用户名: 密码: 验证码:
成熟期烟草根际效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了了解成熟期烟草的根际效应,本文以盐边县代表性烟草种植区域的成熟期烟草根际及非根际土壤为研究对象,测定了主要土壤理化性质,应用化学分析方法研究了微生物生物量碳、土壤酶活性和真菌生物量,利用平板计数法分析了可培养微生物数量,利用16S rDNA限制性片段长度多态性(16S rDNA-RFLP)分子标记法分析了可培养细菌、放线菌、真菌及固氮细菌的群落结构和多样性,结合长度多态片段PCR(LH-PCR)和变性凝胶梯度电泳(DGGE)技术分析了免培养细菌群落结构及多样性,利用DGGE分析了免培养放线菌、真菌(包括18S基因和ITS基因)、nifH基因、硝化细菌及丛枝菌根真菌群落结构和多样性,结合典型对应分析和多元回归树分析研究了土壤环境因子对微生物学特性的影响,进而探讨了成熟期烟草的根际效应。主要结果如下:
     (1)土壤理化性质分析结果表明,烟草根际在一定程度上有酸化土壤和增加土壤有机质含量的趋势。由于菌根真菌和根际酸化作用的原因,烟草根际总磷、速效磷及速效钾含量显著高于非根际土壤。由于植物根际强烈吸收养分物质等原因,根际土壤中总氮的含量明显低于非根际土壤。
     (2)对烟草土壤微生物生物量碳、土壤酶活性、真菌生物量、可培养微生物数量、可培养及免培养微生物群落结构和多样性的分析结果表明,由于烟草自毒物质的积累,虽然典型的根际效应在某些样点某些特性中能观察到,但系统的根际效应在成熟期烟草中没有体现。
     (3)成熟期烟草土壤可培养微生物中细菌遗传多样性最为丰富,其次为可培养真菌和放线菌,固氮细菌最弱。在DGGE分析中,免培养微生物中细菌遗传多样性最丰富,其次依次为放线菌、真菌ITS基因、nifH基因、丛枝菌根真菌、硝化细菌,最弱的为真菌18S基因。
     (4)在对比实验中,结合LH-PCR和DGGE分析细菌群落结构结果表明,DGGE分析的细菌多样性指数显著高于LH-PCR分析结果,同时所获取的微生物群落结构信息更为丰富,但LH-PCR技术相对于DGGE技术更为简便、快速、稳定和低耗。结合真菌18S基因和ITS基因对比分析结果表明,真菌ITS基因扩增的真菌遗传多样性指数显著高于18S基因。
     (5)成熟期烟草根际和非根际可培养微生物优势种群差异显著。其中,根际可培养优势细菌为金黄杆菌属(Chryseobacterium)、黄杆菌属(Flavobacterium)、土壤杆菌属(Agrobacterium)、假单胞菌属(Pseudomonas)、寡养单胞菌属(Stenotrophomonas)、肠杆菌属(Enterobacter)和不动杆菌属(Acinetobacter)、优势放线菌均为链霉菌属(Streptomyces);优势真菌为根霉属(Rhizopus)、犁头霉属(Absidia)、赤霉属(Gibberella)、镰刀菌属(Fusarium)、青霉属(Penicillium)、曲霉属(Aspergillus)等;可培养固氮菌主要属于根瘤菌属(Rhizobium)和杆菌属(Arthrobacter)及土壤杆菌属(Agrobacterium)。而非根际可培养优势细菌为节杆菌属(Arthrobacter)、短芽胞杆菌属(Brevibacillus)和不动杆菌属(Acinetobacter);优势放线菌均为链霉菌属(Streptomyces);优势真菌为镰刀菌属(Fusarium)、正青霉属(Eupenicillium)、毛壳菌属(Chaetomium)、拟青霉属(Paecilomyces)及下皮黑孔菌属(Cerrena)等;优势固氮细菌为肠杆菌属(Enterobacter)和杆菌属(Arthrobacter)。
     (6)总体上看,相对于烟草根际土壤,非根际土壤免培养微生物表现出更强的特异性。其中,烟草成熟期根际特有的微生物为栓菌属(Trametes)和部分不可培养真菌;非根际特有微生物包括假诺卡氏菌(Pseudonocardia)、厄氏菌(Oerskovia)、小单孢菌(Promicromonospora)、蜡蚧菌属(Lecanicillium)、假单孢菌属(Pseudomonas)、青霉属(Penicillium)及部分不可培养真菌和子囊真菌。
     (7)成熟期烟草根际和非根际免培养微生物优势种群差异显著。其中,根际土壤中优势免培养细菌为Steroidobacter属、硝化螺旋菌属(Nitrospira)、根瘤菌目(Rhizobiales)和a-变形菌;优势免培养放线菌为链霉菌(Streptomyces)和暂未准确分类的免培养放线菌;优势免培养真菌为马拉色菌属(Malassezia)、球囊霉属(Glomus)、镰刀菌属(Fusarium)、角担菌科(Ceratobasidiaceae)、伞菌纲(Agaricomycetes)、散囊菌纲(Eurotiomycetes)及暂未准确确定分类系统的不可培养真菌和子囊真菌;优势nifH基因为固氮捲菌属(Azonexus)、红环菌科(Rhodocyclaceae)细菌及不可培养细菌nifH基因;优势硝化细菌为硝化螺旋菌属(Nitrospira)及暂未准确确定分类系统的不可培养细菌;优势丛枝菌根真菌球囊霉属(Glomus)和暂未准确确定分类的不可培养真菌。而成熟期非根际优势免培养细菌为Steroidobacter属、放线菌目(Actinomycetales)和Chitinophagac eae科;优势免培养放线菌为链霉菌(Streptomyces)、分支杆菌(Mycobacterium)、厄氏菌(Oerskovia)及暂未准确分类的免培养放线菌;优势免培养真菌为蜡蚧菌属(Lecanicillium)、镰刀菌属(Fusarium)、角担菌科(Ceratobasidiaceae)、伞菌纲(Agaricomycetes)和暂未准确确定分类系统的不可培养真菌及子囊真菌;优势nifH基因为固氮捲菌属(Azonexus)、红环菌科(Rhodocyclaceae)细菌及不可培养细菌nifH基因;优势硝化细菌为硝化螺旋菌属(Nitrospira)及暂未准确确定分类系统的不可培养细菌:优势丛枝菌根真菌为球囊霉属(Glomus)。
     (8)综合典型对应分析和多元回归树分析结果表明,总磷及速效磷对烟草土壤微生物生物量碳、土壤酶活性及真菌生物量的影响最大,速效钾及速效磷是影响可培养微生物数量最关键的环境因子,速效钾、速效磷、速效氮及总氮对免培养微生物多样性的影响显著,其中又以速效钾为最显著因素,同时土壤环境因子中总磷及速效磷对细菌多样性影响最大,速效钾对放线菌和真菌多样性影响最大,速效氮和有机质对nifH基因多样性影响最大,速效磷对硝化细菌和丛枝菌根真菌多样性影响最大。
