用户名: 密码: 验证码:
射流流量计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射流流量计利用附壁效应附加反馈通道产生流体振动,在较宽流速范围内,振荡频率与流量呈线性关系。射流流量计因其理论计量下限极低而具有广泛的应用前景,但现有的射流流量计在工程应用中表现出一些不足:计量下限比理论上高得多;信噪比较低;缺少用于指导结构参数设计和性能优化的设计准则。这些不足限制了它的应用范围。
     本论文针对现有射流流量计计量下限高、信噪比较低等问题,对射流交替诱发流体振动进行了基础理论及设计方法研究,设计出具有垂直引流流道及双出口结构的射流流量计,并在此基础上完成了射流流量计的样机研制和性能试验,建立了射流流量计结构形式、尺寸参数及性能优化设计准则。
     论文提出了以垂直引流流道结构提高射流流量计抗干扰性能的设计方法,该方法将流体振动平面和管道轴线置于不同平面内,以降低上游管道内流量压力脉动对射流振荡器内部流场的干扰,使流体能够在低流速下产生稳定的射流附壁和交替振荡,提高了抗干扰性能,降低了射流流量计的计量下限;提出了双出口结构的设计方法,提高了射流振荡器的切换性能和附壁稳定性,增强了反馈通道内的压力信号,在降低计量下限的同时提高信噪比。
     第1章以大量的国内外文献调研为基础,介绍了射流理论的概况、射流技术的控制特性和优缺点、流量计的发展历史、分类和现状,在此基础上介绍了射流流量计的背景、特点及应用,重点介绍了了射流流量计的性能优势和工程应用中所表现出来的不足。为了解决射流流量计所存在的问题,提出了本课题针对射流流量计关键技术的研究。同时介绍了流动数值计算的背景、特点以及在流体力学理论研究和工程设计的应用。最后,提出了本课题的方案背景、研究意义和研究的主要内容。
     第2章对射流理论进行了深入而系统的研究。针对自由淹没平面湍射流,采用k-ε湍流模型对流动进行数值计算与模拟,分析了射流内部流场的分布特征;采用大涡模型对射流中的拟序结构进行了研究,模拟了射流紊动结构中的大旋涡结构和旋涡配对现象,分析了这些旋涡的产生、合并和消亡过程对射流沿轴线方向发展的影响,揭示了射流的本质机理。
     第3章对射流的附壁效应进行了深入的研究。建立了射流附壁的数学模型,研究了碰撞角度及附壁点位置与几何尺寸及物理参数的关系,控制喷嘴的尺寸、控制流的流量及压力对射流附壁的影响;采用流动数值计算的方法,研究了射流附壁和切换过程中流场的分布变化情况,研究了分流劈对流量恢复、压力恢复、附壁稳定性及切换灵敏性的影响。
     第4章对射流流量计的结构设计进行了研究,包括射流振荡器的设计准则,及与之相匹配的内部流道结构设计方案,其中针对现下射流流量计所表现出来的性能不足,提出了采用垂直引流流道及双出口结构的设计方式。根据设计准则,建立了用于数值研究和实验研究的射流流量计结构模型,分析研究了射流流量计中斯特劳哈数的影响因素和压力损失影响因素等。
     第5章建立了用于射流振荡器流动数值计算的控制方程和仿真模型,对其内部流场进行了数值计算,模拟了射流附壁与交替切换振荡现象,研究了流场分布变化规律,揭示了射流交替诱发流体振动的机理。在此基础上研究了射流振荡器结构参数对射流振荡器性能及斯特劳哈数的影响,进而对射流流量计性能的影响。建立了射流振荡器结构尺寸参数优化设计准则。
     第6章对射流流量计进行了系统的实验研究。建立了射流流量计实验研究平台,依据射流流量计设计准则设计了射流流量计样机,对其进行了可行性实验研究,验证了射流交替诱发流体振动的可行性,以及流体流速与振动频率的线性关系,研究了压力损失与流速之间的关系。对射流流量计样机进行了优化设计实验,研究了结构参数对射流流量计性能的影响。比较了本论文所设计的射流流量计与普通射流流量计的性能差异。
The fluidic flowmeter with feedback passages induces fluid vibration by Coanda effect. The frequency of the the vibration is proportional with the flow rate to a large extent. The fluidic flowmeter has a favourable future because of its extremely low lower limit in theory, however the present fluidic flowmeter has some shortcomings in engineering applications: lower limit much higher than theoretical; low signal to noise ratio; lack of criteria for structural parameters design and performance optimization, which limited the popularization of this flowmeter.
