用户名: 密码: 验证码:
辣椒多态性EST-SSR标记的鉴定和开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公共序列数据库中辣椒的EST序列急剧增长,为EST-SSR标记开发提供了丰富的序列资源。但目前,对辣椒EST序列信息的利用还十分有限,本研究利用公共序列数据库(NCBI)中来自辣椒的近12万条EST序列信息对辣椒的EST-SSR标记进行鉴定和开发。
     首先,研究利用生物信息学手段和数据挖掘技术,分析了辣椒EST-SSR的发生和分布特征。对118060条辣椒EST序列进行处理和拼接,获得了30759个Unigene,覆盖基因组的长度为23.12Mbp。在Unigene上鉴定出3758个SSR位点,其发生频率为1/6.15kb。二核苷酸和三核苷酸重复基序的SSR位点分别占总数的70.7%和26.8%。83.5%的SSR位点的重复次数在10次以内。出现最多的基序类型是AG/TC,占EST-SSR总数的43.8%;AAG/TTC是出现最多的三核苷酸重复基序,占总数的6.8%。二核苷酸基序的EST-SSR在5’UTR的分布密度为20/10kb,高于CDS区的8/20kb。而三核苷酸基序的EST-SSR在5’UTR的分布密度为4/10kb,与CDS区的5/10kb相当。这些结果为辣椒SSR标记的开发提供了有用的信息。
     其次,利用公共序列数据库中EST序列来源的异质性和冗余性,通过序列比对的方法鉴定了一批多态性EST-SSR位点,并高效地开发出了一批辣椒EST-SSR标记。对含有冗余EST序列的contig进行搜索,鉴定出68个多态性的SSR位点,其中有65个位点可以设计引物。利用31个辣椒材料进行试验验证,获得了33个多态性EST-SSR标记,其基序重复次数分布在2-10次之间,重复次数在5次以下的多态性EST-SSR位点有18个,占总数的55%。有27个EST-SSR位点与已知功能基因高度同源,这些功能基因涉及到种子成熟、逆境响应等众多生理过程。33个多态性EST-SSR位点中,分别有27个、18个和15个EST-SSR位点在茄子、番茄和马铃薯等作物上具有可转移性。在茄子、番茄和马铃薯上同时具有可转移性的标记有14个,在3种作物上都没有可转移性的标记有6个。研究结果不仅为辣椒遗传育种研究提供了一批可利用的转录区的SSR标记,同时还为在辣椒和其它作物上进一步挖掘公共序列数据库中的序列信息、开发低重复次数的SSR标记提供了实验依据。
     最后,利用鉴定出的33个EST-SSR标记,对31份来自不同地区的常规种或杂交种进行遗传多样性分析。33个多态性EST-SSR标记共扩增出91个等位基因,平均每个标记扩增出2.76个等位基因,最多检测出6个等位基因;EST-SSR位点的平均观测杂合度和平均期望杂合度分别为0.28和0.39。EST-SSR位点的多态性信息含量(PIC)分布范围为0.03~0.74,平均为0.38。聚类分析在相似系数为0.48处,将31份种质分为2大组。第一组5份材料,多为非常规栽培种Capsicum Chinense Jacquin,第二组26份材料,又可以被细分为6个亚组。主坐标分析与聚类分析结果一致。同时,基于EST-SSR标记的聚类分析结果显示,辣椒种质间的遗传相似性与果实性状、熟性和辣味等表型数据之间的相关性不大。
The amount of EST derived form pepper in public available sequence database grows dramatically, which offers abundant sequence resource for the development of SSR markers. While, the utilization fo pepper EST sequence information was very limited. In the study, a set of polymorphic EST-SSR loci markers was identified and subsequently validated using about120000pepper EST sequences in NCBI.
     Firstly, the bioinformatic tools and data mining methods were employed to analyze the occurring and distribution characteristics of EST-SSR in pepper. A total of30759Unigenes covering23.12Mbp were obtained after process and assembly of118060pepper ESTs retrieved from NCBI.3758EST-SSR loci were identified on the Unigenes with the occurring frequency of1/6.15kb. The amount of EST-SSR loci with dinucleotide motif and trinucleotide motif took account of70.7%and26.8%of the total respectively. There were83.5%EST-SSR loci with the repeat number no more than10times. AG/TC, taking account of43.8%of the total, was the dominant motif type. AAG/TTC was the most frequent occurring trinucleotide motif, accounting for6.8%of the total. The distribution density of EST-SSR with dinucleotide motif was20/10kb in5'UTR, which was higher than that of8/20kb in CDS. However, the EST-SSR with trinucleotide motif, the distribution density was4/10kb, which was comparable with the5/10kb in CDS. The results offered valuable information for SSR marker development in pepper.
