用户名: 密码: 验证码:
中国冬小麦抗旱指标评价、种质筛选及重要性状与SSR标记的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是人类最早栽培的作物之一,也是世界上分布最广的作物之一;在中国,小麦是仅次于水稻、玉米的第三大作物,主要种植在半湿润、半干旱地区。在我国干旱、半干旱地区约占国土面积的二分之一;即使在半湿润、甚至湿润地区也常会发生临时性、季节性或周期性的干旱。干旱是小麦增产的主要限制因子,因此,研究小麦抗旱性的鉴定指标,挖掘抗旱种质资源、同时利用数量性状基因位点QTL作图技术对控制小麦重要性状的基因进行定位、发掘优良等位变异,并将优异变异跟踪利用到新品种选育,对提高小麦的抗旱性和产量水平有着非常重要的作用。本研究以90份具有广泛代表性的中国冬小麦种质为材料,通过连续两年的抗旱棚水、旱处理试验,筛选抗旱种质材料、对抗旱相关性状进行了评价;并以其中12份育成品种为材料,对水、旱处理下碳同位素分辨率、籽粒产量、光合性状、旗叶气孔密度及矿质元素之间的相互关系进行了深入研究;同时利用269对小麦基因组上均匀分布的SSR标记对我国冬小麦的遗传多样性、群体结构和连锁不平衡进行分析,并对小麦主要农艺性状、光合性状和根系性状的QTL位点进行关联分析。取得的主要研究结果如下:
     1、通过两年的抗旱棚水、旱处理试验,采用抗旱系数隶属函数法筛选抗旱小麦种质,共筛选出抗旱性较好的材料5份。对各性状在干旱胁迫下的协同变化分析表明:蒸腾速率和气孔导度、单株籽粒产量和单株生物产量对干旱胁迫存在极强的协同变化趋势,株高、穗长、小穗数、穗粒数、单株籽粒产量和单株生物产量6个性状相互间也存在较强或极强的协同变化效应。以材料的抗旱隶属函数值为响应变量,各性状的抗旱系数为回归变量进行了逐步多元回归分析,最终单株籽粒产量、蒸腾速率(或气孔导度)、株高、穗下节长和穗长5个性状的抗旱系数被选入模型,并可以解释超过91%的抗旱隶属函数值的变异,为小麦种质大规模抗旱性鉴定与评价提供一种可行的方法,有助于提高选择效率。
     2、以12份育成品种为材料,系统研究了碳同位素分辨率(Δ13C)、籽粒产量、光合性状、旗叶气孔密度及矿质元素在水、旱两组水分处理下的表现以及它们之间的相互关系。光合速率、Δ13C、气孔导度、旗叶叶绿素含量、籽粒产量、籽粒灰分含量、籽粒K含量、籽粒Mn含量8个性状在干旱胁迫下表现为下降趋势,且与充分灌溉相比达到极显著水平(P<0.01);籽粒Fe含量在干旱胁迫条件下表现为上升趋势,且与灌溉下相比达到极显著水平(P<0.01)。相关分析表明,籽粒Δ13C值与籽粒产量在干旱胁迫和充分灌溉条件下均呈现正相关,籽粒Δ13C值与灌溉条件下的旗叶下表皮气孔密度和干旱条件下的Ci/Ca值在P<0.05水平下相关。气孔导度、胞间CO_2浓度、蒸腾速率和Ci/Ca4个光合性状相互间在两种水分条件下均呈现极高的正相关。在干旱胁迫条件下,籽粒灰分含量与籽粒Fe含量、Zn含量、Mn含量和K含量表现为极显著的正相关(P<0.01);在灌溉条件下,籽粒灰分含量与籽粒Fe含量、Zn含量、Mn含量、K含量和Mg含量均表现为正相关;在两种水分条件下,籽粒Fe含量、Zn含量、Mn含量和K含量4个指标相互间均呈明显或极显著正相关。通过多元回归分析建立多指标共同解释Δ13C的模型,在干旱条件下本研究所用性状不符合构建多元回归模型;而在灌溉条件下旗叶下表皮气孔密度和光合速率入选回归模型,并能解释60.9%的Δ13C变异。
     3、以90份广泛代表性的小麦种质为材料,对我国冬小麦21个主要性状的遗传变异分析表明,除穗长、小穗数、光合速率、胞间CO_2浓度和叶绿素含量5个性状外,其他16个性状均具有比较丰富的遗传变异。广义遗传力分析表明,以形态性状为主的简单性状(穗叶距、穗下节长、株高、胚芽鞘长、根直径、千粒重、穗长、叶绿素含量、穗粒数、小穗数、根长、旗叶长)具有较高的遗传力,适宜早代选择;产量性状(单株籽粒产量和单株生物产量)遗传力中等,但考虑其是育种改良的核心目标,同样建议作为一个可靠的早代选择指标;光合生理性状及复合性状(萌发期根表面积、根体积、胞间CO_2浓度、气孔导度、蒸腾速率和光合速率)遗传力最低,尤其是光合生理性状容易受外界环境的影响且不容易准确的测量,不适宜作为早代选择的指标。
     4、利用269对均匀分布于小麦21条染色体的SSR标记对90份中国冬小麦种质基因组进行扫描,对我国冬小麦的遗传多样性、群体结构和连锁不平衡的分析表明,中国冬小麦遗传多样性较差;不同基因组间差异显著,其中B基因组多样性最丰富,D基因组多样性最差。利用Structure聚类、UPGMA聚类和主坐标分析均表明中国冬小麦可以分为3个亚群,且亚群的划分在一定程度上与群体地理生态类型相关。中国冬小麦的连锁不平衡衰减距离较短,全基因组LD平均衰减距离约2.2cM,A、B和D三个基因组的LD最大衰减距离分别为2.2、0.6和8.6cM;表明利用中国冬小麦进一步关联作图时需要更高密度的标记。
     5、利用均匀覆盖小麦21条染色体的269对SSR标记,对我国冬小麦群体(90份具有广泛代表性材料)进行全基因组扫描,采用TASSEL软件的MLM模型对两年水、旱2种处理下的农艺性状、光合生理性状、萌发期根系及胚芽鞘等共19个性状进行关联分析。检测结果发现,在138个SSR位点共检测到274次与19个性状在P<0.01水平下极显著关联,与株高、穗下节长、穗叶距、旗叶长、旗叶宽、穗长、小穗数、穗粒数和千粒重9个形态性状关联的SSR位点数分别为20、18、18、13、8、13、35、14和20个;与光合速率、蒸腾速率、气孔导度、胞间CO_2浓度和叶绿素含量5个光合生理性状关联的SSR位点数分别为16、16、13、27和18个;与胚芽鞘长、根长、根直径、根表面积和跟体积5个萌发期性状关联的SSR位点数分别为7、4、5、3和6个;其中7个SSR位点同时在4种条件下共检测到14次与4个性状关联,表现出位点的一致性和稳定性;研究还发现了67个SSR标记(138的48.55%)同时与2个或多个性状相关联,这可能是性状本身存在相关或者一因多效;关联分析结果的部分SSR位点与前人连锁分析或关联分析定位的QTL位点一致,进一步验证了实验结果的真实性。研究结果对重要区段QTL精细定位及分子标记辅助育种具有重要的参考价值。
Wheat (Triticum aestivum L.) is one of the first plants cultivated by mankind; it has beenextensively planted worldwide owing to its adaptation to a wide range of climates. Wheat isthe third most-produced cereal crop after maize and rice in China; it is mainly planted insemi-humid and semi-arid regions. The arid and semiarid area covers about half of the totalland area in China; and periodic drought, seasonal drought or temporary drought oftenoccurred in semi-humid area, even wet area; drought stress has been one of the mostimportant abiotic constraints greatly limiting wheat production. Therefore, the study ofdrought resistance indicators, the excavation of drought tolerance germplasms, QTL mappingfor important traits, exploitation of allelic variations and maker-assisted selection (MAS) inwheat breeding will play an important role in increasing crop production study. This studyregards90broadly representative Chinese winter wheat accessions as research objects,through normal and drought treatment experiments for two years, screening drought tolerancegermplasms, evaluating drought tolerance of different traits; second, the study regards12bredvarieties as research objects, through normal and drought treatment experiment, analysing therelationships among carbon isotope discrimination, grain yield, photosynthetic traits, stomataldensity of flag leaf, ash content and mineral elements; analysing the genetic variation andbroad sense heritability of the investigated traits for90accessions; to estimate the geneticdiversity, population structure and linkage disequilibrium in Chinese winter wheat with269SSR loci distributed over all21chromosomes; to analyze the association loci with mainagronomic, physiological and root traits using269SSR loci distributed over all21chromosomes. The main results are included as follows:
     1. Through normal and drought treatment experiments for two years,5accessions withhighly drought tolerance were screened according to the membership function value ofdrought tolerance (MFVD), which combined the drought-tolerant coefficient (DC) of14traitsthat could be easily estimated; these5accessions could be used as materials for droughttolerance improvement in wheat breeding. The analysis, consistency of traits variation todrought stress, indicated that there was a very strong consistency variation between transpiration rate (E) and stomatal conductance (Gs) to drought stress, also a very strongconsistency variation between biological yield per plant (BYPP) and grain yield per plant(GYPP); there were strong consistency variations among plant height (PH), spike length (SL),spikelet number (SN), grain number per spike (GMPS), biological yield per plant (BYPP) andgrain yield per plant (GYPP) under drought stress. The multi-regression analysis was donebetween the membership function value of drought tolerance (MFVD) and thedrought-tolerant coefficient (DC) of each trait. The results revealed that DC of GYPP, E (orGs), PH, UIL and SL could explain more than91%of the total variations in MFVD.Therefore, those five variables could be used as a combination to screen wheat germplasm orlines for drought tolerance in wheat breeding program.
