用户名: 密码: 验证码:
水稻产量相关基因Ghd7的分离与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高产稳产历来是作物科学研究中最重要的目标之一,水稻产量相关基因的研究一直是水稻育种和水稻分子生物学的重点研究内容。水稻单位面积产量由每穗粒数,有效穗数,千粒重和结实率等因素构成。同时,株高,生育期对水稻株形,适应性等性状影响巨大。目前,水稻中控制抽穗期,株高,分蘖,每穗粒数和粒重的基因都被相继克隆。在本研究中,我们克隆了位于水稻第7染色体着丝粒区QTL,Ghd7,它同时控制水稻的株高,每穗粒数,生育期,来自明恢63的等位基因为不完全显性基因。通过对Ghd7的表达分析和植株的显微结构的比较研究,初步阐明了Ghd7的作用机理,这是在水稻中首次成功克隆这样的一因多效基因。
     通过回交的方法,将含有来自明恢63的Ghd7的片段导入到珍汕97中,获得了珍汕97背景的近等基因系(NIL)。
     NIL与轮回亲本珍汕97相比,抽穗期大约晚了21.2天,株高增加了33厘米,主茎颖花从130粒增加到216粒,单株产量也提高了50%。
     通过经典的图位克隆的方法,利用3个NIL-F_2大群体,把Ghd7精细定到0.28cM,它对应于大约2000 kb的范围,显然,此区间位于着丝粒区,重组交换受到明显抑制,无法把基因区间进一步缩小。通过对该区间序列的分析,发现一个与成花发育相关的基因,该基因含有一个CCT结构域,将含有来自明恢63的基因区段遗传转化合江19,牡丹江8号,日本晴等小穗品种进行功能互补试验,转基因阳性单株都表现抽穗延迟,株高增高,每穗颖花数增加,验证了基因的功能。同时发现Ghd7基因功能效应的大小还受到遗传背景的影响。
     从Ghd7的表达分布来看,主要在幼嫩的叶片,顶端分生组织,二次枝梗分化原基,成熟叶片的维管束的韧皮部表达。从Ghd7的表达部位的显微结构来看,细胞的数目明显增多,推测Ghd7加速了细胞的分裂速度,在幼穗发育中,分化出了更多的二次枝梗,成为Ghd7提高穗粒数的一个解剖学基础,同时茎秆发育的增粗,也更有利于整个植株保持较好的株形,有利于稳产。Ghd7是受光周期控制的基因,mRNA呈昼夜节律性表达,短日下表达受到抑制;长日下,Ghd7抑制Hd3a和Ehd1的表达,这种控制开花的途径跟拟南芥相比,可能是水稻所特有的。
     Ghd7属于CCT基因家族的成员,在植物中CCT类基因是一类快速进化的基因,从基因的进化关系来看,Ghd7跟其他基因的分化距离较远,而与温带长日照植物新笾锌刂拼夯幕騐RN2亲缘关系相近。对于热带亚热带起源的短日照植物水稻来说,没有春化过程,但这两种基因都具有抑制开花的类似功能。从表达模式来看,这类基因也比较相近,都是长日下促进表达,而在短日下表达受到抑制。通过对这类基因的进化关系的深入研究,将为理解温带作物的进化提供有益的帮助。
     通过对分布在亚洲的19个品种的Ghd7等位基因的比较测序发现,Ghd7各种等位基因编码的蛋白共有5种基因型:第一种基因型以明恢63为代表,这种基因型的等位基因具有较强的功能,含有这种等位基因的品种,多分布在我国南方和热带亚热带的水稻生产区,生长时间长;第二种基因型以日本晴为代表,此种等位基因的功能减弱,含有这种等位基因的品种多分布于我国华北及其同纬度的地区;第三种基因型以合江19和牡丹江8号为代表,这种等位基因发生了终止突变,基因完全失去了功能,分布在我国北方的黑龙江省,夏季较短,水稻生育期也与这种气候相适应;第四种基因型只在特青的品种中发现,这种基因型的功能很强,分布的地理区域与第一种类似;还有一种就是Ghd7完全发生了缺失,含有这种基因型的品种,为分布在我国的双季稻区的早稻品种。以上的发现说明Ghd7不同的基因型与水稻品种区域分布相关,这类基因除了参与发育调控外,也可能跟植物的地理分布相关联。
     对Ghd7在90个品种中的序列进行了比较序列,发现了74个SNP位点,将这些位点和表现型结合群体结构作了初步的关联分析,发现了一些关键的SNP位点,其中有的SNP位点与株高关联比较紧密,有的与抽穗期关联比较紧密,而有的与每穗粒数关联紧密,有的与两个性状关联紧密。而大多数SNP位点则与性状没有关联。
     芯片数据的分析表明,Ghd7不仅仅参与了开花的调控,而且参与了植物激素,细胞分裂素的代谢调控。在水稻中,CO类基因参与激素调控是一个全新的领域,还未见到公开的文献报道,通过对这方面的深入研究,将可能全面揭开Ghd7的分子调控机理,为水稻的分子育种提供有力的工具。
Developing high yielding variety is one of the most important goals in crop science.Cloning and characterizing the genes related to yield traits is a major object in rice breeding and rice molecular biology.Yield potential,plant height and heading date are three distinct classes of traits that determine the productivity and adaption of many crop plants.Here we report the story that a quantitative trait locus Ghd7,with major effects on an array of traits in rice including number of grains per panicle, plant height and heading date,has been isolated from an elite rice hybrid by map-based cloning.