     In this dissertation, basic theory and design method of hydrodynamic vibration induced by jet alternating are researched to counter the defects of high lower limit and low signal to noise ratio in fluidic flowmeter. Fluidic flowmeter with vertical inlet passage and double outlets structure is schemed out, prototype is developed and performance test is carried out. Criteria for structural parameters design and performance optimization of the fluidic flowmeter are established.
     Design method of improving the anti-interference ability of fluidic flowmeter by vertical inlet passage structure is schemed out, which makes the fluid vibraion plane depart from the pipe axis to reduce the interference of the upstream flow pulse to the flow field in fluidic oscillator, therefore induces stable jet attachment and alternate vibration even at low flow rate, improves the anti-interference ability ,decreases the lower limit of the fluidic flowmeter; the double outlets design method is schemed out, which improves the performance of attachment and switching in fluidic flowmeter, strengthen the pressure in the feedback passage, therefore decreases the lower limit and improves the signal to noise ratio.
     The first chapter of this dissertation generally discusses the profile of fluidic theory, the control characteristics, strongpoints and flaws of fluidic technique, the development, classification and present situation of flowmeter, on the basis of study on lots of domestic and foreign literature and reference, and then the background, characteristics and applications of fluidic flowmeter are generally introduced, the advantages and shortcomings in engineering applications of fluidic flowmeter are emphasized. Research on key technologies in fluidic flowmeter is carried out to solve the flaws. At the same time the background, characteristics and applications in theoretical study and engineering design of fluid numerical simulation are introduced. At the end of this chapter, the project background, significance of the research and main research content of the subject is illustrated.
     In the second chapter, fluidic theory is studied systematically. Aimed at free submerged two-dimensional turbulent jet, the k-εturbulent model is utilized to calculate and simulate the flow field numerically; distribution characteristics in fluidic area are researched. The LES model is used to study the coherent structure in the jet flow, the large eddy structure and the phenomenon of vortex pairing are simulated, the influence of the generation, merge and elimination of these vortexes on the development of the jet flow along the axis are discussed, which reveal the mechanism of jet flow.
     In the third chapter, Coanda effect of jet is studied systematically. Mathematic model of jet attachment is established, the relationship between hit angle or attachment point and geometry or physical parameter is discussed, the influence of the width of control nozzle and the influence of the flow rate and pressure of control nozzle on jet attachment are studied. Then the flow field distribution during jet attachment and switching is researched through fluid numerical simulation, the influence of stream splitter on flow recovery, pressure recovery, attachment stability and switching sensitivity are also discussed.
     In the fourth chapter, the structure design of fluidic flowmeter is discussed, including the design criterion of fluidic oscillator and the design scheme of matching internal passage. Vertical inlet passage and double outlets structure design of fluidic flowmeter is schemed out to solve the flaws existing in the present fluidic flowmeter. According to the design criterion, the fluidic flowmeter structure model used in numerical and experimental research is established, the influence factors of Strouhal number and pressure loss in fluidic flowmeter are discussed.
     In the fifth chapter, the control equation and simulation model for fluid numerical simulation of fluidic oscillator are established, the internal flow field are calculated numerically, and the phenomena of jet attachment and switching are simulated, the trend of the flow fild distribution is discussed, the mechanism responsible for the fulid vibration induced by jet alternating is revealed. And then the influence of the structural parameter of fluidic oscillator on its performance and Strouhal number are studied, as well as the influence on the performance of fluidic flowmeter.
     In the sixth chapter, the experimental research on fluid flowmeter is carried out. The experimental bench for fluid flowmeter is established, and the prototype of fluidic flowmeter based on the design criterion is produced. The feasibility experiment is carried out to verify the feasibility of the fluid vibration induced by jet alternating, and the linear relation between the flow rate and the frequency of fluid vibration, the relationship between the pressure loss and flow rate is also discussed. Optimization design experiments on the prototype are carried out, the influence of the structural parameter on the performance of fluidic flowmeter are studied. At last, the fluidic flowmeter proposed in this dissertation is compared with the general present fluidic flowmeter in performance.