     Secondly, the characters of redundancy and heterozygosity of EST sequences in public sequence database were used to identify a set of polymorphic EST-SSR loci by sequence alignment and a set of polymorphic EST-SSR markers were subsequently validated. The contigs containing the redundant EST sequences were screened and a total of68polymorphic SSR loci were identified,65of which had suitable sequence length for primer design. The polymorphisms of the putative polymorphic SSR loci were validated by31pepper genotypes, resulting in33polymorphic EST-SSR loci. The repeating number of the motif for the polymorphic loci ranged from2to10times. There were18loci with the motif repeating number less than5times, accounting for55%of the total. There are27EST-SSR loci having significant homology with the genes with known functions, which covered the physiological proceedings of seed maturity, stress response and so on. There were7,18and15EST-SSR that could transfer to eggplant, tomato and potato respectively. A total of14EST-SSR markers had the transferability on all the corps of eggplant, tomato and potato. Meanwhile, there were6EST-SSR markers that could not transfer to either of eggplant, tomato and potato. The results not only offered a set of SSR markers locating in the transcript regions for pepper genetic breeding researches, but also provided experimental evidences for further mining the sequence information in public database and developing the SSR markers with the low repeating number.
     Finally, the molecular genetic diversity of31pepper varieties was analyzed by using33polymorphic EST-SSR markers.91alleles were amplified by the33polymorphic markers. The maximum of6and average of2.76alleles per locus were detected respectively. The average observed and expected heterozygosities were0.28and0.39respectively. The polymorphic information content (PIC) ranged from0.03to0.74with the means of0.38. The cluster analysis showed that those varieties could be divided into2major groups according to0.48Jaccard's similarity. The first group had5varieties,most of which were Capsicum Chinense Jacquin, and the second group had26varieties which could be divided into6subgroup. The results of principal coordinates analysis were basically consistent with the UPGMA cluster. Furthermore, the cluster analysis based on EST-SSR markers revealed that the genetic similarity was not correlation with the morphologic traits of the fruit, such as fruit type, maturity, hot taste, etc.
引文
Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing:expressed sequence tags mad human genome project[J]. Science,1991,252 (5013): 1651-1656.
    Andersen JR., Liibberstedt T. Functional markers in plants[J]. Trends in Plant Scienee, 2003,8 (11):554-559.
    Andersen JR, Schrag T, Melchinger AE, et al. Validation of DwarfS polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.) [J].Theor.Appl. Genet.,2005,111 (2):206-217.
    Ansorge WJ. Next-generation DNA sequencing techniques[J]. New Biotechnology, 2009,25 (4):195-203.
    Barker G, Batley J, Sullivan HO, et al. Redundancy based detection of sequence polymorphisms in expressed sequence tag data using auto SNP[J]. Bioinformatics, 2003,19:421-422.
    Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms:progress, problems and prospects[J]. Annals of Botany,2005,95 (1):45-90.
    Blenda A, ScheZer J, ScheZer B, et al.CMD:a cotton microsatellite database resource for Gossypium genomics[J]. BMC Genomics,2006,7:132.
    Blum E, Mazourek M, O'Connel M, et al. Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum[J].Theor.Appl.Genet.,2003,108 (1):79-86.
    Bradury LMT, Fitzgerald TL, Henry RJ, et al. The gene for fragrance in rice[J]. Plant Biotech J,2005,3 (3):363-371.
    Camus-Kulandaivelu L, Veyrieras JB, Madur D, et al. Maize adaptation to temperate climate:relationship between population structure and polymorphism in the DwarfS gene[J]. Genetics,2006,172 (4):2449-2463.
    Caranta C, Pflieger S, Lefebvre V, et al. QTLs involved in the restriction of cucumber mosaic virus (CMV) long distance movement in pepper[J]. Theor. Appl. Genet., 2002,104 (4):586-591.
