for the Steady State of Traffic Flow Models with Stochastic Delay, Physical Review E, 1998, 58 (3):2876-2882.
    [114] . Schadschneider A, and Schreckenberg M, Cellular Automation Models and Traffic Flow, Journal of Physics A, 1993,26(15): L679-L683.
    [115] . Schadschneider A, and Schreckenberg M, Car-oriented mean-field theory for traffic flow models, Journal of Physics A, 1997, 30(4): L69-L75.
    [116] . Fu C.J., Chuan Y., Zhou T., Hu B., Wang B.H., and Gao K., Analytical Studies on a Modified Nagel-Schreckenberg Model with the Fukui- Ishibashi Acceleration Rule, Chaos, Solitons and Fractals, 2007,31(3): 772-776.
    [117] .Nagatani T., Self-organization and Phase Transition in Traffic-Flow Model of a Two-lane Roadway, Journal of Physics A, 1993,26(17): L781-L787.
    [118] . Nagatani T., Dynamical Jamming Transition Induced by a Car Accident in Traffic-Flow Model of a Two-lane Roadway, Physica A, 1994,202:449-458.
    [119] . Rickert M., Nagel K., Schreckenberg M., and Latour A., Two Lane Traffic Simulations Using Cellular Automata, Physica A, 1996,231:534-550.
    [120] .Chowdhury D, Wolf D.E., and Schreckenberg M, Particle Hopping Models for Two-lane Traffic with Two Kinds of Vehicles: Effects of Lane-changing Rules, Physica A, 1997,235:417-439.
    [121] . Nagel K., Wolf D.E., Wagner P., and Simon P., Two-lane Traffic Rules for Cellular Automata: A Systematic Approach, Physical Review E, 1998, 58 (2): 1425-1437.
    [122] . Knospe W., Santen l., Schadschneider A., and Schreckenberg M., Disorder Effects in Cellular Automata for Two-lane Traffic, Physica A, 1999, 265: 614-633.
    [123] . Knospe W., Santen l., Schadschneider A., and Schreckenberg M, A Realistic Two-lane Traffic Model for Highway Traffic, Journal of Physics A, 2002, 35 (15):3369-3388.
    [124] .Jia B, Jiang R., Wu Q.S. and Hu M.B., Honk Effect in the Two-lane Cellular Automaton Model for Traffic Flow, Physica A, 2005,348:544-552.
    [125] .Kong X.J., Gao Z.Y., and Li. K.P., A Two-lane Cellular Automata Model with Influence of Next-nearest Neighbor Vehicle, Communications Theory and Physics, 2006,45:657-662.
    [126].Kerner B.S.,and Klenov S.L.,Spatial-temporal Patterns in Heterogeneous Traffic Flow with a Variety of Driver Behavioural Characteristics and Vehicle Parameters,Journal of Physics A,2004,37,8753-8788.
    [127].Jia B,Jiang R.,Gao Z.Y.,and Zhao X.M.,The Effect of Mixed Vehicles on Traffic Flow in Two Lane Cellular Automata Model.International Journal of Modern Physics C,2005,16(10):1617-1626.
    [128].Nagel K.,Wolf D.E.,Wagner P.,and Simon P.,Two-lane Traffic Rules for Cellular Automata:A Systematic Approach.Physical Review E,1998,58:1425-1437.
    [129].Knospe W.,Santen L.,Schadschneider A.,and Schreckenberg M.,Disorder Effects in Cellular Automata for Two-lane Traffic,Physica A,1999,265:614-633.
    [130].Pedersen M.M.,and Ruhoff P.T.,Entry Ramps in the Nagel-Schreckenberg Model,Physical Review E,2002,65(5):056705.
    [131].Daoudia A.K.,and Moussa N.,Numerical Simulations of a Three-Lane Traffic Model Using Cellular Automata,Chinese Journal of Physics,2003,41(6):671-681.
    [132].Cuesta J.A.,Martinez F.C.,Molera J.M.,and Sanchez A.,Phase Transitions in Two-dimensional Traffic-flow Models,Physical Review E,1993,48(6):R4175-R4178.
    [133].Nagatani T.,Self-organization in 2d Traffic Flow Model with Jam-avoiding Drive,Journal of the Physics Society of Japan,1995,64(4):1421-1430.
    [134].Gu G.Q.,Chung K.H.,and Hui P.M.,Two-dimensional Traffic Flow Problems in Inhomogeneous Lattices,Physica A,1995,217(3-4):339-347.
    [135].Molera J.M.,Martinez F.C.,Cuesta J.A.and Brito R.,Theoretical Approach to Two-dimensional Traffic Flow Models,Physical Review E,1995,51(1):175-187.
    [136].Ishibashi Y.,and Fukui M.,Temporal Variations of Traffic Flow in the Biham-Middleton-Levine Model,Journal of the Physics Society of Japan,1994,63:2882-2885.
    [137].Branston D.,Models of Single Lane Time Headway Distributions,Transportation Science,1976,10(2):125-148.