     2. Through normal and drought treatment experiments in the2011-2012growing seasons,using12bred varieties as materials, the relationship among carbon isotope discrimination,grain yield, photosynthetic traits, stomatal density of flag leaf, ash content and mineralelements was studied. The mean values of8traits, including photosynthetic rate (Pn), carbonisotope discrimination (Δ13C), stomatal conductance (Gs), SPAD value of the flag leafchlorophyll content (SPAD), grain yield (GY), ash content (AC), K content (K) and Mncontent (Mn), significantly decreased under water stressed (WS) condition compared with thewell-watered (WW)(at least P <0.01); on the contrary, Fe content (Fe) significantly increased(P<0.01) under WS. Results of correlation analysis showed that Δ13C was positivelycorrelated with GY under two water conditions (WS and WW); Δ13C was significantlypositively correlated with Ci/Ca under WS (P<0.05), while Δ13C showed significantlynegative correlation with stomatal density of lower epidermis (SDLE) under WW (P<0.05).There were significant positive correlations among Gs, Ci, E and Ci/Ca with each other undertwo water conditions (at least P <0.05); AC was positively correlated with Fe, Zn, Mn and Kcontents under two water conditions; there were positive correlations among Fe, Zn, Mn andK contents with each other under two water conditions. The multiple regression model basedon Δ13C indicated that SDLE and Pn could explain about60.9%of total variations underWW, but multiple regression model could not be built under WS.
     3. Analysing the genetic variations for the21investigated traits with90Chinese winterwheat accessions, the result showed that the genetic variation of5traits of SL, SN, Pn, Ci andSPAD had lower variability (CVg<10%); other16traits contained abundant genetic variations(CVg>10%). The broad sense heritability for21investigated traits was estimated by geneticvariance and phenotypic variance. The simple traits mainly composed of some morphologicaltraits (SDL, UIL, PH, CL, RD, TKW, SL, SPAD, GNPS, SN, RL and FLL) had relatively highheritability; these traits are available to be selected in early generations. Yield traits (BYPP and GYPP) were of medium heritability; as these traits are the core goal in wheat breeding, sothese traits also are considered to be reliable indexes in early generations. Photosynthetic andother complex traits (Pn, E, Gs, Ci, RS and RV) were of low heritability; especiallyphotosynthetic traits were easily influenced by the environment thus could not be evaluatedaccurately; it is unsuitable for selecting these traits in early generation.
     4. Ninety winter wheat accessions were analyzed with269SSR markers distributedthroughout the wheat genome. Compared with previous reports, the genetic diversity of the90Chinese winter wheat accessions in this study was at a lower level. Significant difference ingenetic diversity among the three genomes was observed; the B genome showed the highestdiversity and the D genome the lowest. The90Chinese winter wheat accessions could bedivided into three subgroups based on STRUCTURE, UPGMA cluster and principalcoordinate analyses. The population structure derived from STRUCTURE clustering waspositively correlated to some extent with geographic eco-type. LD analysis revealed that therewas a shorter LD decay distance in Chinese winter wheat compared with other wheatgermplasm collections. The whole genome LD decay distance was approximately2.2cM(r~2>0.1, P<0.001), and the LD decay distance in A, B and D genomes of wheat was about2.2,0.6and8.6cM, respectively. Evidence from genetic diversity analyses suggested that wheatgermplasm from other countries should be introduced into Chinese winter wheat and distanthybridization should be adopted to create new wheat germplasm with increased geneticdiversity. The results of this study were expected to provide valuable information for futureassociation mapping by using this Chinese winter wheat collection.
     5. The marker-trait associations for19traits were studied with90elite wheat genotypesusing269SSR markers distributed throughout the wheat genome. The marker-traitassociation analysis was tested for each water condition in each year with the softwareprogram TASSEL v2.1by using the mixed linear model based on the Q-matrix and thekinship-Matrix. The results showed that a total of138SSR loci were associated with19traits,and274high significant marker-trait associations were detected at the P<0.01level in4environment (11SW,11WW,12SW and12WW). The numbers of SSR association loci with9agronomic traits (PH, UIL, SDL, FLL, FLW, SL, SN, GNPS and TKW) were20,18,18,13,8,13,35,14and20, respectively. The numbers of SSR association loci with5physiologicaltraits (Pn, Gs, E, Ci and SPAD) were16,16,13,27and18, respectively. The numbers of SSRassociation loci with5root traits (CL, RL, RD, RS and RV) were7,4,5,3and6, respectively.Seven SSR loci were associated with4traits, and14high significance marker-traitassociations were simultaneously detected in all4environment. Among138SSR loci,67SSR loci (48.55%of138) were associated with at least two traits and further referred as multi-trait QTL. There were a few loci associated with more traits simultaneously, whichmight be the genetic reason of correlation among traits or pleiotropic phenomena. Some SSRloci were in agreement with mapped QTLs from family-based linkage mapping procedure orassociation analysis, and verified the factcity of results. The results were expected to provideimportant practical value for the fine mapping of QTL and molecular marker for assistedbreeding.