In order to understand the rhizosphere effect of tobacco(Nicotiana tabacum) at the mature stage, the rhizosphere and bulk soil samples were collected from representative sites in the tobacco-growing regions in Yanbian, China. The main soil physical and chemical properties of the samples were analyzed. Chemical analysis method was employed to determine the soil microbial biomass carbon, enzyme activities and fungal biomass. The plate count method was used to determine the viable counts of culturable microorganisms.16S rDNA-RFLP was used to study the diversity and community structure of culturable bacteria, actinobacteria, fungi and azotobacteria. Two culture independent mehods, denaturing gradient gel electrophoresis (DGGE) and length heterogeneity polymerase chain reaction (LH-PCR), were combined to study bacterial community structure and diversity. The community structure and diversity of actinobacteria, fungi (including18S and ITS gene), nifH gene, nitrobacteria and arbuscular mycorrhizal fungi (AMF) were analyzed by DGGE. The canonical correspondence analysis (CCA) and multiple regression tree analysis (MRT) were used to explore the microbiological characteristics associated with environmental variables. The results were combined to explore the rhizosphere effect of tobacco at the mature stage.
     1. The results of soil physical and chemical properties indicated that rhizosphere soils were acidified and the organic matter contents were higher than that of bulk soils. Total and available phosphorus and available potassium were significantly higher in the rhizosphere than in the bulk soil samples, possibly due to mycorrhizal symbionts and acidification of the rhizosphere soils. However, the decrease of total nitrogen indicated competition for nutrients between the plant roots and microbes.
     2. The results of soil microbial biomass carbon, enzyme activities, fungal biomass, viable microbial counts and the microbial diversity and community structure indicated that a systematical rhizosphere effect on soil microbial characteristics was not found, although typical rhizosphere effect was evident in some of the samples and characteristics tested, due to the accumulation of autotoxins in the tobacco rhizosphere.
     3. Among the culturable microorganisms, bacteria showed the richest genetic diversity, followed by actinobacteria, fungi and azotobacteria. The results of DGGE analysis indicated that among the microbes bacteria were genetically most diverse, followed by actinobacteria, fungal ITS gene, nifH gene, AMF, nitrobacteria and fungal18S gene.
     4. In the comparative experiment, the results of comparative analysis of DGGE and LH-PCR showed that the bacterial diversity index detected by DGGE analysis was significantly higher than the bacterial diversity detected by LH-PCR analysis. At the same time, the DGGE revealed more information on the microbial community structure than LH-PCR. However, the LH-PCR method was more convenient, faster, more stable and cheaper than DGGE. The results of comparative analysis of fungal18S gene and ITS gene showed that the fungal diversity index of ITS gene was significantly higher than that of18S gene.