    Caranta C, Thabuis A, Palloix A. Development of a CAPS marker or the Pvr4 locus:A tool for pyramiding potyvirus resistance genes in pepper[J]. Genome,1999,42 (6): 1111-1116.
    Cavagnaro PF, Senalik DA, Yang L, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.) [J]. BMC Genomics,2010, 11:569.
    Chaim AB, Paran I, Grube RC, et al. QTL mapping of fruit-related traits in pepper (Capsicum annuum) [J]. Theor. Appl. Genet.,2001,102 (6):1016-1028.
    Chen C, Bowman KD, Choi YA, et al. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliate[EB/OL]. Tree Genetics and Genomes,2007. http: //ww.springerlink.com/conten/a2t5271785626233/fulltext.html.
    Chen K, McLellan MD, Ding L, et al. PolyScan:An automatic indel and SNP detection approach to the analysis of human resequencing data[J]. Genome Research,2007, 17 (5):659-666.
    Cho YG, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and genbank sequences in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics,2000,100:713-722.
    Choe YW, Park DY, Suh KH. Pepper (Capsicum annuum L.) cultivar identification and seed purity test by random amplified polymorphic DNAs (RAPDs) and phosphoglucomutase (PGM) isozyme [J]. RDA Journal of Horticulture Science, 1998,40 (1):15-23.
    Djian-Caporalino C, Pijarowski L, Fazari A, et al. High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.) [J]. Theor. Appl. Genet., 2001,103:592-600.
    Feingold S, Lloyd J, Norero N, et al. Mapping and characterization of new est-derived microsatellites for potato (Solanum Tuberosum L.) [J]. Theoretical and Applied Genetics,2005,111 (3):456-466.
    Gao Q, Yue GD, Li WQ, et al. Recent progress using high-throughput sequencing technologies in plant molecular breeding[J]. Journal of Integrative Plant Biology, 2012,54 (4):215-227.
    Chen GP, Ma WS, Huang ZJ, et al. Isolation and characterization of TaGSKI involved in wheat salt tolerance[J]. Plant Science,2003,165:1369-1375.
    Heras Vazquez FJ, Jimenez MC, Vico FR. RAPD fingerprinting of pepper (Capsicum annuum L.)breeding lines[J]. Capsicum and Eggplant Newsletter,1996,15:37-40.
    Holton TA, Christopher JT, Mcclure L, et al. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat[J]. Molecular Breeding,2002,9:63-71.
    Huang SW, Zhang BX, Miboume D, et al. Development of pepper SSR marker from sequence database[J]. Euphytica,2000,117:163-167.
    Huang X, Madan A. CAP3:a DNA sequence assembly program[J]. Genome Research, 1999,9:868-877.
    Ince AG, Karaca M, Onus AN. Polymorphic microsatellite markers transferable across Gapsicum species[J]. Plant Molecular Biology Reporter,2010,28:285-291.
    Juliette Leymarie, Elisabeth Bruneanx, Stephanie Gibot-Leclerc, et al. Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP[J].2007,58 (3):425-437.
    Jun TH, Michel AP, Mian MA. Development of soybean aphid genomic SSR markers using next generation sequencing[J]. Genome,2011,54 (5):360-367.
    Kang BC, Nahm SH, Huh JH, et al. An interspecific (Capsicum annuum X C. chinense) F2 linkage map in pepper using RFLP and AFLP markers[J]. Theor. Appl Genet., 2001,102:531-539.
    Kantety RV,La Rota M, Matthews DE, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat[J]. Plant Molecular Biology,2002,48:501-510.
    Kong Q, Xiang C, Yu Z, et al. Mining and charactering microsatellites in Cucumis melo ESTs from sequence database[J]. Molecular Ecology Notes,2007,7:281-283.
    Kong Q, Xiang C, Yu Z. Development of EST-SSRs in Cucumis sativus from sequence database[J]. Molecular Ecology Notes,2006,6:1234-1236.
    Kota R, Varshney R K, Thiel T, et al. Generation comparison of EST-derived SSRs and SNPs in barley (Hordeum, vulgare L.) [J]. Hereditas,2001,135:145-151.