引文
曹珂,王力荣,朱更瑞,方伟超,陈昌文,赵娟.2012.桃单果重与6个物候期性状的遗传关联分析.中国农业科学,45:311-319
    柴守玺.1997.小麦抗旱性状育种价值初步研究.西北农业学报,6:26-29
    陈兰,张红,张启武,江建华,王洋,陈杰丽,洪德林.2012.水稻6个异交相关性状的SSR关联分析.南京农业大学学报,35:1-9
    陈永霞,张新全,马啸,谢文刚.2011. SSR标记与扁穗牛鞭草农艺性状关联分析.湖北农业科学,50:1494-1498
    程西永,陈平,徐海霞,詹克慧,董中东,王勋,崔党群.2009.不同国家小麦种质资源遗传多样性研究.麦类作物学报,29:803-805
    崔海瑞.1989.评价小麦抗旱性的指标.河北农业科学:17-19
    丁安明,崔法,李君,赵春华,王秀芹,王洪刚.2011.小麦单株产量与株高的QTL分析.中国农业科学,44:2857-2867
    董建力,许兴,李树华,朱林,景蕊莲.2011.不同春小麦品种碳同位素分辨率和叶绿素含量的差异及其与抗旱性的关系.麦类作物学报:31:88-91
    窦秉德,朱晓滨,张新玲,徐海明,侯北伟,徐海风,杨晋彬,高爱农.2009.小麦雌性育性与SSR分子标记的关联分析.沈阳农业大学学报,40:643-648
    窦全文,陈佩度.2003.甘青地区四倍体小麦染色体C带多态性.西北植物学报,23:336-338
    方宣钧,吴为人,唐纪良.2002.作为DNA标记辅助育种.科学出版社:
    顾竟,李玲,宗绪晓,王海飞,关建平,杨涛.2011.豌豆种质表型性状SSR标记关联分析.植物遗传资源学报,12:833-839
    关周博,王士强,陈亮,唐娜,胡银岗.2009.模拟干旱胁迫下冬小麦胚芽鞘长度变化及与抗旱性的关系研究.干旱地区农业研究,27:125-130
    韩开明,张永平,关文雯,李元清.2011.抗旱节水春小麦品种鉴选指标比较研究.麦类作物学报:31:927-934
    贺道华,邢宏宜,赵俊兴,李婷婷,汤益,曾舟.2011.棉花资源群体结构的推测与纤维品质的关联分析.西北农林科技大学学报(自然科学版),39:104-113
    何静,王文泉,郑永清,李开绵.2010.木薯栽培品种农艺性状与分子标记的关联分析.热带作物学报,31:694-701
    何雪银,文仁来,吴翠荣,周锦国.2008.模糊隶属函数法对玉米苗期抗旱性的分析.西南农业学报,21:52-56
    符明联,李根泽,杨清辉,原小燕,王敬乔.2011.隶属函数法鉴定油菜甘芥种间杂交后代的抗旱性.中国油料作物学报,33:368-373
    侯北伟,窦秉德,张新玲,王芳,朱晓滨,徐海明.2009.小麦染色体2DS雌性育性位点的连锁不平衡分析.新疆农业大学学报,32:28-33
    侯彩霞,汤章城.1998.钾离子对盐诱导菠菜甜菜碱积累的影响.植物生理学报,24:131-135
    洪彦彬,李少雄,刘海燕,周桂元,陈小平,温世杰,梁炫强.2009. SSR标记与花生抗黄曲霉性状的关联分析.分子植物育种,7:360-364
    胡荣海.1986.农作物抗旱性鉴定方法和指标.作为品种资源,4:36-38
    胡荣海.1989.农作物资源的抗旱筛选技术及其应用.农牧情报研究,1:36-41
    冀天会,张灿军,谢惠民,杨子光,郭军伟,孟丽梅,马雯.2006.小麦品种抗旱性鉴定产量指标的比较研究.中国农学通报,22:103-106
    金亮,包劲松.2009.植物性状-标记关联分析研究进展.分子植物育种,7:1048-1063
    金善宝.1996.中国小麦学.北京:中国农业出版社:
    景蕊莲.1999.作物抗旱研究的现状与思考.干旱地区农业研究,17:79-85
    景蕊莲.2007.作物抗旱节水研究进展.中国农业科技导报:
    景蕊莲,昌小平,朱志华,胡荣海.2002.小麦幼苗根系形态与反复干旱存活率的关系西北植物学报,22:243-249
    景蕊莲,昌小平,胡荣海.1998.外源甜菜碱对小麦幼苗抗旱性的影响.干旱地区农业研究,16:1-5
    景蕊莲,胡荣海,朱志华,昌小平.1997.冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究.西北植物学报,9:4-8
    赖运平,李俊,刘新春,彭正松,胡晓蓉,杨武云.2011.小麦南大2419及其衍生品种(系)主要农艺性状的关联分析.分子植物育种,9:536-546
    兰巨生.1998.农作物综合抗旱性评价方法的研究.西北农业学报,7:85-87
    兰巨生,胡顺福,张景瑞.1990.作物抗旱指数的概念和统计方法.华北农学报,5:20-25
    李德全,邹琦,程炳嵩.1992.土壤干旱下不同抗旱小麦品种的渗透调节和渗透调节物质.植物生理学报,18:37-44
    李立会,张继益,孔秀英.1996.生物多样性与小麦改良.北京:中国农业科技出版社:
    李伟, Jansson S,陈晓阳.2010.欧洲山杨叶片衰老与光周期候选基因SNPs的关联分析.林业科学,46:42-48
    李玮瑜,张斌,张嘉楠,昌小平,李润植,景蕊莲.2012.利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异.作物学报,38:962-970
    李友军,郭秀璞,史国安,付国占,陈明灿.1999.小麦抗旱鉴定指标的筛选研究.沈阳农业大学学报,30:586-590
    李卓坤,袁倩倩,师翠兰,陈俊男,韩淑晓,田纪春.2010a.小麦胚芽鞘长、幼苗根长的QTL定位.分子植物育种,8:460-468
    李卓坤,彭涛,张卫东,谢全刚,田纪春.2010b.利用“永久F_2”群体进行小麦幼苗根系性状QTL分析.作物学报,36:442-448
    梁燕,张坤普,赵亮,梁雪,张雯婷,孙晓琳,孟庆伟,田纪春,赵世杰.2010.小麦苗期光合作用及其相关性状的QTL分析.作物学报,36:267-275
    梁峥,骆爱玲,赵原.1996.干旱和盐胁迫诱导甜菜叶中的甜菜碱醛脱氢酶的积累.植物生理学报,22:161-164
    刘三才,郑殿升,曹永生,宋春华,陈梦英.2000.中国小麦选育品种与地方品种的遗传多样性.中国农业科学,33:20-24
    刘秀林,昌小平,李润植,景蕊莲.2011.小麦种子根结构及胚芽鞘长度的QTL分析.作物学报,37:381-388
    刘桂茹,张荣芝,卢建祥,谷俊涛.1995.小麦品种抗旱性鉴定指标与产量性状关系的探讨.河北农业大学学报:18:10-14
    刘桂茹,张荣芝,卢建祥,谷俊涛.1996.小麦抗旱性遗传研究.中国农学通报:12:34-35
    刘桂茹,张荣芝,卢建祥,谷俊涛.1995.小麦品种抗旱性鉴定指标与产量性状关系的探讨.河北农业大学学报:
    刘桂茹,张荣芝,卢建祥,谷俊涛,尹长城.1996.冬小麦抗旱性鉴定指标的研究.华北农学报,11:84-88
    刘源霞,兰进好,林琪.2009.利用胚芽鞘长度法鉴定冬小麦抗旱性的研究.中国农学通报,25:51-54
    刘慧民,朱玉涛,车代弟,姜隆,陈庆山,吴凤芝.2010.绣线菊18份材料观赏性状与RAPD标记的关联分析.园艺学报,37:1125-1131
    刘学义.1986.大豆抗旱性评定方法探讨.中国油料,4:23-26
    刘宾,赵亮,张坤普,朱占玲,田宾,田纪春.2010.小麦株高发育动态QTL定位.中国农业科学,43:4562-4570
    卢超,高明博,焦小钟,何峰,李学军,王辉.2010.几个小麦亲本主要农艺性状的配合力评价及遗传力分析.麦类作物学报,30:1023-1028
    逯芳芳,李昌澎,胡银岗.2010.小麦碳同位素分辨率与叶片气孔相关指标的关系.麦类作物学报,30:660-664
    路苹,柴丽娜.1996.干旱胁迫下小麦幼苗可溶性低聚糖特征表现与抗旱性关系初探.北京农学院学报,2:13-17
    孟庆立,关周博,冯佰利,柴岩,胡银岗.2009.谷子抗旱相关性状的主成分与模糊聚类分析.中国农业科学,42:2667-2675
    苗果园.1981.小麦抗旱形态指标的初步观察.山西农业科学,8:1-4
    齐莉莉,刘大钧.1999.小麦基因组研究进展.麦类作物,19:1-5
    山仑,黄占斌,张岁岐.2000.节水农业.北京:清华大学出版社:
    上官周平,陈培元.1991.不同抗旱性小麦品种渗透调节的研究.干旱地区农业研究,9:60-63
    苏治军,郝转芳,谢传晓,李明顺,石红良,吴永升,张世煌,李新海.2010.玉米dbf1基因与耐旱相关性状的关联分析.植物遗传资源学报,11:474-478
    孙慧敏,张军,赵团结,盖钧镒.2010.亚洲地区中、外大豆品种幼苗期耐淹性与SSR标记的关联分析.作物学报,36:1615-1623
    孙世铎,孙承宗,袁志发,张英汉.1995a.遗传力和选择指数的概念与发展(下).黄牛杂志,21:47-49
    孙世铎,孙承宗,袁志发,张英汉.1995b.遗传力和选择指数的概念与发展(上).黄牛杂志,21:8-12
    唐伯让,何中虎,郭玉响,王东平.1989.小麦大粒育种中几个农艺性状的遗传力及相关关系的研究.北京农业大学学报,15:267-272
    王竹林,王辉,孙道杰,何中虎,夏先春,刘曙东.2008.小麦株高的QTL分析.西北农林科技大学学报(自然科学版),36:59-63
    王娜,许兴,李树华,景继海,何军,朱林,雍利华.2009.春小麦碳同位素分辨率与相关生理性状的遗传相关分析.干旱地区农业研究,27:94-99
    王娟,李德全.2001.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,18:459-465
    王晨阳.1992.土壤水分胁迫对小麦形态及生理影响的研究.河南农业大学学报,1:89-97
    王慧,高中杰,张丹,程浩,喻德跃.2011.应用关联分析鉴定大豆对斜纹夜蛾的抗性基因.植物学报,46:514-524
    王书子,吴少辉,高海涛,杨子光,冀天会,王翠玲,张学品.2001.旱地小麦品种筛选鉴定及其形态特征探讨.干旱地区农业研究,19:76-80
    王彦梅,张正斌,刘昌明.2004.河北省抗旱节水小麦生产现状及育种对策.中国生态农业学报,12:142-144
    王玮,邹琦.1997.胚芽鞘长度作为冬小麦抗旱性鉴定指标的研究.作物学报,23:459-467
    王荣焕,王天宇,黎裕.2007.植物基因组中的连锁不平衡.遗传,29:1317-1323
    王静,续慧云.2000.干旱胁迫对春小麦苗期叶肉细胞核气孔数的影响.西北植物学报,20:842-846
    王士强,胡银岗,佘奎军,周琳璘,孟凡磊.2007.小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析.中国农业科学,40:2452-2459
    魏添梅,昌小平,闵东红,景蕊莲.2010.小麦抗旱品种的遗传多样性分析及株高优异等位变异挖掘.作物学报,36:895-904
    文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒.2008a.中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析II.优异等位变异的发掘.作物学报,34:1339-1349
    文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒.2008b.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析I.群体结构及关联标记.作物学报,34:1169-1178
    武仙山,昌小平,景蕊莲.2008.小麦灌浆期抗旱性鉴定指标的综合评价.麦类作物学报:28:626-632
    徐建伟,席万鹏,方憬军.2007.水分胁迫对葡萄叶绿素荧光参数的影响.西北农业学报,16:175-179
    阎成仕,李德全,张建华.2000.冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的响应.西北植物学报,20:568-576
    杨静慧,杨焕庭.1996.苹果树植物叶片角质层厚度与植物抗旱性.天津农学院学报,3:27-28
    杨琳,景继海,赵佰图.2009.旱地小麦抗旱性鉴定指标研究.现代农业科技,17:19-20
    杨慧敏,王根轩.2001.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响.植物生态学报,25:312-316
    杨瑞武,周永缸,郑有良.2001.矮秆波兰小麦的C带分析.西川农业大学学报,19:112-114
    杨小红,严建兵,郑艳萍,余建明,李建生.2007.植物数量性状关联分析研究进展.作物学报,33:523-530
    杨晓青,张岁崎,梁宗锁,山颖.2004.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报,28:812-816
    杨子光,张灿军,冀天会,孟丽梅,郭军伟,张珂.2007.小麦抗旱性鉴定方法及评价指标研究Ⅳ萌发期抗旱指标的比较研究.中国农学通报,23:173-176
    杨子光,张灿军,冀天会,郭军伟.2010.小麦品种抗旱性形态指标比较研究.安徽农业科学:38:4489-4490
    雍立华,李树华,许兴,朱林,董建力,袁汉民,严奉坤,王娜.2007.小麦碳同位素分辨率与抗旱生理、农艺性状的相关研究.宁夏农林科技:9-12
    游光霞,张学勇.2007.基于选择牵连效应的标记/性状关联分析方法简介.遗传,29:881-888
    袁倩倩,李卓坤,田纪春,韩淑晓.2011.不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析.作物学报,37:294-301
    袁爱梅,郭秀璞,万用凯,袁建国,郑跃进,申林江.1998.小麦一些数量性状的狭义相关遗传力分析.麦类作物,18:29-31
    章珍,翟洪翠,王华忠.2011.小麦株高性状的QTL定位分析.天津师范大学学报(自然科学版),31:73-77
    张丹,刘丽君,薛林,李建,徐辰武.2010.江苏省糯玉米籽粒淀粉黏度性状与SSR标记的关联分析.扬州大学学报(农业与生命科学版),31:36-43
    张金玲,张宪政.1994.小麦对干旱的生理反应及抗性机理.国外农学-麦类作物,5:44-46
    张坤普,徐宪斌,田纪春.2009.小麦籽粒产量及穗部相关性状的QTL定位.作物学报,35:270-278