     5. The results of sequencing of culturable microbes indicated that the dominant species in rhizosphere soil samples were significantly different to that of bulk soil samples. The dominant bacterial groups in tobacco rhizosphere soil samples were Chryseobacterium, Flavobacterium, Agrobacterium, Pseudomonas, Stenotrophomonas, Enterobacter and Acinetobacter; The dominant actinobacterial group was Streptomyces; The dominant fungal groups were Rhizopus, Absidia, Gibberella, Fusarium, Penicillium and Aspergillus; The dominant azobacterial groups were Rhizobium, Arthrobacter and Agrobacterium. However, the dominant bacterial groups in bulk soil samples were Arthrobacter, Brevibacillus and Acinetobacter; The dominant actinobacterial group was Streptomyces; The dominant fungal groups were Fusarium, Eupenicillium, Chaetomium, Paecilomyces and Cerrena; The dominant azobacterial groups were Enterobacter and Arthrobacter.
     6. According to the culture independent analyses, the dominant species of microorganisms in bulk soil were more specific than in rhizosphere soil. For example, some groups like Pseudonocardia, Oerskovia, Promicromonospora, Lecanicillium, Pseudomonas, Penicillium, some uncultured fungi and uncultured Ascomycota fungi were only present in bulk soil, while Trametes and some uncultured fungi were only present in the rhizosphere soils.
     7. The sequencing of microbes detected with culture independent methods indicated that the dominant groups in rhizosphere soil samples were significantly different to those of bulk soil samples. The dominant bacterial groups in rhizosphere soil were Steroidobacter, Nitrospira and some genus of Rhizobiales and a-Proteobacteria; The dominant actinobacterial groups were Streptomyces and uncultured actinobacteria; The dominant fungal groups were Malassezia, Glomus, Fusarium, Ceratobasidiaceae, Agaricomycetes, Eurotiomycetes, uncultured fungi and uncultured Ascomycota fungi; The dominant groups of nifH gene were Azonexus, Rhodocyclaceae and uncultured bacterium; The dominant nitrobacterial groups were Nitrospira and uncultured bacteria; The dominant genus of AMF were Glomus and uncultured fungi. However, the dominant bacterial groups in bulk soil samples were Steroidobacter, Actinomycetales and Chitinophagaceae; The dominant actinobacterial groups were Streptomyces, Mycobacterium, Oerskovia and uncultured actinobacteria; The dominant fungal groups were Lecanicillim, Fusarium, Ceratobasidiaceae, Agaricomycetes, uncultured fungi and uncultured Ascomycota fungi; The domiant species of nifH gene were Azonexus, Rhodocyclaceae and uncultured bacterium; The dominant nitrobacterial groups were Nitrospira and uncultured bacteria; The dominant genus of AMF was Glomus.
     8. The results of soil microbial diversity associated with environmental variables indicated that total phosphorus and available phosphorus were the major environmental factors affecting the soil microbial biomass carbon, soil enzyme activities and soil fungal biomass. Available potassium and available phosphorus were the main environmental factors affecting the soil viable microbial counts. Available potassium was the most important environmental factor affecting the microbial diversity detected with the culture independent methods, and available phosphorus, available nitrogen and total nitrogen also had definite effects. Total and available phosphorus were the main environmental factors affecting the bacterial diversity detected with the culture independent methods. Available potassium affected actinobacterial and fungal diversity, available nitrogen and organic matter affected nifH gene diversity, and available phosphorus affected the diversity of nitrobacteria and AMF.
引文
Abarenkov K, Henrik N R, Larsson K H, Alexander I J, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor A F, Tedersoo L, Ursing B M, Vralstad T, Liimatainen K, Peintner U and Koljalg U. The UNITE database for molecular identification of fungi--recent updates and future perspectives. New Phytol,2010,186(2):281-285.
    Ampe F, Sirvent A and Zakhia N. Dynamics of the microbial community responsible for traditional sour cassava starch fermentation studied by denaturing gradient gel electrophoresis and quantitative rRNA hybridization. Int J Food Microbiol,2001,65:45-54.
    An C, Takahashi H, Kimura B and Kuda T. Comparison of PCR-DGGE and PCR-SSCP analysis for bacterial flora of Japanese traditional fermented fish products, aji-narezushi and iwashi-nukazuke. J Sci Food Agric,2010,90(11):1796-1801.
    Bandick A K and Dick R P. Field management effects on soil enzyme activities. Soil Biol Biochem, 1999,31(11):1471-1479.
    Banning N C, Phillips 1 R, Jones D L and Murphy D V. Development of Microbial Diversity and Functional Potential in Bauxite Residue Sand under Rehabilitation. Restor Ecol,2011,19(101): 78-87.