引文
[1]高学平.高等流体力学[M].天津:天津大学出版社,2005
    [2]罗惕乾.流体力学[M].北京:机械工业出版社,2003
    [3]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986
    [4]董志勇.射流力学[M].北京:科学出版社,2005
    [5]余常昭.紊动射流[M].北京:高等教育出版社,1993
    [6]CHARLES K T.Fluidics-Past and Future Expectations[J].Advances in Instrumentation,1970(25):29-34
    [7]国营红湘江机器厂.射流元件及其应用[M].湖南:湖南人民出版社,1971
    [8]黎惠霖,阮伯如.射流技术及其应用[M].北京:机械工业出版社,1977
    [9]上海交通大学.射流技术基础[M].北京:国防工业出版社,1972
    [10]周云波,林加瑞.射流流量计的原理及发展[J].中国仪器仪表,1997(1):3-5
    [11]苏彦勋,李金海.流量计量[M].北京:中国计量出版社,1991
    [12]Svasek P,Svasek E,Lendl B.Fabrication of miniaturized fluidic devices using SU-8 based lithography and low temperature wafer bonding[J].Sensors and Actuators A,2004,115(2-3):591-599
    [13]Tseng Fan-Gang,Lin Kung-Hua,Hsu Hui-Ting.A surface-tension-driven fluidic network for precise enzyme batch-dispensing and glucose detection[J].Sensors and Actuators A,2004,111(1):107-117
    [14]Merkel Tobias,Pagel Lienhard,Glock Hans-Walter.Electric fields in fluidic channels and sensor applications with capacitance[J].Sensors and Actuators A,2000,80(1):1-7
    [15](美)本尼迪克特R P.温度、压力、流量测量基础[M].周志烈等译.北京:国防工业出版社,1985
    [16](美)米勒R W.流量测量工程手册[M].孙延祚译.北京:机械工业出版社,1990
    [17]Er Meng Joo,Lua Aik Chong,Kay Jimmy Han Leong.Design and development of a low-cost digital display for water flow rate measurements[J].Microprocessors and Microsystems,2001,25(8):359-368
    [18]Chua L P,Yu S C M,Li H-S.Flow Visualization and Preliminary Measurements of a Confined Jet with and without Target[J].International Communications in Heat and Mass Transfer,2000,27(2):191-200
    [19]周作元,李荣先.温度与流体参数测量基础[M].北京:清华大学出版社,1986
    [20]苏彦勋、李金海.流量计量[M].北京:中国计量出版社,1991
    [21]Kohl M.Fluidic actuation by electrorheological microdevices[J].Mechatronics,2000,10(4-5):583-594
    [22]Melin Jessica,Roxhed Niclas,Gimenez Guillem.A liquid-triggered liquid microvalve for on-chip flow control[J].Sensors and Actuators B,2004,100(3):475-480
    [23]苏文.浅谈流量计的发展及现状[J].中国仪器仪表,2002(6):1-4
    [24]肖素琴,韩厚义.质量流量计[M].北京:中国石化出版社,1999
    [25]赵汉臣,王喆用,佘文晟.用途广泛的射流流量计[J].自动化仪表,2001,22(9):20-23
    [26]ALAIN T,DANIEL M.Stability analysis of the mechanism of jet attachment to walls[J].International Journal of Heat and Mass Transfer,2002,45(13):2 769-2775
    [27]SONG H B,YOON S H,LEE D H.Flow and heat transfer characteristics of a two-dimensional oblique wall attaching offset jet[J].International Journal of Heat and Mass Transfer,2000,43(13):2 395-2 404.