    张坤普,赵亮,海燕,陈广风,田纪春.2008.小麦白粉病成株抗性和抗倒伏性及穗下节长度的QTL定位.作物学报,34:1350-1357
    张林刚,邓西平.2000.小麦抗旱性生理生化研究进展.干旱地区农业研究,18:87-92
    张灿军,冀天会,杨子光,郭军伟,孟丽梅,张珂.2007.小麦抗旱性鉴定方法及评价指标研究Ⅱ抗旱性鉴定评价技术规程.中国农学通报,23:418-421
    张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.2006.选择牵连效应分析:发掘重要基因的新思路.中国农业科学,39:1526-1536
    张雅倩,林琪,刘家斌,张洪生,赵长星.2011.干旱胁迫对不同肥水类型小麦旗叶光合特性及产量的影响.麦类作物学报:31:724-730
    张永平,王志敏,吴永成,张霞.2006.不同供水条件下小麦不同绿色器官的气孔特性研究.作物学报,32:70-75
    张永强,毛学森,孙宏勇.2002.干旱胁迫对冬小麦叶绿素荧光的影响.中国生态农业学报,10:13-15
    张玉梅,林琪,姜雯,张延胜,李忠.2006.渗透胁迫条件下不同抗旱性小麦品种萌发期生理生化指标的变化.麦类作物学报,26:125-130
    张正斌.2001.小麦遗传学.北京:中国农业出版社:
    张正斌.2003.作物抗旱节水的生理遗传育种基础.北京:科学出版社:
    张正斌,山仑.1998.小麦抗旱生理指标与叶片卷曲度和蜡质关系研究.作物学报,24:608-612
    张正斌,王德轩.1990.遗传传递力和遗传变异力的概念与发展.杨陵:天则出版社:
    张正斌,王德轩.1992.小麦抗旱生态育种.西安:陕西人民教育出版社:
    张正斌,徐萍.2002.小麦QTLs研究进展.世界科技研究与发展,1:52-58
    张作仿.1983.小麦数量性状选择效果的研究Ⅰ.遗传力与直接选择.作物学报,9:129-138
    赵波,叶剑,金文林,曾潮武,吴宝美,濮绍京,潘金豹,万平.2011.不同类型小豆种质SSR标记遗传多样性及性状关联分析.中国农业科学,44:673-682
    赵红梅,郭程瑾,段巍巍,齐永清,王笑颖,李雁鸣,肖凯.2007.小麦品种抗旱性评价指标研究.植物遗传资源学报,8:76-81
    赵瑞霞,张齐宝,吴秀英,王英.2001.干旱对小麦叶片下表皮细胞、气孔密度及大小的影响.内蒙古农业科技,6:6-7
    赵曦,刘成,于永涛,石云素,宋燕春,王天宇,黎裕.2010.玉米耐旱相关候选基因dhn2的等位变异与表型性状的关联分析.玉米科学,18:20-23
    周桂莲.1996.小麦抗旱性鉴定的形态指标及其分析评价.陕西农业科学:33-34
    周桂莲,杨慧霞.1996.小麦抗旱性鉴定的生理生化指标及其分析评价.干旱地区农业研究:
    周桂莲,杨慧霞.1996.小麦抗旱性鉴定的生理生化指标及其分析评价.干旱地区农业研究:14:65-71
    周强,李生荣,欧俊梅,杜小英,王登兰,陶军,庞启华,任勇.2007.几个小麦品种(系)主要农艺性状配合力与遗传力分析.小麦研究,28:19-25
    周晓果,景蕊莲,郝转芳,昌小平,张正斌.2005.小麦幼苗根系性状的QTL分析.中国农业科学,38:1951-1957
    周雪英,邓西平.2007.旱后复水对不同倍性小麦光合及抗氧化特性的影响.西北植物学报,27:278-285
    周延清,杨清香,张改娜.2008.生物遗传标记与应用.北京:化学工业出版社:
    朱林,梁宗锁,许兴,李树华.2009.三种土壤水分条件下春小麦旗叶碳同位素分辨率与灰分含量的关系.中国农业大学学报,14:66-72
    朱林,梁宗锁,许兴,李淑华.2008.土壤水分对春小麦碳同位素分馏与矿质元素K、Ca和Mg含量的影响.核农学报,22:839-845
    朱林,许兴,李树华,何军,景继海.2006.春小麦碳同位素分辨率的替代指标研究.西北植物学报,26:1436-1442
    庄巧生,沈锦骅,王恒立.1962.自花传粉作物性状遗传力的估算和应用.作物学报,2:179-195
    邹琦,王玮,杨兴洪,彭涛.2000.冬小麦抗旱性鉴定的新方法——低水势下胚芽鞘长度法.中国农学通报,16:23-26
    Abdurakhmonov IY, Abdukarimov A.2008. Application of association mapping to understanding thegenetic diversity of plant germplasm resources. Int J Plant Genomics,2008:574927
    Alheit KV, Maurer HP, Reif JC, Tucker MR, Hahn V, Weissmann EA, Wuerschum T.2012. Genome-wideevaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (xtriticosecale wittmack). Bmc Genomics,13:235
    Akkaya MS, Bhagwat AA, Cregan PB.1992. Length polymorphism of simple sequence repeats DNA inSoybean. Genetics,132:1131-1139
    Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C,Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M.2005.Genome-wide association mapping in Arabidopsis thaliana identifies previously known genesresponsible for variation in flowering time and pathogen resistance. PLoS Genetics, preprint: e60
    Araus JL, Amaro T, Casadesus J, Asbati A, Nachit MM.1998. Relationships between ash content, carbonisotope discrimination and yield in durum wheat. Australian Journal of Plant Physiology,25:835-842
    Araus JL, Amaro T, Zuhair Y, Nachit MM.1997. Effect of leaf structure and water status on carbon isotopediscrimination in field-grown durum wheat. Plant Cell and Environment,20:1484-1494
    Arif MAR, Nagel M, Neumann K, Kobiljski B, Lohwasser U, Borner A.2012. Genetic studies of seedlongevity in hexaploid wheat using segregation and association mapping approaches. Euphytica,186:1-13
    Arslan A, Zapata F, Kumarasinghe KS.1999. Carbon isotope discrimination as indicator of water-useefficiency of spring wheat as affected by salinity and gypsum addition. Communications in SoilScience and Plant Analysis,30:2681-2693
    Babu RC, Pathan MS, Blum A, Nguyen HT.1999. Comparison of measurement methods of osmoticadjustment in rice cultivars. Crop Science,39:150-158
    Barrett BA, Kidwell KK.1998. AFLP-based genetic diversity assessment among wheat cultivars from thePacific Northwest. Crop Science,38:1261-1271
    Bayoumi TY, Eid MH, Metwali EM.2008. Application of physiological and biochemical indices as ascreening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology,7:2341-2352
    Blum A.1984. Breeding crop varieties for strees environments. Critical Rev Plant Sci,2:199-238
    Blum A.1988. Plant breeding for stress environments. CRC Press, Inc.:
    Blum A.2005. Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant,or mutually exclusive? Australian Journal of Agricultural Research,56:1159-1168
    Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE.2002. Mapping ofquantitative trait loci determining agronomic important characters in hexaploid wheat (Triticumaestivum L.). Theoretical and Applied Genetics,105:921-936
    Borrell AK, Hammer GL.2000. Nitrogen dynamics and the physiological basis of stay-green in sorghum.Crop Science,40:1295-1307
    Boyer JS.1982. Plant productivity and environment. Science (New York, NY),218:443
    Brachi B, Morris GP, Borevitz JO.2011. Genome-wide association studies in plants: the missingheritability is in the field. Genome Biology,12:232-239
    Breseghello F, Sorrells ME.2006. Association mapping of kernel size and milling quality in wheat(Triticum aestivum L.) cultivars. Genetics,172:1165-1177
    Buckler ES, Thornsberry JM.2002. Plant molecular diversity and applications to genomics. CurrentOpinion in Plant Biology,5:107-111
    Carter AH, Garland-Campbell K, Kidwell KK.2011. Genetic Mapping of Quantitative Trait LociAssociated with Important Agronomic Traits in the Spring Wheat (Triticum aestivum L.) Cross'Louise' x 'Penawawa'. Crop Science,51:84-95
    Chandler SS, Singh TK.2008. Selection criteria for drought tolerance in springwheat Triticum aestivum L..Series: Coping with wheat in a changing environmentabiotic stresses. The11th InternationalWheat Genetics Symposium proceedings Editedby Rudi Appels Russell Eastwood Evans LagudahPeter Langridge Michael Mackay Lynne, Sydney University Press: pp.1-3
    Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M, Doussinault G.2000. Location and mapping ofthe powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregantanalysis (BSA) with microsatellites in wheat. Theoretical and Applied Genetics,100:1217-1224
    Chao SM, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, AndersonJA, Dreisigacker S, Glover K, Chen JL, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF,Perry S, Sorrells ME, Akhunov ED.2010. Population-and genome-specific patterns of linkagedisequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BmcGenomics,11: e727
