用户名: 密码: 验证码:
重磁火成岩成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重磁火成岩成像方法,是由火成岩体引起的重磁异常反演得到视密度和视磁化强度值,据此依据火成岩的密度和磁性特征圈定出火成岩体赋存的空间位置,其成像的正确与否取决于反演的精度,重磁三维视密度和视磁化强度值反演的基本思路是,将地下场源区域划分成若干小长方体单元,通过反演确定每个单元的物性。这种反演思路的主要问题是计算量巨大和多解性严重。针对这两个问题,本文提出了基于重磁场特征和综合地质、钻井信息的反演约束机制,实现了重磁异常的物性定量反演。
     如何有效地利用重磁场空间形态特征信息和已知的信息对解进行约束是提高反演可靠性的关键。本文通过研究概率成像扫描函数,引入核函数的方差函数代替概率成像扫描函数,改善了地质体的局部收敛性,从而利用概率成像技术对目标地质体进行定性约束。在定性约束的基础上,以地质、钻井、地震等资料作为定量约束,利用剖分单元和重磁场局部特征相关关系,采用多体搜索技术,确定异常源空间赋存状态,将据钻井和地震资料形成的点约束或线约束变为体约束,这样就对未知剖分网格的物性取值区间进行了约束,而能够直接确定物性值的剖分网格越多,解空间的维数也就越低,实现对解空间降维。从而建立初始定性-半定量模型,由此形成了可行的重磁物性三维定量反演算法。
     设计理论地质模型进行方法实验研究,测试了输入参数的选取原则和反演方法对各种重磁场源及其组合的反演效果。模型试验结果表明,本文方法提高了重磁成像的分辨力,使对场源体的边界刻划更为精细,对叠加异常体也能够正确归位,从而改善了重磁成像的整体效果。
     应用本研究方法对阳信洼陷地区重磁异常进行了视密度和视磁化强度反演,并依据视磁化强度和视密度的三维分布值进行了火成岩体推断解释,在阳信洼陷地区推断出火成岩21个,与钻井吻合度较高,达到了重磁成像的基本要求。
The method for gravity and magnetic imaging of igneous rock, according to the gravity and magnetic anomaly of igneous rock, virtual density and magnetization depression were inversed. From the inversion results, the spacial distribution of igneous rock was deduced. And the imaging quality depends on the accuracy of the inversion, to the existing location-field 3d inversion technique, the basic idea is to divide the underground field source area into small cuboid units, through modeling element fitting inversively to determine these units. The main inversion problems are of the great amount of calculation and multi-solution seriously. In order to solve these two problems, we use the local gravity and magnetic field feature, and comprehensive geological and local information of drilling to form constraint mechanism, and we realize the quantitative physical property inversion based on the gravity and magnetic anomaly.
     How to effectively use the morphological characteristics of gravity and magneitic field and the known spatial information to constraint the solution are the key to improve the reliability of the inversion. this paper improve probability tomography scan function, through the introduction of the kernel variance function instead of probability tomography scan function, improve the local convergence of the geological body, using probability imaging technology to constraint the target geological-mass qualitativly. Then, on the basis of qualitative constraints, using geology, drilling and seismic data as quantitative constraints, using the relevant relation of the local characteristics of gravity and magneitc field and geological unit, determine the geological distribution in space by multiple search technology, this will make point constraint or line constraint into volume constraint, through constraint the property value interval of unknown grid, and the more of directly determined grid, the lower of the dimension of solution space, then reduct the dimension of solution space. Then we establish the initial qualitative - semi-quantitative model, and form the feasible 3d gravity and magnetic physical property quantitative inversion algorithm.
     Geological model is designed based on above research results, test the input parameters and selection principle, and study the imaging results of single source and combined source. Model test shows that this method improves the image resolution of gravity and magnetic field, the boundary of the source of superposition is more elaborate, and can correct of position of stack abnormal body, so as to improve the overall effect of gravity and magnetic imaging.
     This method was applied to inverse virtual density and magnetization of igneous rock in YangXin area, depending on the intensity of the virtual density and magnetization, and deduced the spatial distribution of igneous, delineating 21igneous in YangXin area, and inosculation higher with drilling information, achieve the basic requirements of gravity and magnetic imaging.