    Bassam B J, Caetano-Anolles G and Gresshoff P M. Fast and sensitive sliver staining of DNA in polyacrylamide gels. Anal Biochem,1991,196(1):80-83.
    Bodelier P L E, Wijlhuizen A G, Blom C W P M and Laanbroek H J. Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant Soil,1997,190(1):91.
    Bomeman J, Skroch P W, O'Sullivan K M, Palus J A, Rumjanek N G, Jansen J L, Nienhuis J and Triplett E W. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol,1996,62(6):1935-1943.
    Brookes P C. Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 1984,35:341-346.
    Cacciari I and Lippi D. Nitrogen fixation by Arthrobacter sp. I. Ability to fix nitrogen by some Arthrobacter sp. isolated from soil.. Annali di Microbiologia ed Enzimologia,1973,23:69-73.
    Chander K and Brooks P. Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic mater accumulation in a sandy and salty loam UK soil. Soil Biol Biochem, 1991,23:927-932.
    Cornejo P, Azcon-Aguilar C, Barea J M and Ferrol N. Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. Ferns Microbiol Lett,2004,241(2):265-270.
    Crosby L D and Criddle C S. Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques,2003,34:790-802.
    Danovaro R, Luna G M, Dell'Anno A and Pietrangeli B. Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Appl Environ Microbiol, 2006,72(9):5982-5989.
    Das M, Royer T V and Leff L G. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol,2007,73(3):756-767.
    de Bruijn F J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol,1992,58(7): 2180-2187.
    Demba D M, Willems A, Vloemans N, Cousin S, Vandekerckhove T T, de Lajudie P, Neyra M, Vyverman W, Gillis M and Van der Gucht K. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ Microbiol,2004,6(4): 400-415.
    Dermiyati, Firdaus E, Utomo M, Arif M A S and Nugroho S G. Soil microbial biomass carbon under rhizosphere and non-rhizosphere of maize after a ling-term nitrogen fertilization and tillage systems. Jurnal Tanah Tropika,2011,16(1):63-68.
    Douhan G W, Petersen C. Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification host specificity or non-specific amplification, mycorrhiza, 2005,15:365-372.
    Donnisona L M, Griffitha G S, Hedger J, Hobbsc P J and Bardgett R D. Management influences no soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales. Soil Biol Biochem,2000,32(2):253-263.
    Duineveld B M, Rosado A S, van Elsas J D and van Veen J A. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol,1998,64(12):4950-4957.
    Eash N S, Stahl P D, Parkin T B and Karlen D L. A simplified method for extraction of ergosterol from soil. Soil Biol Biochem,1996,60:468-471.
    Eichner C A, Erb R W, Timmis K N and Wagner-Dobler I. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol,1999,65(1):102-109.
    English J T and Mitchell D J. Development of microbial communities associated with tobacco root systems. Soil Biol Biochem,1988,20(2):137-144.
    Fischer S G and Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory. Proc Natl Acad Sci USA,1983, 80(6):1579-1583.
    Fourcans A, de Oteyza T G, Wieland A, Sole A, Diestra E, van Bleijswijk J, Grimalt J O, Kuhl M, Esteve 1, Muyzer G, Caumette P and Duran R. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). Fems Microbiol Ecol, 2004,51(1):55-70.
    Ge Y, He J Z, Zhu Y G, Zhang J B, Xu Z, Zhang L M and Zheng Y M. Differences in soil bacterial diversity:driven by contemporary disturbances or historical contingencies? 1SME J,2008,2(3): 254-264.
    Gharaibeh R, Saadoun 1 and Mahasneh A. Genotypic and phenotypic characteristics of antibiotic-producing soil Streptomyces investigated by RAPD-PCR. J Basic Microb,2003,43(1): 18-27.
    Goncalves S C, Portugal A, Goncalves M T, Vieira R, Martins-Loucao M A and Freitas H. Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza,2007,17(8):677-686.
    Griffiths B S, Ritz K, Ebblewhite N and Dobson G. Soil microbial community structure:effects of substrate loading rates. Soil Biol Biochem,1999,31(1):145-153.
    Hayman D S and Stovold G E. Spore populations and infectivity of vesicular arbuscular mycorrhizal fungi in New South Wales. Austrlian Journal of Botany,1979,27(3):227-233.
    Helgason T, Daniell T J, Husband R, Fitter A H and Young J P. Ploughing up the wood-wide web? Nature,1998,394(6692):431.
    Hendriks M and Jungk A. Erfassung der Mineral stoffverleilung in wnrzelnahe durch getrennte analyse von Rhizound restboden. Z. Planzenemahung und Bodenkunded,1981,144:276-282.