    Chao SM, Zhang WJ, Dubcovsky J, Sorrells M.2007. Evaluation of genetic diversity and genome-widelinkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing differentmarket classes. Crop Science,47:1018-1030
    Chen J, Chang SO, Anyia AO.2011. Gene discovery in cereals through quantitative trait loci andexpression analysis in water-use efficiency measured by carbon isotope discrimination. Plant Celland Environment,34:2009-2023
    Chen PD, Liu DJ, Pei GZ, Qi LL, Huang L.1988. The chromosome constitution of three endemichexaploid wheats in western China. Proc7th Inter Wheat Genet Symp, pp75-80
    Cheng ZQ, Targolli J, Huang XQ, Wu R.2002. Wheat LEA genes, PMA80and PMA1959, enhancedehydration tolerance of transgenic rice (Oryza sativa L.). Molecular Breeding,10:71-82
    Chernyad'ev, II, Monakhova OF.2006. Activity of NADP-dependent glyceraldehyde-phosphatedehydrogenase and phosphoenolpyruvate carboxylase in wheat leaves under water stress. AppliedBiochemistry and Microbiology,42:312-319
    Chu CG, Xu SS, Friesen TL, Faris JD.2008. Whole genome mapping in a wheat doubled haploidpopulation using SSRs and TRAPs and the identification of QTL for agronomic traits. MolecularBreeding,22:251-266
    Condon A, Farquhar G, Richards R.1990. Genotypic variation in carbon isotope discrimination andtranspiration efficiency in wheat. Leaf gas exchange and whole plant studies. Functional PlantBiology,17:9-22
    Condon A, Richards R, Farquhar G.1987. Carbon isotope discrimination is positively correlated with grainyield and dry matter production in field-grown wheat. Crop Science,27:996-1001
    Condon AG, Farquar G, Rebetzke GJ, Richards RA.2006. The application of carbon isotope discriminationin cereal improvement for water-limited environments. The Haworth Press, Inc, Binghamton, NewYork, USA:
    Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R,Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R.2007. Association analysis of historicalbread wheat germplasm using additive genetic covariance of relatives and population structure.Genetics,177:1889-1913
    Deng SM, Wu XR, Wu YY, Zhou RH, Wang HG, Jia JZ, Liu SB.2011. Characterization and precisemapping of a QTL increasing spike number with pleiotropic effects in wheat. Theoretical andApplied Genetics,122:281-289
    Devos K, Bryan G, Collins A, Gale M.1993. Microsatellites: A new generation of molecular markers forwheat. Proceedings of8th International Wheat Genetics Symposium (C) Beijing: ChinaAgricultural Scientech Press
    Dingkuhn M, Farquhar G, De DSK, O'toole J, Datta SK.1991. Discrimination of13C among upland riceshaving different water use efficiencies. Crop and Pasture Science,42:1123-1131
    Dodig D, Zoric M, Kobiljski B, Savic J, Kandic V, Quarrie S, Barnes J.2012. Genetic and AssociationMapping Study of Wheat Agronomic Traits Under Contrasting Water Regimes. Int J Mol Sci,13:6167-6188
    Dong P, Wei YM, Chen GY, Li W, Wang JR, Nevo E, Zheng YL.2009. EST-SSR diversity correlated withecological and genetic factors of wild emmer wheat in Israel. Hereditas,146:1-10
    Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE.2004.SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to differentmegaenvironments. Crop Science,44:381-388
    Ehdaie B, Hall A, Farquhar G, Nguyen H, Waines J.1991. Water-use efficiency and carbon isotopediscrimination in wheat. Crop Science,31:1282-1288
    El Hafid R, Smith DH, Karrou M, Samir K.1998. Physiological responses of spring durum wheat cultivarsto early-season drought in a Mediterranean environment. Ann Bot,81:363-370
    Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W.2005. Molecular mapping ofgibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics,111:423-430
    Erlich HA, Gelfand D, Sninsky JJ.1991. Recent advances in the polymerase chain reaction. Science,252:1643-1651
    Eujayl I, Sorrells M, Baum M, Wolters P, Powell W.2001. Assessment of genotypic variation amongcultivated durum wheat based on EST-SSRS and genomic SSRS. Euphytica,119:39-43
    Evanno G, Regnaut S, Goudet J.2005. Detecting the number of clusters of individuals using the softwareSTRUCTURE: a simulation study. Mol Ecol,14:2611-2620
    Fang JY, Liu Y, Luo J, Wang YS, Shewry PR, He GY.2009. Allelic variation and genetic diversity of highmolecular weight glutenin subunit in Chinese endemic wheats (Triticum aestivum L.). Euphytica,166:177-182
    Farquhar G, Richards R.1984. Isotopic composition of plant carbon correlates with water-use efficiency ofwheat genotypes. Functional Plant Biology,11:539-552
    Farquhar GD, O'leary M, Berry J.1982. On the relationship between carbon isotope discrimination and theintercellular carbon dioxide concentration in leaves. Functional Plant Biology,9:121-137
    Farquhar GD, Ehleringer JR, Hubick KT.1989. Carbon isotope discrimination and photosynthesis. AnnuRev Plant Biol,40:503-537
    Ferris R, Taylor G.1994. Stomatal characteristics of four native herbs following exposure to elevated CO2.Ann Bot,73:447-453
    Fischer R, Maurer R.1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop andPasture Science,29:897-912
    Flint-Garcia SA, Thornsberry JM, Buckler ES.2003. Structure of linkage disequilibrium in plants. AnnuRev Plant Biol,54:357-374
    Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S,Goodman MM, Buckler ES.2005. Maize association population: a high-resolution platform forquantitative trait locus dissection. Plant J,44:1054-1064
    Fu YB, Peterson GW, Yu JK, Gao LF, Jia JZ, Richards KW.2006. Impact of plant breeding on geneticdiversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSRmarkers. Theoretical and Applied Genetics,112:1239-1247
    Garcia del Moral LF, Rharrabti Y, Villegas D, Royo C.2003. Evaluation of grain yield and its componentsin durum wheat under Mediterranean conditions: An ontogenic approach. Agronomy Journal,95:266-274
    Gu J, Li L, Zong XX, Wang HF, Ping. GJ, Yang T.2011. Association Analysis Between MorphologicalTraits of Pea and its Polymorphic SSR Markers. Journal of Plant Genetic Resources,12:833-839
    Guo XM, Gao AN, Liu WH, Yang XM, Li XQ, Li LH.2011. Evaluation of genetic diversity, populationstructure, and linkage disequilibrium among elite Chinese wheat (Triticum aestivum L.) cultivars.Australian Journal of Crop Science,5:1167-1172
    Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR,Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC,Hardouin JP, Jack P, Leroy P.2002. Genetic mapping of66new microsatellite (SSR) loci in breadwheat. Theoretical and Applied Genetics,105:413-422