引文
[1]余钦范,姚长利,孟小红等.苏北大陆科学钻探靶区重磁异常反演解释[J].地球物理学报,2001,44(6):825-832
    [2]刘展,王万银,曲面位场的正则化线性规划法直接反演技术[J].地质与勘探,1999,35(6):62-66
    [3]侯遵泽,杨文采.中国重力异常的小波变换与多尺度分析[J].地球物理学报,1997,40(1):85-95
    [4]侯遵泽,杨文采,刘家琦.中国大陆地壳密度差异多尺度反演[J].地球物理学报,1998,41(5):642~651
    [5]梁锦文.位场小波分析的物理解释[J].地球物理学报,2001,44(11):865-870
    [6]高德章,候遵泽,唐建.东海及邻区重力异常多尺度分解[J].地球物理学报,2000,43(6):842-849
    [7]杨辉,王家林,王小牧等.重力视深度滤波及应用[J].地球物理学报,1999,42(3):416-421
    [8] A.Muhittin et al. Septaration of Bouguer anomaly map using cellular neural network[J]. Journal Applied Geophysics, 2001,46: 129-142
    [9]段本春,徐世哲,阎汉杰等.划分磁异常的插值切割法在研究火成岩体分布中的应用[J].石油地球物理勘探,1998,33(1):125-131
    [10]徐世浙,曹洛华,姚敬金.重力异常三维反演—视密度成像方法技术的应用[J].物探与化探,2007,33(1):25-37
    [11]张贵宾,申宁华等.位场广义线性综合反演系统的建立[J].长春地质学院学报,1993,23(2):197-204
    [12] Glenn W. Bear, Haydar J. and Albert J. Rudman. Linear inversion of gravity data for 3-D density distributions[J]. Geophysics, 1995,60: 1354-1364
    [13] Oleg Portniaguine and Michael S. Zhdanov. 3-D magnetic inversion with data compression and image focusing[J]. Geophysics, 2002,67: 1532-1541
    [14]刘展,班丽等.济阳坳陷花沟地区火成岩重磁成像解释方法[J].中国石油大学学报,2007,31(1):30-34
    [15] Li, Y., and Oldenburg, D. W. 3-D inversion of magnetic data. Geophysics[J], 1996,61: 394-408
    [16] Yaoguo Li and Douglas W. Oldenburg 3-D inversion of gravity data. Geophysics[J], 1998,63: 109-119
    [17] Miguel Bosch.岩性约束重磁资料联合反演.勘探地球物理进展,2002,25(2):74-78
    [18] F.G.Montesinos, J. Arnoso, R.Vieira. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura[J]. Int J Earth Sci (Geol Rundsch), 2005,94: 301-316
    [19]安玉林.三度剩余重力异常源全方位成像的理论和方法[J].地球物理学报,1997,40(3):402-413
    [20]管志宁等.重磁异常反演的拟BP神经网络方法及其应用[J].地球物理学报,1998,41(2):242-251
    [21]安玉林.局部重磁场源全方位成像理论概要[J].物探与化探,2000,24(6) :401-411
    [22]裴正林等.小波多尺度井间地震层析成像方法[J].地球学报,2002,23(4):383-386
    [23]姚长利,郝天珧等.重磁反演约束条件及三维物性反演技术策略[J].物探与化探,2002,26(4):253~257
    [24]姚长利,郝天珧等.重磁遗传算法三维反演中高速计算及有效存储方法技术[J].地球物理学报,2003,46(2):252-258
    [25]陈东敬,张新兵.带模拟退火的拟BP神经网络在伊朗某地区重力资料反演中的应用[J].勘探地球物理进展,2005,28(3):215-218
    [26]姚长利,郑元满.重磁异常三维物性反演随机子域法方法技术[J].地球物理学报,2007,50(5):1576-1583
    [27]柯小平,王勇,许厚泽.用遗传算法反演地壳的变密度模型[J].武汉大学学报,2004,29(11):981-984
    [28]柯小平,王勇,许厚泽.三维密度分布的遗传算法反演[J].大地测量与地球动力学,2009,29(1):41-45
    [29] Vishnubhotla Chakravarthi and Narasimman Sundararajan. 3D gravity inversion of basement relief—A depth-dependent density approach[J]. Geophysics, 2007,72: 123-132
    [30]邓荣来,李庆浩等.重磁联合反演及重磁与MT综合解释巴彦浩特盆地火成岩[J].石油物探,2002,41(2):222-225
    [31]张绍红,王尚旭,宁书年.模拟退火法和遗传算法联合优化技术及在反演解释中的应用[J].煤炭学报,2004,29(1):70-73
    [32]于鹏,王家林,吴健生.重力与地震资料的模拟退火约束联合反演[J].地球物理学报,2007,50(2):529-538
    [33]李淑玲,孟小红,范正国等.危机矿山重磁资料精细处理与解释:以湖北省大冶铁矿为例[J].地球科学——中国地质大学学报,2007,32(4):559-563
    [34] B.J. Last and Kubik. Compact gravity inversion[J]. Geophysics, 1983,48: 713-721
    [35] R.M.Rene. Gravity inversion using open, reject, and“shape-of-anomaly”fill criteria[J]. Geophysics, 1986,51: 988-994
    [36]Mark E. Ander and Stephen P. Huestisl. Gravity ideal bodies[J]. Geophysics, 1987,52: 1265-1278
    [37]黄卫祖.重力资料的三维密度反演[J].长春地质学院学报,1993,23(1):75-79
    [38]王家映.地球物理反演理论[M].北京:高等教育出版社,1998: 1-13
    [39]Teresa Iuliano a, Paolo Mauriello b, Domenico Patella. Looking inside Mount Vesuvius by potential fields integrated probability tomographies[J]. Journal of Volcanology and Geothermal Research,2002,113:363-378
    [40]毛立峰,王绪本,高永才.大地电磁概率成像的效果评价[J].地球物理学报,2005,48(2),429-433
    [41]许令周,关继腾,房文静.高次导数的概率成像原理[J].青岛大学学报,2003,16(4),32-36
    [42]Raffaele Alaia, Domenico Patella and Paolo Mauriello. Imaging multipole gravity anomaly sources by 3D probability tomography[J]. Journal of Geophysics and Engineering,2009,6: 298-310
    [43]王德人.非线性方程组解法与最优化方法[M].北京:人民教育出版社,1980: 13-17
    [44]孙鲁平.基于密度成像的综合速度建模方法研究[D].青岛:中国石油大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700