    [138].王殿海著,交通流理论,人民交通出版社,2002.
    [139].Mahnke R.,Kaupuzs J.,and Lubashevsky I.,Probabilistic Description of Traffic Flow,Physics Reports,2005,408:1-130.
    [140].Mahnke R.,and Pieret N.,Stochastic Master-equation Approach to Aggregation in Freeway Traffic,Physical Review E,1997,56(3):2666-2671.
    [141].Mahnke R.,and Kaupuzs J.,Stochastic Theory of Freeway Traffic,Physical Review E,1999,59(1):117-125.
    [142].Kuhne R.,Mahnke R.,Lubashevsky I.,and Kaupuzs J.,Probabilistic Description of Traffic Breakdown,Physical Review E,2002,65:066125.
    [143].Kuhne R.,Lubashevsky I.,Mahnke R.,and Kaupuzs J.,Probabilistic Description of Traffic Breakdown Caused by On-ramp Flow,2004,cond-mat/0405163.
    [144].Mahnke R.,and Kaupuzs J.,A Stochastic Multi-cluster Model of Freeway,The European Physical Journal B,2000,14,793-800.
    [145].Kerner B.S.,and Klenov S.L.,Probabilistic Breakdown Phenomenon at On-ramp Bottlenecks in Three-phase Traffic Theory:Congestion Nucleation in Spatially Non-homogeneous Traffic,Physica A,2006,364:473-492.
    [146].Prigogine I,and Herman R.,Kinetic Theory of Vehicular Traffic,American Elsevier,New York,1971.
    [147].Paveri-Fontana S.L.,On Boltzmann-like Treatments for Traffic Flow:A Critical Review of the.Basic Model and an Alternative Proposal for Dilute Traffic Analysis.Transportation Research,1975,9(4):225-235.
    [148].Helbing D.,Derivation and Empirical Validation of a Refined Traffic Flow Model,Physica A,1996,233:253-282.
    [149].Treiber M,Hennecke A,and Helbing D.,Derivation,Properties,and Simulation of a Gas-Kinetic-Based,Nonlocal Traffic Model,Physical Review E,1999,59(1):239-253.
    [150].Helbing D.,Hennecke A.,Shvetsov V,and Treiber M.,MASTER:Macroscopic Traffic Simulation Based on a Gas-Kinetic,Non-Local Traffic Model,Transportation Research Part B,2001,35(2):183-211.
    [151].Hoogendoorn S.P.,and Bovy P.H.L.,Generic Gas-kinetic Traffic Systems Modeling with Applications to Vehicular Traffic Flow,Transportation Research Part B,2001,35(4):317-336.
    [152].Meng J.P.,Qian Y.H.,Li X.L.,and Dai S.Q.,Lattice Boltzmann model for traffic flow,Physical Review E,2008,77:036108.
    [153].Meng J.P.,Qian Y.H.,and Dai S.Q.,Modeling of Urban Traffic Networks with Lattice Boltzmann Model,Europhysics Letters,2008,81:44003.
    [154].Erlingsson S.,Jonsdottir A.M.,and Thorsteinsson T.,Traffic Stream Modelling of Road Facilities,Transport Research Arena Europe,2006.
    [155].Wu N.,A New Approach for Modeling of Fundamental Diagrams,Transportation Research Part A,2002,36(10):867-884.
    [156].Rakha H.,and Crowther B.,Comparison of Greenshields,Pipes,and Van Aerde Car-following and Traffic Stream Models,Transportation Research Record,2002(1802):248-262.
    [157].Knospe W.,Santen L.,Schadschneider A.,and Schreckenberg M.,Empirical Test for Cellular Automaton Models of Traffic Flow,Physical Review E,2004,70:016115.
    [158].Wilson R.E.,Mechanisms for Spatio-temporal Pattern Formation in Highway Traffic Models,philosophical Transactions of the Royal Society A,2008,366:2017-2032.
    [159].Wagner P.,Traffic Simulation Using Cellular Automata:Comparison with Reality,In:Traffic and Granular Flow,edited by Wolf D.E.,Schreckenberg M.,Bachem A.,World Scientific,Singapore,1996,139.
    [160].Schadschneider A.,Cellular Automata Models of Highway Traffic,Physica A,2006,372(1):142-150.
    [161].Kerner B.S.,The Physics of Traffic,Springer,Berlin,New York,2004
    [162].Kerner B.S.,Empirical Macroscopic Features of Spatial-temporal Traffic Patterns at Highway Bottlenecks,Physical Review E,2002,65:046138.
    [163].Kerner B.S.,Experimental Features of Self-organization in Traffic Flow,Physical Review Letters,1998,81:3797-3800.
    [164].Mochon S.,An Analysis of the Traffic on Highways with Changing Surface Conditions, Mathematical Modelling,1987,9:1-11.
    [165].Burger R.,and Karlsen K.M.,On a Diffusively Corrected Kinematic-wave Traffic Flow Model with Changing Road Surface Conditions,Mathematical Models and Methods in Applied Sciences,2003,13:1767-1800.