    Gupta PK, Rustgi S, Kulwal PL.2005. Linkage disequilibrium and association studies in higher plants:present status and future prospects. Plant Mol Biol,57:461-485
    Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS.2003. Transferable EST-SSR markers forthe study of polymorphism and genetic diversity in bread wheat. Molecular Genetics andGenomics,270:315-323
    Hao CY, Wang LF, Ge HM, Dong YC, Zhang XY.2011. Genetic Diversity and Linkage Disequilibrium inChinese Bread Wheat (Triticum aestivum L.) Revealed by SSR Markers. Plos One,6: e17279
    Hao CY, Wang LF, Zhang XY, You GX, Dong YS, Jia JZ, Liu X, Shang XW, Liu SC, Cao YS.2006.Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Science inChina Series C-Life Sciences,49:218-226
    He ZH, Rajaram S.1994. Differential responses of bread wheat characters to high temperature. Euphytica,72:197-203
    Heidari B, Sayed-Tabatabaei BE, Saeidi G, Kearsey M, Suenaga K.2011. Mapping QTL for grain yield,yield components, and spike features in a doubled haploid population of bread wheat. Genome,54:517-527
    Horvath A, Didier A, Koenig J, Exbrayat F, Charmet G, Balfourier F.2009. Analysis of diversity andlinkage disequilibrium along chromosome3B of bread wheat (Triticum aestivum L.). Theoreticaland Applied Genetics,119:1523-1537
    Huang XQ, Borner A, Roder MS, Ganal MW.2002. Assessing genetic diversity of wheat (Triticumaestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics,105:699-707
    Huang XQ, Coster H, Ganal MW, Roder MS.2003. Advanced backcross QTL analysis for theidentification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.).Theoretical and Applied Genetics,106:1379-1389
    Hubick K, Farquhar G.2006. Carbon isotope discrimination and the ratio of carbon gained to water lost inbarley cultivars. Plant, Cell&Environment,12:795-804
    Hubick K, Farquhar G, Shorter R.1986. Correlation between water-use efficiency and carbon isotopediscrimination in diverse peanut (Arachis) germplasm. Functional Plant Biology,13:803-816
    Ingram J, Bartels D.1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol,47:377-403
    Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O.2004. Identification and mapping of geneticloci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.).Theoretical and Applied Genetics,108:261-273
    Jongdee B, Fukai S, Cooper M.2002. Leaf water potential and osmotic adjustment as physiological traits toimprove drought tolerance in rice. Field Crops Research,76:153-163
    Joshi CP, Nguyen HT.1993. Application of the random amplified polymorphic DNA technique for thedetection of polymorphism among wild and cultivated tetraploid wheats. Genome,36:602-609
    Kaiser WM.2006. Effects of water deficit on photosynthetic capacity. Physiologia Plantarum,71:142-149
    Kato K, Miura H, Sawada S.1999. QTL mapping of genes controlling ear emergence time and plant heighton chromosome5A of wheat. Theoretical and Applied Genetics,98:472-477
    Khakwani AA, Dennett MD, Munir M.2011. Drought tolerance screening of wheat varieties by inducingwater stress conditions. Songklanakarin Journal of Science and Technology,33:135-142
    Korzun V, Roder M, Worland AJ, Borner A.1997. Intrachromosomal mapping of genes for dwarfing(Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers.Plant Breeding,116:227-232
    Kraakman ATW, Niks RE, Van den Berg P, Stam P, Van Eeuwijk FA.2004. Linkage disequilibriummapping of yield and yield stability in modern spring barley cultivars. Genetics,168:435-446
    Kulwal P, Ishikawa G, Benscher D, Feng ZY, Yu LX, Jadhav A, Mehetre S, Sorrells ME.2012. Associationmapping for pre-harvest sprouting resistance in white winter wheat. Theoretical and AppliedGenetics,125:793-805
    Kumar BNA, Azam-Ali SN, Snape JW, Weightman RM, Foulkes MJ.2011. Relationships between carbonisotope discrimination and grain yield in winter wheat under well-watered and drought conditions.Journal of Agricultural Science,149:257-272
    Landjeva S, Neumann K, Lohwasser U, Borner A.2008. Molecular mapping of genomic regions associatedwith wheat seedling growth under osmotic stress. Biologia Plantarum,52:259-266
    Li L, Zheng D, Yang X, Li X, Liu S, Song C.1998. Diversity evaluation of wheat germplasm resources inChina. Genetic Resources and Crop Evolution,45:167-172
    Li P, Chen JL, Wu PT.2012. Evaluation of Grain Yield and Three Physiological Traits in30Spring WheatGenotypes across Three Irrigation Regimes. Crop Science,52:110-121
    Li RH, Guo PG, Baum M, Grando S, Ceccarelli S.2006. Evaluation of chlorophyll content andfluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences inChina,10:751-757
    Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS,Wang HG, Li LH.2007. A intervarietal genetic map and QTL analysis for yield traits in wheat.Molecular Breeding,20:167-178
    Li YL, Huang CY, Sui XX, Fan QQ, Li GY, Chu XS.2009. Genetic variation of wheat glutenin subunitsbetween landraces and varieties and their contributions to wheat quality improvement in China.Euphytica,169:159-168
    Lilley J, Ludlow M, McCouch S, O'Toole J.1996. Locating QTL for osmotic adjustment and dehydrationtolerance in rice. Journal of Experimental Botany,47:1427-1436
    Liu K, Muse SV.2005. PowerMarker: an integrated analysis environment for genetic marker analysis.Bioinformatics,21:2128-2129
    Liu Y, Liu DC, Zhang HY, Wang J, Sun JZ, Guo XL, Zhang AM.2005. Allelic variation, sequencedetermination and microsatellite screening at the XGWM261locus in Chinese hexaploid wheat(Triticum aestivum) varieties. Euphytica,145:103-112
    Liu ZQ, Pei Y, Pu ZJ.1999. Relationship between hybrid performance and genetic diversity based onRAPD markers in wheat, Triticum aestivum L. Plant Breeding,118:119-123
    Ludlow M, Muchow R.1990. A critical evaluation of traits for improving crop yields in water-limitedenvironments. Advances in agronomy,43:107-153
    Lupton FGH.1987. Wheat breeding-its scientific basis. Chapman&Hall Ltd.:
    Ma ZQ, Lapitan NLV.1998. A comparison of amplified and restriction fragment length polymorphism inwheat. Cereal Research Communications,26:7-13
    Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY.2007. Moleculargenetic analysis of five spike-related traits in wheat using RIL and immortalized F-2populations.Molecular Genetics and Genomics,277:31-42