    [28]西门子慕尔过程自动化公司.西门子慕尔射流流量计[Z].上海:西门子(中国)有限公司,1999
    [29]MycroSENSOR公司.140 Fluidic Flowmeter[Z].美国:MycroSENSOR Technologies,2002
    [30]MycroSENSOR公司.141 Fluidic Flowmeter[Z].美国:MycroSENSOR Technologies,2002
    [31]Gould Paula.Microfluidics realizes potential[J].Materials Today,2004,7(7):48-52
    [32]Gray B L,Jaeggi D,Mourlas N J.Novel interconnection technologies for integrated microfluidic systems[J].Sensors and Actuators A,1999,77(1):57-65
    [33]Andersson Helene,Griss Patrick,Stemme G(o|¨)ran.Expandable microspheres-surface immobilization techniques[J].Sensors and Actuators B,2002,84(2-3):290-295
    [34]景思睿,张鸣远.流体力学[M].西安:西安交通大学出版社,2001
    [35]于晓洋,王雁,郭华,等.射流流量传感器原理与设计[J].哈尔滨理工大学学报,1997,2(4):34-36
    [36]PARKINSON G J.射流流量传感器在工业上的应用[J].国外计量,1991(5):33-36
    [37]Tricek Zdenek,Peszynski Kazimierz,Hosek Jan.Aerodynamic and mass transfer characteristics of an annular bistable impinging jet with a fluidic flip-flop control[J].International Journal of Heat and Mass Transfer,2003,46(7):1 265-1278
    [38]Scotford I M,Cumby T R,Inskip P F.AE-Automation and Emerging Technologies:Improving the Control and Accuracy of Slurry Spreaders[J].Journal of Agricultural Engineering Research,2001,79(2):139-149
    [39]Huber R,Conrad J,Schmitt L.Fabrication of multilevel silicon structures by anisotropic deep silicon etching[J].Microelectronic Engineering,2003(67-78):410-416
    [40]蔡武昌,应启戛.新型流量检测仪表[M].北京:化学工业出版社,2005
    [41]赵汉臣.插入式射流流速计.工业安全与防尘[J],2000(5):25-27
    [42]Wego Ansgar,Pagel Lienhard.A self-filling micropump based on PCB technology[J].Sensors and Actuators A,2001,88(3):220-226
    [43]Burbaum Jonathan J.Miniaturization technologies in HTS:how fast,how small,how soon?[J].Drug Discovery Today,1998,3(7):313-322
    [44]Drzewiecki Tadeusz M,Macia Narciso F.Fluidic technology:adding control,computation,and sensing capability to microfluidics[J].Proc SPIE Int Soc Opt,2003(5 116):334-347
    [45]章本照,印建安,张宏基.流体力学数值方法[M].北京:机械工业出版社,2003
    [46]祁惠峰,赵静野.新型结构的射流流量计的实验研究[J].计量技术,2004(8):3-4
    [47]徐伟.浅谈流量计的选型和实用[J].中国仪器仪表,1998(4):26-29
    [48]杨军.双钝体涡街流量计的试验研究[D].杭州:浙江大学,2003
    [49](日)原田正一,尾崎省太郎.射流工程学[M].陆润林,郭秉荣译.北京:科学出版社,1977
    [50]Turkowski M.Progress towards the optimisation of a mechanical oscillator flowmeter[J].Flow Measurement and Instrumentation,2003,14(1-2):13-21
    [51]Lua Aik Chong,Zheng Zhensheng.Numerical simulations and experimental studies on a target fluidic flowmeter[J].Flow Measurement and Instrumentation,2003,14(1-2):43-49
    [52]Wang H,Priestman G H,Beck S B M.Development of fluidic flowmeters for monitoring crude oil production[J].Flow Measurement and Instrumentation,1996,7(2):91-98
    [53]Mansy Hussein,Williams David R.Flow meter based on the trapped vortex pair fluidic oscillator[J].Rev Sci Instrum,1989,60(5):935-938
    [54]Rasmussen A,Mavriplis C,Zaghloul M E.Simulation and optimization of a microfluidic flow sensor[J].Sensors and Actuators A,2001,88(2):121-132
    [55]蔡武昌.流量测量仪表现状和发展动向[J].自动化仪表,1996,17(2):1-5
    [56]蔡武昌.测量方法和仪表选择的考虑因素[J].自动化仪表,1996,17(6):39-43
    [57]孙延祚.国际流量计量学术动态及发展趋势[J].天然气工业,2003,23(1):84-88
    [58]孙延祚.国际流量计量学术动态及发展趋势(续)[J].仪器仪表标准化与计量,2002,(4):21-25
    [59]孙延祚.国际最新流量仪表及测量方法[J].自动化与仪表,1994,9(5):4-6
    [60]蔡武昌.回顾与展望中国流量检测仪表的发展[J].航空计测技术,2003,23(3):1-5
    [61]邵朋诚.流量测量仪表的发展动态[J].工业仪表与自动化装置,1995(4):57-450
    [62]蔡武昌.流量仪表若干发展趋势和应用进展[J].中国仪器仪表,2001(2):46-48
    [63]蔡武昌.流量仪表应用开发动态[J].世界仪表与自动化,2003,7(5):12-14
    [64]邵朋诚,张金艳,王高甫.气体流量测量仪表的现状与发展[J].世界仪表与自动化,2002,6(11):24-28
    [65]于晓洋,郭华,王雁,等.射流振子式流量计[J].仪器仪表学报,1998,19(4):423-425
    [66]张大华,译.工业用射流流量传感器[J].自动化与仪器仪表,1992(4):56-61
    [67]射流技术编译组.射流系统设计手册[M].北京:国防工业出版社,1971
    [68]速度式流量计检定规程[Z],JJG 198-94.