    Henis Y. The role of organic matter in modern agriculture. Dordrecht:Martinus Nijhoff,1986.
    Heuer H, Krsek M, Baker P, Smalla K and Wellington E M. Analysis of actinomycete communities by specific amplifi cation of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Appl Environ Microbiol,1997,63(8):3233-3241.
    Hiltner L. Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundung und Brache. Arb Dtsch Landwirt Ges,1904,98(59-78.
    Horz H P, Barbrook A, Field C B and Bohannan B J. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA,2004,101(42):15136-15141.
    Hovig E, Smith-Sorensen B, Brogger A and Borresen A. Constantdenaturantgelelectrophoresis, a modification of denaturing gradient gelelectrophoresis, in mutation detection. Mutat Res,1991, 262(1):63-71.
    Jensen S,(?)vreas L, Daae F L and Torsvik V. Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. Fems Microbiol Ecol,1998, 26(1):17-26.
    Kandeler E, Kampichler C and Horak O. Influence of heavy mentals on the functional diversity of soil microbial communities. Biology and Fertility of soil,1996,23:299-306.
    Kennedy N, Connolly J and Clipson N. Impact of lime, nitrogen and plant species on fungal community structure in grassland microcosms. Environ Microbiol,2005,7(6):780-788.
    Kirk J L, Beaudette L A, Hart M, Moutoglis P, Klironomos J N, Lee H and Trevors J T. Methods of studying soil microbial diversity. J Microbiol Methods,2004,58(2):169-188.
    Lane D J.16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. In:Stackebrandt E and Goodfellow M (ed). New York:John Wiley & Sons.1991:115-175.
    Lane D J, Field K G, Olsen G J and Pace N R. Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Methods Enzymol,1988,167:138-144.
    Li Q, Allen H L and Wollum A G. Effects of irrigation and fertilization on soil microbial biomass and functional diversity. Journal of Sustainable Forestry,2005,20(4):17-35.
    Li X, Li X, Zhao K, Wang R and Zhang X. Diversity of the rhizosphere soil culture-dependent fungi of mature tobacco. American Journal of Microbiology,2011,2(1):9-14.
    Li X, Penttinen P, Gu Y and Zhang X. Diversity of nifH gene in rhizosphere and non-rhizosphere soil of tobacco in Panzhihua, China. Ann Microbiol,2012,62:995-1001.
    Liu R and Wang F. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza,2003,13(3):123-127.
    Liu W T, Marsh T L, Cheng H and Forney L J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol,1997,63(11):4516-4522.
    Louws F J, Fulbright D W, Stephens C T and de Bruijn F J. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol,1994,60(7):2286-2295.
    Lovell R D, Jarvis S C and Bargett R D. Soil microbial biomass anf activity in long-term grassland effects of management changes. Soil Biol Biochem,1995,27:969-975.
    Lowell J L and Klein D A. Comparative single-strand conformation polymorphism (SSCP) and microscopy-based analysis of nitrogen cultivation interactive effects on the fungal community of a semiarid steppe soil. Ferns Microbiol Ecol,2001,36(23):85-92.
    Lu C and Huang B. Isolation and characterization of Azotobacteria from pine rhizosphere. African Journal of Microbiology Research,2010,4(12):1299-1306.
    Lu H, Wu W, Chen Y, Wang H, Devare M and Thies J E. Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. Journal of Soils and Sediments,2010,8: 1108-1439.
    Magurran A E. Measuring Biologiccal Diversity. Oxford, UK:Blackwell Publishing,2004.
    Manoharachary C. Microbial ecology of scrub jungle and dry wasteland soils from Hyderabad District, Andhra Pradesh (India). Proc Indian Natl Sci Acad,1977,43:6-18.
    Marschner H. Mineral nutrition of hinger plants. London:Academic Press,1995.
    Mccants C B and Woltz W G. Growth and mineral nutrition of tobacco. Advance in Agronomy,1967, 19:211-265.
    Mills D K, Entry J A, Voss J D, Gillevet P M and Mathee K. An assessment of the hypervariable domains of the 16S rRNA genes for their value in determining microbial community diversity: the paradox of traditional ecological indices. Ferns Microbiol Ecol,2006,57(3):496-503.
    Muyzer G, de Waal E C and Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol,1993,59(3):695-700.
    Nayak D R, Babu Y J and Adhya T K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aerie Endoaquept planted to rice under flooded condition. Soil Biol Biochem,2007,39(8):1897-1906.
    Newton R J, Kent A D, Triplett E W and Mcmahon K D. Microbial community dynamics in a humic lake:differential persistence of common freshwater phylotypes. Environ Microbiol,2006,8(6): 956-970.
    Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann R I, Ludwig W and Backhaus H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol,1996,178(19):5636-5643.