    Maccaferri M, Sanguineti MC, Noli E, Tuberosa R.2005. Population structure and long-range linkagedisequilibrium in a durum wheat elite collection. Molecular Breeding,15:271-289
    Martin B, Tauer CG, Lin RK.1999. Carbon isotope discrimination as a tool to improve water-use efficiencyin tomato. Crop Science,39:1775-1783
    Martin B, Thorstenson YR.1988. Stable carbon isotope composition(δ13C),water use efficiency andbiomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1hybrid. PlantPhysiol,88:213-217
    Marza F, Bai GH, Carver BF, Zhou WC.2006. Quantitative trait loci for yield and related traits in thewheat population Ning7840x Clark. Theoretical and Applied Genetics,112:688-698
    Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB.2010. QTLassociated with heat susceptibility index in wheat (Triticum aestivum L.) under short-termreproductive stage heat stress. Euphytica,174:423-436
    McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD.2005.Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x'AC Domain'. Genome,48:870-883
    Merah O, Deleens E, Monneveux P.1999. Grain yield, carbon isotope discrimination, mineral and siliconcontent in durum wheat under different precipitation regimes. Physiologia Plantarum,107:387-394
    Merah O, Monneveux P, Deleens E.2001. Relationships between flag leaf carbon isotope discriminationand several morpho-physiological traits in durum wheat genotypes under Mediterranean conditions.Environmental and Experimental Botany,45:63-71
    Misra SC, Randive R, Rao VS, Sheshshayee MS, Serraj R, Monneveux P.2006. Relationship betweencarbon isotope discrimination, ash content and grain yield in wheat in the Peninsular Zone of India.Journal of Agronomy and Crop Science,192:352-362
    Morgan J.1992. Osmotic components and properties associated with genotypic differences inosmoregulation in wheat. Functional Plant Biology,19:67-76
    Morgan JA, Lecain DR, McCaig TN, Quick JS.1993. Gas exchange, carbon isotope discrimination, andproductivity in winter wheat. Crop Science,33:178-186
    Mukhtar MS, Rahman MU, Zafar Y.2002. Assessment of genetic diversity among wheat (Triticumaestivum L.) cultivars from a range of localities across Pakistan using random amplifiedpolymorphic DNA (RAPD) analysis. Euphytica,128:417-425
    Mullis KB.1990. The unusual origin of the polymerase chain reaction. Scientific American,262:56-61
    Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL.2006. Advanced backcross QTLanalysis of a hard winter wheat x synthetic wheat population. Theoretical and Applied Genetics,112:787-796
    Nei M.1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academyof Sciences,70:3321-3323
    Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A.2011. Genome-wide association mapping: acase study in bread wheat (Triticum aestivum L.). Molecular Breeding,27:37-58
    Nielsen DC, Nelson NO.1998. Black bean sensitivity to water stress at various growth stages. CropScience,38:422-427
    Nour AEM, Weibel D.1978. Evaluation of root characteristics in grain sorghum. Agronomy Journal,70:217-218
    Nouri-Ganbalani A, Nouri-Ganbalani G, Hassanpanah D.2009. Effects of drought stress condition on theyield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of FoodAgriculture&Environment,7:228-234
    Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P.1998. Genetic diversity inAustralian wheat varieties and breeding material based on RFLP data. Theoretical and AppliedGenetics,96:435-446
    Payne P, Lawrence G.1983. Catalogue of alleles for the complex gene loci. Glu-A1, Glu-B1and Glu-D1which code for high molecular weight subunits of glutenin in hexaploid wheat. Journal of CerealRes Common:29-35
    Pritchard JK, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotypedata. Genetics,155:945-959
    Percival GC, Sheriffs CN.2002. Identification of drought-tolerant woody perennials using chlorophyllfluorescence. J Arboric,28:215-223
    Plaschke J, Borner A, Wendehake K, Ganal MW, Roder MS.1996. The use of wheat aneuploids for thechromosomal assignment of microsatellite loci. Euphytica,89:33-40
    Price AH.2006. Believe it or not, QTLs are accurate! Trends Plant Sci,11:213-216
    Pritchard JK, Rosenberg NA.1999. Use of unlinked genetic markers to detect population stratification inassociation studies. Am J Hum Genet,65:220-228
    Rafalski A, Morgante M.2004. Corn and humans: recombination and linkage disequilibrium in twogenomes of similar size. Trends in Genetics,20:103-111
    Rafalski JA.2002. Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Science,162:329-333
    Rawashdeh NK, Haddad NI, Al-Ajlouni MM, Turk MA.2007. Phenotypic diversity of durum wheat(Triticum durum Desf.) from Jordan. Genetic Resources and Crop Evolution,54:129-138
    Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnett DG.2001. Quantitative trait loci on chromosome4B for coleoptile length and early vigour in wheat(Triticum aestivum L.). Australian Journal of Agricultural Research,52:1221-1234
    Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Wurschum T.2011. Association mapping for quality traits in soft winter wheat. Theoretical and Applied Genetics,122:961-970
    Rekika D, Nachit MM, Araus JL, Monneveux P.1998. Effects of water deficit on photosynthetic rate andosmotic adjustment in tetraploid wheats. Photosynthetica,35:129-138
    Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doeblay J, Kresovich S, GoodmanMM, Buckler ES.2001. Structure of linkage disequilibrium and phenotypic associations in themaize genome. Proc Natl Acad Sci U S A,98:11479-11484
    Rosenberg NA.2004. DISTRUCT: a program for the graphical display of population structure. MolecularEcology Notes,4:137-138
    Roussel V, Koenig J, Beckert M, Balfourier F.2004. Molecular diversity in French bread wheat accessionsrelated to temporal trends and breeding programmes. Theoretical and Applied Genetics,108:920-930
    Roy JK, Bandopadhyay R, Rustgi S, Balyan HS, Gupta PK.2006. Association analysis of agronomicallyimportant traits using SSR, SAMPL and AFLP markers in bread wheat. Current Science,90:683-689
    Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW.1984. Ribosomal DNA spacer-lengthpolymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics.Proceedings of the National Academy of Sciences,81:8014-8018