    [69]Merkel Tobias,Graeber Michael,Pagel Lienhard.A new technology for fluidic microsystems based on PCB technology[J].Sensors and Actuators A,1999,77(2):98-105
    [70]秦绪斌.射流技术在流量测量中的应用[J].自动化仪表,1990(8):20-23
    [71]L(a|¨)ritz Christian,Pagel Lienhard.A microfluidic pH-regulation system based on printed circuit board technology[J].Sensors and Actuators A,2000,84(3):230-235
    [72]Cunningham David D.Fluidics and sample handling in clinical chemical analysis[J].Analytica Chimica Acta,2001,429(1):1-18
    [73]van der Wijngaart Wouter,Berrier Audrey,Stemme G(o|¨)ran.A micropneumatic-to-vibration energy converter concept[J].Sensors and Actuators A,2002,100(1):77-83
    [74]Ameel T A.Miniaturization technologies applied to energy systems[J].Fuel and Energy Abstracts,1997,38(5):359
    [75]Lao Alex I K,Lee Thomas M H,Hsing I-Ming.Precise temperature control of microfluidic chamber for gas and liquid phase reactions[J].Sensors and Actuators A,2000,84(1-2):11-17
    [76]H(u|¨)ller J,Pham M T,Howitz S.Thin layer copper ISE for fluidic microsystem[J].Sensors and Actuators B,2003,91(1-3):17-20
    [77]Niklaus F,Andersson H,Enoksson P.Low temperature full wafer adhesive bonding of structured wafers[J].Sensors and Actuators A,2001,92(1-3):235-241
    [78]Dewa Andrew S.Mesoscopic systems:bridging from micromachined devices to macroscopic systems[J].Mechatronics,1998,8(5):521-534
    [79]Marshall Graham,Wolcott Duane,Olson Don.Zone fluidics in flow analysis:potentialities and applications[J].Analytica Chimica Acta,2003,499(1-2):29-40
    [80]Gonzalez C,Collins S D,Smith R L.Fluidic interconnects for modular assembly of chemical Microsystems[J].Sensors and Actuators B,1998,49(1-2):40-45
    [81]Reisch Uwe,Meuer Rosemarie.CFD-simulation of the flow through a fluidic element[J].Aerospace Science and Technology,2000,4(2):111-123
    [82]Wego Ansgar,Glock Hans-Walter,Pagel Lienhard.Investigations on thermo-pneumatic volume actuators based on PCB technology[J].Sensors and Actuators A,2001,93(2):95-102
    [83]Grover William H,Skelley Alison M,Liu Chung N.Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices[J].Sensors and Actuators B,2003,89(3):315-323
    [84]Spearing S M.Materials issues in microelectromechanical systems(MEMS)[J].Acta Materialia,2000,48(1):179-196
    [85]Murakami Yuji,Idegami Kotaro,Nagai Hidenori.Application of micromachine techniques to biotechnological research[J].Materials Science and Engineering:C,2000,12(1-2):67-70
    [86]Blankenstein Gert,Larsen Ulrik Darling.Modular concept of a laboratory on a chip for chemical and biochemical analysis[J].Biosensors and Bioelectronics,1998,13(3-4):427-438
    [87]Freitag A,Vogel D,Scholz R.Microfluidic Devices Made of Glass[J].Journal of the Association for Laboratory Automation,2001,6(4):45-49
    [88]Ameel T A,Warrington R O,Wegeng R S.Miniaturization technologies applied to energy systems[J].Energy Conversion and Management,1997,38(10-13):969-982
    [89]Yamashita Keniehi,Yamagnehi Yoshiko,Miyazaki Masaya.Microfluidic system for DNA sequence detection[J].Chemical Engineering Journal,2004,101(1-3):157-161
    [90]Adams Mark L,Enzelberger Markus,Quake Stephen.Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers[J].Sensors and Actuators A,2003,104(1):25-31
    [91]Yacoub-George Erwin,Meixner Leonhard,Scheithauer Waltraud.Chemiluminescence multichannel immunosensor for biodetection[J].Analytica Chimiea Acta,2002,457(1):3-12
    [92]Griffin J L,Troke J,Walker L A.The biochemical profile of rat testicular tissue as measured by magic angle spinning 1H NMR spectroscopy[J].FEBS Letters,2000,486(3):225-229
    [93]Stark R W,Sakai Stalder M,Stemmer A.Microfluidic etching driven by capillary forces for rapid prototyping of gold structures[J].Microelectronic Engineering,2003(67-68):229-236