    Or D, Smets B F, Wraith J M, Dechesne A and Friedman S P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media-a review. Adv Water Resour,2007,30: 1505-1527.
    Orossichler M, Costa R, Heuer H and Smalla K. Molecular fingerprinting techniques to analyze soil microbial communities. Modern Soil Microbiology.In:van Elsas J D, Jansson J K and Trevors J T (ed):CRC Press.2007:355-386.
    Oved T, Shaviv A, Goldrath T, Mandelbaum R T and Minz D. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol,2001,67(8):3426-3433.
    Ovreas L, Forney L, Daae F L and Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol,1997,63(9):3367-3373.
    Paul E A and Clark F E. Soil Microbiology and Biochemistry. Toronto:Academic Press Inc.,1996.
    Poll C, Thiede A, Wermbter N, Sessitsch A and Kandeler E. Microscale distribution of microorganisms and microbial enzyme activities in a soil with longterm organic amendment. Eur J Soil Sci,2003, 54:715-724.
    Pruesse E, Peplies J and Glockner F O. SINA:accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics,2012,28(14):1823-1829.
    Ranjard L, Lejon D P, Mougel C, Schehrer L, Merdinoglu D and Chaussod R. Sampling strategy in molecular microbial ecology:influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol,2003,5(11):1111-1120.
    Rantsiou K, Urso R, lacumin L, Cantoni C, Cattaneo P, Comi G and Cocolin L. Culture-dependent and-independent methods to investigate the microbial ecology of Italian fermented sausages. Appl Environ Microbiol,2005,71(4):1977-1986.
    Rath P M and Ansorg R. Identification of medically important Aspergillus species by single strand conformational polymorphism (SSCP) of the PCR-amplified intergenic spacer region Identifizierung humanmedizinisch relevanter Aspergillus-Arten durch Analyse der Einzelstrang Konformations Polymorphismen der amplifizierten Intergenic-Spacer-Region. Mycoses,2000, 43(11-12):381-386.
    Ratnasingham S and Hebert P D. BOLD:The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes,2007,7(3):355-364.
    Redecker D. Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza,2000,10:73-80.
    Regan J M, Harrington G W and Noguera D R. Ammonia-and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. App] Environ Microbiol,2002, 68(1):73-81.
    Rich J R and Schenck N C. Survey of north Florida flue-cured tobacco fields for root-knot nematodes and vesicular-arbuscular mycorrhizal fungi. Plant Disease Reporter,1979,63(11):952-955.
    Riley D and Barber A S. Bicarbonate accumulation and pH changes at the soyben root-soil interface. Proc Soil Sci Soc Am,1969,33:905-908.
    Sakurai M, Suzuki K, Omodera M, Shinano T and Osaki M. Analysis of bacterial communities in soil by PCR-DGGE targeting protease genes. Soil Biol Biochem,2007,39:2777-2784.
    Saleh-Lakha S, Miller M, Campbell R G, Schneider K, Elahimanesh P, Hart M M and Trevors J T. Microbial gene expression in soil:methods, applications and challenges. J Microbiol Methods, 2005,63(1):1-19.
    Schlensinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soil. Nature,1990,348:232-234.
    Schwarzott D and Schuβler A. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza,2001,10(4):203.
    Sessitsch A, Weilharter A, Gerzabek M H, Kirchmann H and Kandeler E. Microbial population structures in soil particle size fractions of a longterm fertilizer field experiment. Appl Environ Microbiol,2001,67:4215-4224.
    Shi J Y, Yuan X F, Lin H R, Yang Y Q and Li Z Y. Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci,2011,12(6):3770-3785.
    Shishido M and Chanway C P. Forest soil community responses to plant growth-promoting rhizobacteria and spruce seedlings. Biol Fert Soils,1998,26(3):179.
    Simon L, Lalonde M and Bruns T D. Specific amplification of 18 S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonising roots. Appl Environ Microbiol,1992,58(1): 291-295.
    Sinsabaugh R L, Lauber C L, Weintraub M N, Ahmed B, Allison S D, Crenshaw C, Contosta A R, Cusack D, Frey S, Gallo M E, Gartner T B, Hobbie S E, Holland K, Keeler B L, Powers J S, Stursova M, Takacs-Vesbach C, Waldrop M P, Wallenstein M D, Zak D R and Zeglin L H. Stoichiometry of soil enzyme activity at global scale. Ecol Lett,2008,11(11):1252-1264.
    Smit E, Leeflang P, Glandorf B, van Elsas J D and Wemars K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol,1999,65(6):2614-2621.
    Smith F A and Smith S E. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol,1997,137(3):373-388.
    Sriskandarajah S, Kennedy 1 R, Yu D and Tchan Y. Effects of plant growth regulators on acetylene-reducing associations between Azospirillum brasilense and wheat. Plant Soil,1993, 153(2):165.