    Saurer M, Siegwolf RTW, Schweingruber FH.2004. Carbon isotope discrimination indicates improvingwater-use efficiency of trees in northern Eurasia over the last100years. Global Change Biology,10:2109-2120
    Sayre KD, Acevedo E, Austin RB.1995. Carbon isotope discrimination and grain yield for three breadwheat germplasm groups grown at different levels of water stress. Field Crops Research,41:45-54
    Shpiler L, Blum A.1986. Differential reaction of wheat cultivars to hot environments. Euphytica,35:483-492
    Shpiler L, Blum A.1991. Heat tolerance for yield and its components in different wheat cultivars.Euphytica,51:257-263
    Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B.1994. Genetic diversityin European wheat and spelt breeding material based on RFLP data. Theoretical and AppliedGenetics,88:994-1003
    Sinclair T, Bennett J, Muchow R.1990. Relative sensitivity of grain yield and biomass accumulation todrought in field-grown maize. Crop Science,30:690-693
    Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C.2007. Genome-wide linkagedisequilibrium analysis in bread wheat and durum wheat. Genome,50:557-567
    Somers DJ, Isaac P, Edwards K.2004. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.). Theoretical and Applied Genetics,109:1105-1114
    Sourdille P, Cadalen T, Guyomarc'h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, BernardM.2003. An update of the Courtot x Chinese Spring intervarietal molecular marker linkage mapfor the QTL detection of agronomic traits in wheat. Theoretical and Applied Genetics,106:530-538
    Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC.2005. Linkage disequilibrium inEuropean elite maize germplasm investigated with SSRs. Theoretical and Applied Genetics,111:723-730
    Suzuki T, Sato M, Takeuchi T.2012. Evaluation of the effects of five QTL regions on Fusarium head blightresistance and agronomic traits in spring wheat (Triticum aestivum L.). Breeding Science,62:11-17
    Sylvester-Bradley R, Scott R, Wright C.1990. Physiology in the production and improvement of cereals.HGCA Research Review:
    Szira F, Balint AF, Borner A, Galiba G.2008. Evaluation of drought-related traits and screening methods atdifferent developmental stages in spring barley. Journal of Agronomy and Crop Science,194:334-342
    Tar'an B, Warkentin T, Somers DJ, Miranda D, Vandenburg A, Blade S, Woods S, Bing D, Xue A,DeKoeyer D, Penner G.2003. Quantitative trait loci for lodging resistance, plant height and partialresistance to mycosphaerella blight in field pea (Pisum sativum L.). Theoretical and AppliedGenetics,107:1482-1491
    Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS.2001. Patterns of DNA sequencepolymorphism along chromosome1of maize (Zea mays ssp mays L.). Proc Natl Acad Sci U S A,98:9161-9166
    Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES.2001. Dwarf8polymorphisms associate with variation in flowering time. Nat Genet,28:286-289
    Ticha I.1982. Photosynthetic characteristics during ontogenesis of leaves Stomata density and sizes.Photosynthetica
    Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B.2007. Association mapping of Stagonosporanodorum blotch resistance in modern European winter wheat varieties. Theoretical and AppliedGenetics,115:697-708
    Turner NC, O'Toole JC, Cruz R, Namuco O, Ahmad S.1986. Responses of seven diverse rice cultivars towater deficits I. Stress development, canopy temperature, leaf rolling and growth. Field CropsResearch,13:257-271
    Varshney RK, Paulo MJ, Grando S, van Eeuwijk FA, Keizer LCP, Guo P, Ceccarelli S, Kilian A, Baum M,Graner A.2012. Genome wide association analyses for drought tolerance related traits in barley(Hordeum vulgare L.). Field Crops Research,126:171-180
    Wang JS, Liu WH, Wang H, Li LH, Wu J, Yang XM, Li XQ, Gao AN.2011. QTL mapping of yield-relatedtraits in the wheat germplasm3228. Euphytica,177:277-292
    Wang L, Li X, Chen S, Liu G.2009. Enhanced drought tolerance in transgenic Leymus chinensis plantswith constitutively expressed wheat TaLEA3. Biotechnology letters,31:313-319
    Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R.2010. QTL mapping for developmental behavior of plantheight in wheat (Triticum aestivum L.). Euphytica,174:447-458
    Wang WX, Vinocur B, Altman A.2003. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,218:1-14
    Wright GC, Rao RCN, Farquhar GD.1994. Water-use efficiency and carbon isotope discrimination inpeanut under water deficit conditions. Crop Science,34:92-97
    Yang XQ, Liu P, Han ZF, Ni ZF, Sun QX.2005. Genetic diversity revealed by genomic-SSR and EST-SSRmarkers among common wheat, spelt and compactum. Progress in Natural Science,15:24-33
    Yu J, Buckler ES.2006. Genetic association mapping and genome organization of maize. Curr OpinBiotechnol,17:155-160
    Zadeh L.1965. Fuzzy sets. Information and Control.:338-353
    Zhang D, Bai G, Zhu C, Yu J, Carver BF.2010. Genetic Diversity, Population Structure, and LinkageDisequilibrium in U.S. Elite Winter Wheat. The Plant Genome Journal,3:117-127
    Zhang K, Zhang Y, Chen G, Tian J.2009a. Genetic Analysis of Grain Yield and Leaf Chlorophyll Contentin Common Wheat. Cereal Research Communications,37:499-511
    Zhang KP, Fang ZJ, Liang Y, Tian JC.2009b. Genetic dissection of chlorophyll content at different growthstages in common wheat. Journal of Genetics,88:183-189
    Zhang KP, Tian JC, Zhao L, Wang SS.2008. Mapping QTLs with epistatic effects and QTL x environmentinteractions for plant height using a doubled haploid population in cultivated wheat. Journal ofGenetics and Genomics,35:119-127
    Zhang P, Li JQ, Li XL, Liu XD, Zhao XJ, Lu YG.2011. Population Structure and Genetic Diversity in aRice Core Collection (Oryza sativa L.) Investigated with SSR Markers. Plos One,6: e27565
    Zhang XY, Tong YP, You GX, Hao CY, Ge HM, Wang LF, Li B, Dong YS, Li ZS.2007. Hitchhiking EffectMapping: A New Approach for Discovering Agronomic Important Genes. Agricultural Sciences inChina,6:255-264
    Zhu C, Gore M, Buckler ES, Yu J.2008. Status and Prospects of Association Mapping in Plants. The PlantGenome Journal,1:5-20
    Zhu L, Liang ZS, Xu X, Li SH, Jing JH, Monneveux P.2008. Relationships between carbon isotopediscrimination and leaf morphophysiological traits in spring-planted spring wheat under droughtand salinity stress in Northern China. Australian Journal of Agricultural Research,59:941-949

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700