    Lawson MJ, Zhang LQ. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes[J]. Genome Biology,2006,7 (2):R14.
    Lee JM, Nahm SH, Kim YM, et al. Characterization and molecular genetic mapping of microsatellite loci in pepper[J]. Theoretical and Applied Genetics,2004,108: 619-627.
    Lefebvre V, Palloix A, Caranta C, et al. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies[J]. Genome,1995,38:112-121.
    Lefebvre V, Palloix A, Max R. Nuclear RFLP between pepper cultivars (Capsicum annuum L) [J]. Euphytica,1993,71:189-199.
    Lefebvre V, Pfieger S, Thabuis A, et al. Towords the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes[J]. Genome,2002,45:839-854.
    Leigh F, Les V, Law J, et al. Assessment of EST and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat[J]. Euphytica,2003, 133:359-366.
    Livingstone KD, Lackney VK, Blauth JR, et al. Genome mapping in Capsicum and the evolution of genome structure in solanaceae[J]. Genetics,1999,152:1183-1202.
    Livneh O, Eyal Vardi, Yehuda Stram, et al. The conversion of a RFLP assay into PCR for the determination of purity in a hybrid pepper cultivar[J]. Euphytica,1992,62: 97-102.
    Marie-Claire N, Jean B, Nicolas J, et al. Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce[J]. Mol Ecol,2008,17:3599-3613.
    Martin MA, Mattioni C, Lusini, I, et al. Microsatellite development for the relictual conifer Araucaria araucana (Araucariaceae) using next-generation sequencing[J]. American Journal of Botany,2012,99 (5):213-215.
    Minamiyama Y, Tsuro M, Hirai M. An SSR-based linkage map of Capsicum annuum[J]. Molecular Breeding,2006,18:157-169.
    Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature Genetic,2002,30:194-200.
    Nagy I, Sasvari Z, Stagel A, et al. Occurrence and polymorphism of microsatellite repeats in the sequence databases in pepper[A].//Voorrips R E. Proceedings of ⅩⅡth EUCARPIA meeting on genetics and breeding of Capsicum and eggplant[C]. Netherland:Noordwijker-hout,2004.224-226.
    Nagy I, Stagel A, Sasvari Z, et al. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.) [J]. Genome,2007,50 (7):668-688.
    Paran I, Aftergoot E, Shifriss C. Variation in Capsicum annuum revealed by RAPD and AFLP markers[J]. Euphytica,1998,99:167-174.
    Paran I, JR van der Voort, Lefebvre V, et al. An integrated genetic linkage map of pepper (Capsicum spp.) [J]. Molecular Breeding,2004,13 (3):251-261.
    Parida SK, Kumar KAR, Dalal V, et al. Unigene derived microsatellite markers for the cereal genomes[J]. Theoretical and Applied Genetics,2006,112 (5):808-817.
    Pazos-Navarro M, Dabauza M, Correal E, et al. Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species, Bituminaria bituminosa[J]. BMC Genetics,2011,12 (1):104.
    Pennisi E. The greening of plant genomics[J]. Science,2007,317(5836):317.
    Pierre M, Noel L, Lahaye T, et al. High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthomonas campestris pv. Vesicatora AvrBs3 protein[J]. Theor. Appl. Genet.,2000,101:255-263.
    Portis E, Nagy I, Sasvdri Z, et al. The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping[J]. Plant Science,2007,172:640-648.
    Powell W, Machray GC, Provan J. Polymorphism Revealed by Simple Sequence Repeats[J]. Trends in Plant Science,1996,1 (7):215-222.
    Prince JP, Lackney VK, Angeles C, et al. A survey of DNA polymorphism within the genus Capsicum and the finger printing of pepper cultivars [J]. Genome,1995,38: 224-231.
    Prince JP, Pochard E, Tanksley SD. Construction of a molecular linkage map of pepper and a comparison of synteny with tomato [J]. Genome,1993,36:404-417.
    Rao G, Chaim AB, Borovsky Y, et al. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens[J]. Theor. Appl. Genet., 2003,106 (8):1457-1466.
    Ren Y, Zhang ZH, Liu JH, et al. An integrated genetic and cytogenetic map of the cucumber genome[J].Plos One,2009,4 (6):e5795.