    Suzuki M, Rappe M S and Giovannoni S J. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol,1998,64(11):4522-4529.
    Temmerman R, Scheirlinck 1, Huys G and Swings J. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol,2003,69(1):220-226.
    Thies J E. Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J,2007,71:579-591.
    Tiirola M A, Suvilampi J E, Kulomaa M S and Rintala J A. Microbial diversity in a thermophilic aerobic biofilm process:analysis by length heterogeneity PCR (LH-PCR). Water Res,2003,37(10): 2259-2268.
    Torsvik V and Ovreas L. Microbial diversity and function in soil:from genes to ecosystems. Curr Opin Microbiol,2002,5(3):240-245.
    Upadhyay S K, Singh D P and Saikia R. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol,2009,59(5): 489-496.
    Vallaeys T, Persello-Cartieaux F, Rouard N, Lors C, Laguerre G and Soulas G. PCR-RFLP analysis of 16S rRNA, tfdA and tfdB genes reveals a diversity of 2,4-D degraders in soil aggregates. Fems Microbiol Ecol,1997,24(3):269-278.
    Versalovic J, Schneider M, De Bruijin F J and Lupski J R. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 1994,5(1):25-40.
    Visser S and Parkinson D. Soil biological criteria as indicators of soil quality:soil microorganisms. American Journal of Alternative Agriculture,1992,7:33-37.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M and Et A. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23(21): 4407-4414.
    Wang Q, Garrity G M, Tiedje J M and Cole J R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol,2007,73(16): 5261-5267.
    Welsh J and Mcclelland M. Fingerprinting genomes using PCR with a rbitriary primers. Nucleic Acids Res,1990,18(24):7213-7218.
    Werner D. Plant surface microbiology. New York:Springer,2004.
    White T J, Bruns T, Lee S and Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols:a guide to methods and applications.In:Innis M A (ed). San Diego:Academic Press.1990:315-322.
    Williams J G, Kubelik A R, Livak K J, Rafalski J A and Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990,18(22):6531-6535.
    Yang Y, Yao J, Hu S and Qi Y. Effects of Agricultural Chemicals on DNA Sequence Diversity of Soil Microbial Community:A Study with RAPD Marker. Microb Ecol,2000,39(1):72-79.
    Young I M and Crawford J W. Interactions and self-organization in the soil microbe complex. Science, 2004,304:1634-1637.
    Zaccardelli M, Vitale S, Luongo L, Merighi M and Corazza L. Morphological and Molecular Characterization of Fusarium solani Isolates. Journal of Phytopathology,2008,156(9):534-541.
    Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J, Lindstrom K, Zhang L, Zhang X and Strobel G. The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol,2011,62(1):182-190.
    Zhou J, Bruns M A and Tiedje J M. DNA recovery from soils of diverse composition. Appl Environ Microbiol,1996,62(2):316-322.
    陈冬梅,吴文祥,王海斌,黄锦文,陈兰兰,尤垂淮,吴林坤,张重义,林文雄.植烟土壤提取物质对烟株生长及根际土壤细菌多样性的影响.中国生态农业学报,2012,20(12):1614-1620.
    方昉,吴承祯,洪伟,范海兰,宋萍.植物根际、非根际土壤酶与微生物相关性研究进展.亚热带农业研究,2007,3(3):209-215.
    胡桦,陈强,李登煜,吴思思,谢卓霖,贺积强,周俊初.紫色土硅酸盐细菌的遗传多样性研究.土壤学报,2007,44(2):379-383.
    李传涵,陈福婵.杉木根际与非根际土壤酶活性比较.林业科学,1994,30(2):170-175.
    李芳.长期定位施肥对石灰性紫色土真菌特性的影响.硕士论文.四川雅安:四川农业大学,2010.
    李阜棣,喻子牛,何绍江.农业微生物学实验技术.北京:中国农业出版社,]996.
    李双霖,李友钦.果园土壤酶活性与土壤肥力关系的研究.福建农业科技,]990,1:9-10.
    李小林,辜运富,张小平,涂仕华,伍仁军.烟草成熟期根际硝化细菌种群的结构及其多样性.中国农业科学,2011a,44(12):2462-2468.
    李小林,颜森,张小平,韦成健.铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响.农业环境科学学报,2011b,30(3):468-475.
    李小林,袁红梅,戚珊珊,冯茂林,刘洪伟,张小平.丹参、黄精内生放线菌的分离及遗传多样性分析.微生物学通报,2010,37(9):1341-1346.
    林启美,吴玉光.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,18(2):63-66.
    刘洪华.烤烟根际土壤养分、酶活性和微生物动态变化研究.硕士论文.郑州:河南农业大学,2011.
    刘江,黄学跃,李天飞.VA菌根真菌在不同磷肥水平下对烟叶产质量的影响.云南大学学报(自然科学版),1999,21(3):239-242.