    [166].Li T.,Well-posedness Theory of an Inhomogeneous Traffic Flow Model,Discrete and Continuous Dynamical Systems - Series B(DCDS-B),2002,2(3):401-414.
    [167].Zhang P.,and Liu R.X.,Hyperbolic Conservation Laws with Space-dependent Flux:Ⅰ.Characteristics Theory and Riemann Problem,Journal of Computational and Applied Mathematics,2003,156:1-21.
    [168].Zhang P.,and Liu R.X.,Hyperbolic Conservation Laws with Space-dependent Flux:Ⅱ.General Study of Numerical Fluxes,Journal of Computational and Applied Mathematics,2005,176:105-129.
    [169].Zhang P.,Liu R.X.,and Wong S.C.,High-resolution Numerical Approximation of Traffic Flow Problems with Variable Lanes and Free-flow Velocities,Physical Review E,2005,71:056704.
    [170].Burger R.,Garcia A.,Karlsen K.H.,and Towers J.D.,Difference Schemes,Entropy Solutions,and Speedup Impulse for an Inhomogeneous Kinematic Traffic Flow Model,Networks and Heterogeneous Media,2008,3(1):1-41.
    [171].Berg p.,and Findlay J.,Linking Cellular Automata and Optimal-Velocity Models Through Wave Selections at Bottlenecks,in:Traffic and Granular Flow '05,Schadschneider A.,Poschel T.,Kuhne R.,Schreckenberg M.,and Wolf D.E.(Eds.),Springer Berlin Heidelberg,2007,515-520.
    [172].Nishimura Y.,Cheon T.,and Seba P.,Metastable Congested States in Multisegment Traffic Cellular Automaton,Journal of the Physical Society of Japan,2006,75:014801.
    [173].Meng J.P.,and Zhang J.F,The Effect of Deceleration Strips upon Traffic Flow,Modern Physics Letters B,2006,20(14):835-841
    [174].杨先清,张伟,仇康,孙大鹏,赵跃民,速度限制对交通流的影响,计算物理,2007,24(4):499-504.
    [175].交通安全http://www.zjemw.com/safeDriving/ShowSafeDriving.asp?DocID=Y2006M01D24H16m18s00,2006-01-24.
    [176].周荣贵,江立生,孙家风,公路纵坡坡度和坡长限制指标的确定公路交通科技,2004,21(7):1-4.
    [177].乔建刚,基于驾驶员因素的山区双车道公路关键参数研究,北京工业大学博士学位论文,2004.
    [178].Ward J,Wilson R.E.,and Berg P.,Multiscale Analysis of a Spatially Heterogeneous Microscopic Traffic Model,Physica D,2007,236:1-12.
    [179].Ward J,Wilson R.E.,and Berg P.,Wave Selection Problems in the Presence of a Bottleneck,in:Traffic and Granular Flow '05,Schadschneider A.,Poschel T.,Kuhne R.,Schreckenberg M.,and WolfD.E.(Eds.),Springer Berlin Heidelberg,2007,565-575.
    [180].杜英才,蒋鹭鸣,李业辉,罗汉洞坡事故“黑点”治理记实,道路交通管理,2004,(7):6-7.
    [181].Ge H.X.,Dai S.Q.,Xue Y.,and Dong L.Y.,Stabilization Analysis and Modified Korteweg-de Vries Equation in a Cooperative Driving System,Physical Review E,2005,71:066119.
    [182].Nakayama A.,Sugiyama Y.,and Hasebe K.,Effect of Looking at the Car That Follows in an Optimal Velocity Model of Traffic Flow,Physical Review E,2001,65(1):016112.
    [183].Li T.,Ge H.X.,and Feng S.W.,An Extended Car Following Model for ITS and its Kink-antikink Solution,Proceedings of the 6th International Conference of Transportation Professionals,June 23-25,2006,Dalian,China(赵胜川等主编,交通与物流--第六届交通运输领域国际学术会议论文集,大连,2006),473-483.
    [184].Nagatani T.,Thermodynamic Theory for the Jamming Transition in Traffic Flow,Physical Review E,1998,58(4):4271-4276.
    [185].Nagatani T.,Multiple Jamming Transitions in Traffic Flow,Physica A,2001,299:501-511.
    [186].Nagatani T.,TDGL and MKdV Equations for Jamming Transition in the Lattice Models of Traffic,Physica A,1999,264:581-592.
    [187].刘富利,消除节点,根治拥堵--创造性的思路,巧妙的设计方案,http://liufuli.bokee.com/214795.html,2004-9-10.
    [188].Waldeer K.,The Direct Simulation Monte Carlo Method Applied to a Boltzmann-like Vehicular Traffic Flow Model,Computer Physics Communications,2003,156:1-12.
    [189].宋涛,城市地面-高架路交通复杂网络的超越图模型及动力学模拟,上海大学硕士学位论文,2006.
    [190].孙连菊,交通系统中的混沌现象研究进展和展望,中国科技论文在线,http://www.paper.edu.cn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700