    Ren Y, Zhao H, Kou QH, et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome[J]. Plos One,2012,7 (1):29453.
    Rodriguez JM, Berke T, Engle L, et al. Variation among and within Capsicum species revealed by RAPD markers[J]. Theor Appl Genet,1999,99:147-156.
    Rossetto M, Mcnally J, Henry RJ. Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the vitaceae[J]. Theoretical and Applied Genetics,2002,104:61-66.
    Scott KD, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs[J]. Theoretical and Applied Genetics,2000,100:723-726.
    Slade AJ, Fuerstenberg SI, Loeffler D, et al. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING[J]. Nat. Biotechnol.,2005,23(1):75-81.
    Squirrell J, Hollingsworth PM, Woodhead M, et al. How much effort is required to isolate nuclear microsatellites from plants[J]. Molecular Ecology,2003,12 (6): 1339-1348.
    Suhrez MC, Bernal A, GutiErrez J, et al. Developing expressed sequence tags (ESTs) from polymorphic transcriptderived fragments (TDFs) in cassava (Manihot esculenta Crantz) [J]. Genome,2000,43:62-67.
    Tai TH, Dougtas D, Clark ET, et al. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato[J]. Proc. Natl. Sci. USA,1999,96 (24): 14153-14158.
    Tang JF, Baldwin SJ, Jacobs JME, et al. Large-scale identification of polymorphic microsatellites using an in Silico approach[J]. BMC Bioinformatics,2008,9:374.
    Tanksley SD. Linkage relationships and chromosomal locations of enzyme-coding genes in pepper Capsicum annuum[J]. Chromosoma,1984,89:352-360.
    Tanksley SD., Bernatzky R, Lapitan NL, et al. Conservation of gene repertoire but not gene order in pepper and tomato[J]. Proc. Natl. Acad. Sci. USA,1988,85 (17): 6419-6423.
    Thiel T, Michalek W, Varshney RK, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) [J]. Theoretical and Applied Genetics,2003,106:411-422.
    Till BJ, Reynolds SH, Weil C.,et al. Discovery of induced point mutations in maize genes by TILLING[J]. BMC Plant Biol,2004,4:12-19.
    Useche FJ, Gao G, Hanafey M, et al. High throughput identification database Storage and analysis of SNPs in EST sequence[J]. Genome Informatics,2001,12:194-203.
    Vendramin E, Dettori MT, Giovinazzi J, et al. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species[J]. Molecular Ecology Notes,2007,7:307-310.
    Wang LH, Gu XH, Hua MY. A SCAR marker linked to the N gene for resistance to root knot nematodes (Meloidogyne spp.) in pepper (Capsicum annuum L.) [J]. Scientia Horticultura, 2009,122:318-322.
    Yi G, Lee JM, Lee S, et al. Exploitation of pepper EST-SSRs and an SSR-based linkage map[J]. Theoretical and Applied Genetics,2006,114 (1):113-130.
    Zalapa JE, Cuevas H, Zhu H, et al. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences[J]. American Journal of Botany,2012,99 (2):193-208.
    Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review[J]. Molecular Ecology,2002,11 (1):1-16.
    Zhan BJ, Fadista J, Thomsen B, et al. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping[J]. BMC Genomics, 2011,12:557.
    Zhang BX, Huang SW, Yang GM, et al. Two RAPD markers linked to a major fertility restorer gene in pepper[J]. Euphytica,2000,113 (2):155-161.
    Zhang WW, Pan JS, He HL, et al. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.) [J]. Theor Appl Genet,2012,124 (2): 249-259.
    Zhang ZH, Deng YJ, Tan J, et al. A genome-wide microsatellite polymorphism database for the Indica and Japonica rice[J]. DNA Research,2007,14 (1):37-45.
    Zheng XW, Chen XW, Zhang XH, et al. Isolation and identification of a gene in response to rice blast disease in rice[J]. Plant Mol Biology,2004,54:99-109.
    白占兵,李雪峰,戴雄泽.利用SSR分子标记建立辣椒纯度鉴定体系[J].辣椒杂志,2010,1 :32-34.
    曹水良,胡开林,王得元.RAPD标记构建辣椒分子连锁图谱研究初报[J].广东农业科学,2005,(2):35-37.