    刘训理,王超,吴凡,薛东红,陈凯.烟草根际微生物研究.生态学报,2006,26(2):552-557.
    刘延荣,方宇澄.烟草上优良VA菌根真菌的筛选.山东农业大学学报:自然科学版,1997,28(3):269-274.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    任天志,Grego. S.持续农业中的土壤生物指标研究.中国农业科学,2000,33(1):68-75.
    沈萍.微生物学.北京:高等教育出版社,2000.
    孙波,赵其国.土壤质量与持续环境:Ⅲ.土壤质量评价的生物学指标.土壤,1997,29(5):225-234.
    孙翠玲,郭玉文,佟超然,徐兰成,王珍.杨树混交林地土壤微生物与酶活性的变异研究.林业科学,1997,33(6):488-496.
    孙庆华,柏耀辉,赵翠,温东辉,唐孝炎.DGGE、T-RFLP、LH-PCR对两种活性污泥的微生物种群多样性分析的比较.环境工程学报,2009,3(8):1365-1370.
    王超,吴凡,刘训理,刘兵.不同肥力条件下烟草根际微生物的初步研究.中国烟草科学,2005,26(2):12-14.
    韦家少,何鹏,吴敏,张焱华,吴炳孙,佘贵连.不同土壤类型橡胶林地土壤肥力及酶活性的特征.热带作物学报,2010,31(1):6-]3.
    吴文祥.烟草自毒物质及其对根际土壤微生物影响的研究.硕士论文.福建福州:福建农林大学,2010.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986.
    薛菁芳,高艳梅,汪景宽,付时丰,祝凤春.土壤微生物量碳氮作为土壤肥力指标的探讨.土壤通报,2007,227(02):41-44.
    杨超,刘国顺,邱立友,祖朝龙,王芳.不同植烟土壤微生物数量调查研究.中国烟草科学,2007,28(5):31-36.
    杨承栋,焦如珍.杉木人工林根际土壤性质变化的研究.林业科学,1999,35(6):2-9.
    杨宇虹,陈冬梅,晋艳,王海斌,段玉琪,徐照丽,尤垂淮,郭徐魁,林文雄.连作烟草对土壤微生物区系影响的T-RFLP分析.中国烟草学报,2012,18(1):40-45.
    杨元根.城市土坡中重金属元索积累及微生物效应.环境科学,2001,22(17):44-48.
    杨远平.贵州毕节地区烟地土壤酶活性研究.土壤通报,2003,34(6):594-596.
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术.北京:科学出版社,2006.
    岳中辉,王博文,王洪峰,阎秀峰.松嫩平原西部盐碱草地土壤多酚氧化酶活性及其与主要肥力因子的关系.草业学报,2009,18(4):251-255.
    湛方栋,陆引罡,关国经,唐远驹,张永春,黄建国.烤烟根际微生物群落结构及其动态变化的研究.土壤学报,2005,42(3):488-494.
    湛方栋,田茂洁,黄建国.烟草VA菌根研究进展.烟草科技,2004,3:40-42.
    张海涛.海绵放线菌的分离和多样性研究.博士论文.辽宁大连:中国科学院研究生院大连化学物理研究所,2006.
    张海燕,王彩虹,龚明福,张利莉.一种简单有效且适于土壤微生物多样性分析的DNA提取方法.生物技术通报,2009,8:151-155.
    张霖.铁路采石场环境保护浅谈.铁道建筑,2011,(4):124-126.
    张薇,魏海雷,高洪文,胡跃高.土壤微生物多样性及其环境影响因子研究进展.生态学杂志,2005,24(1):48-52.
    张学利,杨树军,张百习,白雪峰.不同感病等级樟子松根际与非根际土壤性质对比研究.林业科学研究,2006,19(1):76-79.
    赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系.北京林业大学学报,1995,17(4):1-7.
    赵萌,李敏,王淼焱,刘润进.AM真菌克服作物连作障碍的潜力.山东科学,2006,19(6):40-44,48.
    赵阳国,王爱杰,任南琪,赵焱.SSCP技术分析不同废水处理系统中微生物群落结构.环境科学,2006,27(7):1429-1433.
    赵勇,李武,周志华,潘迎捷,赵立平.应用PCR-RFLP及PCR-TGGE技术监测农田土壤微生物短期动态变化.南京农业大学学报,2005,28(3):53-57.
    郑勇,高勇生,张丽梅,何园球,贺纪正.长期施肥对旱地红壤微生物和酶活性的影响.植物营养与肥料学报,2008,14(2):316-321.
    周礼恺.土壤酶学.北京:科学出版社,1987.
    周清明,黎定军.烟草品种(系)对青枯病菌的抗性鉴定与分析.湖南农业大学学报,1996,22(3):275-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700