    [94]Kuo Tzu-Chi,Cannon Jr Donald M,Shannon Mark A.Hybrid three-dimensional nanofluidic/mierofluidic devices using molecular gates[J].Sensors and Actuators A,2003,102(3):223-233
    [95]Goldberg Howard D,Schmidt Martin A.Backside contact of sensor mierostructures[J].Flow Measurement and Instrumentation,1996,7(2):125
    [96]Sehulte Thomas H,Bardell Ron L,Weigl Bemhard H.Microfluidic technologies in clinical diagnostics[J].Clinica Chimica Acta,2002,321(1-2):1-10
    [97]Yang Zhen,Maeda Ryutaro.Socket with built-in valves for the interconnection of mierofluidie chips to macro constituents[J].Journal of Chromatography A,2003,1013(1-2):29-33
    [98]Luque Antonio,Quero Jose M,Hibert Cyrille.Integrable silicon microfluidic valve with pneumatic actuation[J].Sensors and Actuators A,2005,118(1):144-151
    [99]Liu Chang,Tsao Thomas,Lee Gwo-Bin.Out-of-plane magnetic actuators with electroplated permalloy for fluid dynamics control[J].Sensors and Actuators A,1999,78(2-3):190-197
    [100]Avontuur G C,van der Werff K.Systems reliability analysis of mechanical and hydraulic drive systems[J].Reliability Engineering and System Safety,2002,77(2):121-130
    [101]M(u|¨)ller R,Schmid P,Munding A.Elements for surface microfluidics in diamond[J].Diamond and Related Materials,2004,13(4-8):780-784
    [102] Leclerc E, Furukawa K S, Miyata F. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications[J]. Biomaterials, 2004,25(19): 4683-4690
    [103] Kupka R K, Bouamrane F, Cremers C. Microfabrication: LIGA-X and applications[J]. Applied Surface Science, 2000,164(1-4): 97-110
    [104] Erickson David, Li Dongqing. Integrated microfluidic devices[J]. Analytica ChimicaActa, 2004, 507(1): 11-26
    [105] Levin S G, Manion F M. Jet attachment distance as a function of adjacent wall offset and angle[J]. Advances in Fluidics, 1962(9): 1087-1089
    [106] Lisec T, Kreutzer M, Wagner B. A bistable pneumatic microswitch for driving fluidic components[J]. Sensors and Actuators A, 1996, 54(1-3): 746-749
    [107] Wong C Y, Lanspeary P V, Nathan G J. Phase-averaged velocity in a fluidic precessing jet nozzle and in its near external field[J]. Experimental Thermal and Fluid Science, 2003,28(1): 73
    [108] Mohammadi B, Molho J I, Santiago J G.Incomplete sensitivities for the design of minimal dispersion fluidic channels[J]. Computer Methods in Applied Mechanics and Engineering, 2003,192(37-38): 4 131-4 145
    [109] Leatzow Dan M, Dodson James M, Golden Joel P. Attachment of plastic fluidic components to glass sensing surfaces[J]. Biosensors and Bioelectronics, 2002, 17(1-2): 105-110
    [110] Gray B L, Collins S D, Smith R L. Interlocking mechanical and fluidic interconnections for microfluidic circuit boards[J]. Sensors and Actuators A, 2004, 112(1): 18-24
    [111] Boillat Marc, Tinguely Xavier, Droz Bastien. High-Speed Flow Sensing as A Diagnostic Tool in the Development of Microfluidic Systems[J]. Journal of the Association for Laboratory Automation, 2000, 5(5): 65-66
    [112] Khaled A -R A, Vafai K. Analysis of oscillatory flow disturbances and thermal characteristics inside fluidic cells due to fluid leakage and wall slip conditions [J]. Journal of Biomechanics, 2004,37(5): 721-729
    [113] Sher N C. Jet attachment and switching in bi-stable fluid amplifiers[J]. Advances in Fluidics, 1963(9): 64-69
    [114] Li Youlan, Kaler Karan V I S. Dielectrophoretic fluidic cell fractionation system[J]. Analytica Chimica Acta, 2004, 507(1): 151-161
    [115] Wuu Dong-Sing, Horng Ray-Hua, Chan Chia-Chi. Plasma-deposited amorphous silicon carbide films for micromachined fluidic channels[J]. Applied Surface Science, 1999(144-145): 708-712
    [116]Marshall Graham,Wolcott Duane,Olson Don.Zone fluidics in flow analysis:potentialities and applications[J].Analytica Chimica Acta,2003,499(1-2):29-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700