    常彩涛,王春国,陈成彬,等.细胞质雄性不育辣椒育性恢复基因特异分子标记的筛选[J].实验生物学报,2005,38(3):227-231.
    陈洪,钱前,朱立煌,等.杂交水稻汕优63杂种纯度的RAPD鉴定[J].科学通报,1996,41(9):833-836.
    陈青,张银东.与辣椒抗蚜性基因连锁的RAPD标记[J].园艺学报,2003,30(6):737-738.
    陈青.辣椒种质资源对桃蚜的抗性鉴定初报[J].长江蔬菜,2003,(1):41-43.
    陈军方,任正隆,高丽锋,等.从小麦EST序列中开发新的SSR引物[J].作物学报,2005,31(2):154-158.
    陈灵芝,张建农,王兰兰,等.利用SCAR标记鉴定“陇椒5号”辣椒种子的纯度[J].甘肃农业大学学报,2011,1:55-57.
    陈全求,詹先进,蓝家样,等.EST分子标记开发研究进展[J].中国农学通报,2008,24(9):72-77.
    陈学军,陈劲枫,耿红,等.辣椒属5个栽培种部分种质亲缘关系的RAPD分析[J].园艺学报,2006,33(4):751-756.
    陈学军,程志芳,陈劲枫,等.辣椒种质遗传多样性的RAPD和ISSR及其表型数据分析[J].西北植物学报,2007,27(4):662-670.
    陈学军,方荣,缪南生,等.辣椒属栽培种主要表型性状的因子分析[J].中国蔬菜,2009,(2):21-25.
    程云,李焕秀.辣椒材料亲缘关系的RAPD初步分析[J].四川农业大学学报,2004,22(4):386-388.
    程云.辣椒材料亲缘关系的RAPD初步分析[J].四川农业大学学报,2004,(4):386-388.
    戴雄泽,陈文超,张竹青,等.不同辣度辣椒资源果实主要性状研究[J].湖南农业大学学报(自然科学版),2008,(4):433-437.
    戴雄泽,刘志敏.初论我国辣椒产业的现状及发展趋势[J].辣椒杂志,2005,(4):1-6.
    邓明华,文锦芬.云南灌木辣椒资源[J].辣椒杂志,2009,(1):36-37.
    杜晓华,王得元,巩振辉.基于SRAP和SSR的辣椒优良自交系间遗传距离的估计与比较[J].西北农林科技大学学报(自然科学版),2007,(7):97-102.
    耿广东,张素勤,盛霞.辣椒种质资源主要表型性状的典型相关分析[J].中国农学通报,2009,(5):209-211.
    韩世玉, 姜虹, 杨红.贵州辣椒主要地方品种资源的分类[J].长江蔬菜,2008,(20):73-74.
    何建文,杨文鹏,韩世玉,等.贵州辣椒地方品种分子遗传多样性分析[J].贵州农业科学,2009,(8):15-18.
    贺洁,苏亚蕊,张大乐,等.朝天椒遗传多样性的AFLP标记分析[J].河南大学学报(自然科学版),2010,(3):278-282.
    黄德娟,李素云.两种重要的分子标记——-RFLP和RAPD[J].抚州师专学报,1999,(3):49-53.
    黄启中,吕中华,黄任中,等.辣椒抗病毒病种质资源创新研究初报[J].辣椒杂志,2004,(4):27-31.
    李晴,张学时,张广臣,等.辣椒种质遗传多样性的RAPD分析[J].北方园艺,2010,(22):118-122.
    李成伟,李卓杰,陈润政.用RAPD方法鉴定辣椒种子纯度[J].种子,1999,2:5-6.
    李晶晶,王述彬,刘金兵,等.辣椒EST-SSR标记的开发[J].分子植物育种,2008,6(6):1219-1222.
    李亚利,扈新民,赵丹,等.运用SRAP分子标记鉴定辣椒杂交种纯度[J].中国农学通报,2010,26(24):67-70.
    栾雨时,苏乔,李海涛,等.利用RAPD技术快速鉴定番茄杂种纯度[J].园艺学报,1998,25(3):247-251.
    罗玉娣,李建国,李明芳.用SSR标记分析辣椒属种质资源的遗传多样性[J].生物技术通报,2006,(S1):337-343.
    马艳青,刘志敏,邹学校.辣椒种质资源的RAPD分析[J].湖南农业大学学报(自然科学版),2003,29(2):120-123.
    农寿千,杨小波,李东海,等.海南省中东部农村朝天椒资源的调查研究[J].资源科学,2010,32(12):2400-2406.
    潘海涛,汪俊君,王盈盈,等.小麦EST-SSR标记的开发和遗传作图[J].中国农业科学,2010,(3):452-461.
    乔锋,罗英,曾绍贵,等.基于灰色系统理论的福建辣椒地方品种产量性状综合评估[J].福建农业学报,2009,24(4):318-322.
    束永俊,李勇,柏锡,等.基于基因重测序信息的大豆基因靶向CAPS标记开发[J].作物学报,2009,35(11):2015-2021.
    束永俊,李勇,吴娜拉胡,等.大豆EST-SNP的挖掘、鉴定及其CAPS标记的开发[J].作物学报,2010,36(4):574-579.
    宋伟,王凤格,易红梅,等.功能标记及在品种鉴定和辅助育种中的应用前景[J].分子植物育种,2009,7(3):612-618.
    孙凌云,盖树鹏,樊治成,等.辣(甜)椒种质资源的RAPD分析[J].西北植物学报,2005,25(50):870-875.
    滕有德,陈学群,徐向上.秦巴山区四川部分辣椒种质资源[J].中国蔬菜,1995,(3):41-43.
    王丰,李金华,柳武革,等.一种水稻香味基因功能标记的开发[J].中国水稻科学,2008,22(4):347-352.
    王凯,韦善忠,罗江,等.DNA分子标记及其进展[J].黑龙江八一农垦大学学报,2003,(1):39-43.
    王立浩,张宝玺,杜永臣.辣椒基因遗传定位及分子遗传图谱的研究进展[J].园艺学报,2005,32(6):1147-1154.
    王玲,郑金贵,赖钟雄,等.辣椒遗传多样性的RAPD分析[J].福建农林大学学报(自然科学版),2003,32(2):213-216.
    王伟.干用辣椒种质资源遗传多样性及杂种纯度鉴定的RAPD分析[D].内蒙古:内蒙古民族大学,2009.
    王得元,王鸣,郑学勤.用RAPD分析辣椒细胞质雄性不育基因[J].核农学报,2005,19(2):99-102.
    王述彬,袁希汉,邹学校,等.中国辣椒优异种质资源评价[J].中国辣椒,2002,(4):10-13.
    王子迎,袁树忠.辣椒疫霉EST-SSRs标记的发掘[J].扬州大学学报(农业与生命科学版),2009,30(2):69-75.
    魏兵强,王兰兰,陈灵芝.辣椒胞质雄性不育保持基因的分子标记[J].西北植物学报,2010,30(9):1755-1759.
    魏兵强,王兰兰,陈灵芝.辣椒胞质雄性不育基因的分子标记[J].西北农业学报,2010,19(10): 166-168,173.
    文静,赵冰.分子生物学技术在白粉菌分子遗传研究中的应用[J].安徽农业科学,2009,(14):6365-6368.
    吴玲,付凤玲,李晚忱,等.利用生物信息学方法进行基于表达序列标签的玉米单核苷酸多态性标记的开发[J].核农学报,2010,24(5):968-972.
    忻雅,崔海瑞,张明龙,等.白菜EST-SSR标记的通用性[J].细胞生物学杂志,2006,28(2):248-252.
    徐建欣,王云月,姚春,等.利用SSR分子标记分析云南陆稻品种遗传多样性[J].中国水稻科学,2012,26(2):155-164.
    徐乃林,上官金虎,庄灿然,等.陕西辣椒品种资源的分类与探讨[J].陕西农业科学,2006,(3):57.
    许先松,刘志钦,林晓丹,等.基于形态及SRAP标记的辣椒资源遗传多样性及亲缘关系比较[J].福建农林大学学报(自然科学版),2011,40(1):48-53.
    许占友,常汝镇,邱丽娟,等.不同DNA分子标记技术信息量比较[J].植物遗传资源科学,2000,1(4):41-46.
    杨伦,沈文飚,陈虹,等.基于生物信息学的水稻候选SNP发掘[J].中国水稻科学,2004,18,185-191.
    杨若林,孔俊,吴鑫,等ISSR标记在辣椒资源遗传多态性分析中的初步应用[J].上海大学学报(自然科学版),2005,11(4):423-426.
    姚利华,滕元文EST-SSR标记及其在果树研究中的应用[J].果树学报,2008,25(2):219-224.
    易图永,谢丙炎,张宝玺,等.几个抗疫病性不同的辣椒材料抗病基因同源序列的分离与比较[J].园艺学报,2003,30(5):540-544.
    易图永,谢丙炎,张宝玺,等.辣椒抗疫病性状遗传及其相关AFLP标记分析[J].农业生物技术学报,2007,15(5):847-854.
    易晓华,刘建萍.色素辣椒耐低温种质资源的筛选[J].安徽农业科学,2009, (33):16697-16699.
    尹始琪,刘荣云,欧阳学智AFLP法在辣椒胞质雄性不育恢复系选育中的应用[J].中山大学研究生学刊(自然科学、医学版),2005,26(1): 68-74.
    尹秀丽,张喜春AFLP分子标记在茄果类蔬菜遗传育种中的应用[J].中国农学通报,2009,25(5):25-31.
    詹永发,姜虹,韩世玉,等.朝天椒种质材料的遗传多样性研究[J].贵州农业科学,2008,(4):8-10.
    詹永发,杨红,涂祥敏,等.辣椒品种资源的遗传多样性和聚类分析[J].贵州农业科学,2010,(11):12-15.
    张璐,杨若林,刘文轩,等.辣椒部分栽培种遗传相似性的RAPD分析[J].上海大学学报(自然科学版),2003,9(5):433-437.
    张宇,张晓芬,陈斌,等.辣椒EST-SSR信息分析及标记开发[J].西北农业学报,2010,19(9):186-192.
    张宇.与辣(甜)椒抗根结线虫Mel基因紧密连锁的EST-SSR分子标记的开发[D].四川:四川农业大学,2010.
    张宝玺,王立浩,毛胜利,张正海.“十一五”我国辣椒遗传育种研究进展[J].中国蔬菜,2010,(24):1-9.
    张宝玺,王立浩,黄三文,等.辣椒分子遗传图谱的构建和胞质不育恢复性的QTL定位[J].中国农业科学,2003,36(7):818-822.
    张世德,梁振卿.山东省辣椒品种资源鲜椒品质分析简报[J].山东农业科学,1994,(4):25-26.
    张圣平,苗晗,程周超,等.黄瓜果实苦味(Bt)基因的插入缺失(Indel)标记[J].农业生物技术学报,2011,19(4):649-653.
    张素勤,耿广东,周贤婷,等.贵州辣椒种质资源的表型和SRAP分析[J].山地农业生物学报,2008,(3):228-232.
    张艳欣.海岛棉EST-SSR引物的遗传评价及海陆棉种间高密度遗传连锁图谱构建与QTL定位[D].武汉:华中农业大学,2008.
    赵卫权,赵会礼,汪广兴,等.西南地区辣椒品种资源调查[J].资源开发与市场,2004,(3):206-207.
    支莉,王述彬,刁卫平,等.辣椒EST-SSRs分布特征及其应用[J].江苏农业学报,2010,26(6):1323-1328.
    周晓光,任鲁风,李运涛,等.下一代测序技术:技术回顾与展望[J].中国科学:生命科学,2010,40(1):23-27.
    周群初,马艳青,张竹青,等.利用RAPD技术进行辣椒杂种纯度鉴定的研究[J].湖南农业大学学报,1999,25(2):95-98.
    朱德蔚,王德槟,李锡香.中国作物及其野生近缘植物—蔬菜作物卷[M].北京:中国农业出版社.2008:709.
    邹学校,戴雄泽,张竹青,等.湖南辣椒地方品种资源的因子分析及数量分类[J].植物遗传资源学报,2005,(1):37-42.
    邹学校,马艳青,张竹青,等.湖南辣椒地方品种资源与湘研辣椒品种选育的灰色关联分析[J].植物遗传资源学报,2004,(3):233-238.
    邹学校.杂交辣椒的理论与实践[M].北京:中国农业出版社.2009.
    邹学校.中国辣椒[M].北京:中国农业出版社.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700