     In our previous study,one QTL here named Ghd7 with pleiotropic effects on heading date,plant height and spikelets per panicle was repeatedly detected in the cross Zhenshan 97 and Minghui 63 derived populations.A recombinant line 50, whose 74%genetic background is from Zhenshan 97 was used to consecutively backcross with the recurrent parent Zhenshan 97.Consequently,near isogenic line for Ghd7(NIL(mh7)) was obtained.
     As compared with recurrent parent,Zhensan 97,the NIL(mh7) plants delayed heading by 21.2 days,increased plant height by 33.3 cm,and produced 86 more spikelets on the main culm.Further examination showed that NIL(mh7) out-yielded NIL(zs7) by 8.9 g(50.9%) per plant,primarily due to an increase in number of grains per panicle,although NIL(mh7) had fewer tillers per plant than NIL(zs7).
     Three separate populations derived from NILs/zhenshan 97 were used to fine mapping Ghd7.Ghd7 was located between the markers RM5436 and C39 in the centromere region of chromosome 7 corresponded to a DNA fragment approximately 2284 kb according to Nipponbare sequence.A candidate gene with CCT motif was transformated into rice cultivars Hejiang 19,Mudanjiang 8 and Nipponbare,all of which have relatively small panicle,short stature and early heading.All the transgenic plants showed multivariation of the three target traits and confirmed the candidate gene underlying the genetic basis of trait variation. Meanwhile we found the genetic background also affected the effort of the Ghd7. And Ghd7 could promote cell division in the LD conditions.
     RNA in situ hybridization and Ghd7 promoter-driven GFP transformation were brought to examine sites of Ghd7 expression.The result indicated that Ghd7 mRNA expressed in the shoot apical meristem,whole young leaves,young panicle primordia,culm,phloem of leaves,and roots.The diurnal expression pattern of Ghd7 was investigated by quantifying the relative abundance of the mRNA in young leaves of NIL(mh7) using quantitative RT-PCR.The transcripts of Ghd7 oscillate with diurnal rhythm.Ghd7 expression was enhanced in the day time under LD conditions and was repressed in SD conditions.Ghd7 can suppress the expression of Ehd1 and Hd3a in the LD conditions,and slightly promote Ehd1 expression in the dark period under SD conditions.The result suggested that Ghd7 together with Ehd1 and Hd3a were involved in a novel rice flowering pathway,which does not exist in Arabidopsis.
     Phenogenetic analysis of CCT family showed that Ghd7 and VRN2 shared the same clade.They had a very similar expression pattern.These suggests that tropical SD plants that do not use vernalization as a flowering cue,and temperate LD plants that do use vernalization,actually use related genes to repress flowering in LDs. Such similarity in flowering control provides important clues as to how the temperate cereals might have evolved.
     Five alleles of Ghd7 were identified by comparison of Ghd7 sequences in 19 varieties including a common wild rice,representing a wide geographic range of Asia. The varieties with normal functional alleles like Minghui 63 and common wild rice have a long lifecycle and are distributed in Southern China and Southeast Asia.The allele from Teqing is unique and has a strong function.The varieties with weak functional alleles like Nipponbare have an intermediate lifecycle and are distributed in northern China and Japan.Two types of alleles are nonfunctional,one like Hejiang19 has a premature termination in the first exon;another one has a complete deletion of Ghd7.The varieties carrying these two alleles have a short lifecycle. These results indicate that Ghd7 locus has contributed greatly to both productivity and adaptability of the cultivated rice in a global scale.
     Diversity and association analysis of Ghd7 was carried out in a natural population containing 90 accessions,74 SNP points were found in the sequence of Ghd7.Some SNPs were highly associated with the phenotype.
     Microarray analysis shows that Ghd7 was involved in phytohormones, cytokinins metabolism.The OsCKX2 is repressed in the transgenic plants.It is a new finding that CCT family genes related to the plant hormones in rice.The molecular function of Ghd7 will be comprehensive clarified through further studying the relationship between Ghd7 and phytohormones.
引文
1.刘祖洞.遗传学(上册) 高等教育出版社.北京:高等教育出版社 1979
    2.林拥军.农杆菌介导的水稻基因转化研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    3.彭开曼.构建水稻cosmid,BAC文库及第11染色体长臂末端物理图谱.[博士学位论文].武汉:华中农业大学图书馆,1997
    4.邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆,1999
    5.余四斌.优良杂交水稻籼稻汕优63杂种优势遗传学基础的分子标记剖析.[博士学位论文].武汉:华中农业大学图书馆,1997
    6.杨文钰,屠乃美.作物栽培学各论南方本.北京:中国农业出版社,2003,8-25
    7.The map-based sequence of the rice genome.Nature,2005,436:793-800
    8.Abe M,Fujiwara M,Kurotani K,Yokoi S,Shimamoto K.Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification(TAP).Plant Cell Physiol,2008,49:420-432
    9.Abe M,Kobayashi Y,Yamamoto S,Daimon Y,Yamagnchi A,Ikeda Y,Ichinoki H,Notaguchi M,Goto K,Araki T.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Science,2005,309:1052-1056
    10.Alabadi D,Oyama T,Yanovsky M J,Harmon F G,Mas P,Kay S A.Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.Science,2001,293:880-883
    11.Alba R,Kelmenson P M,Cordonnier-Pratt M M,Pratt L H.The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms.Mol Bioi Evol,2000,17:362-373
    12.Allard R W.History of plant population genetics.Annu Rev Genet,1999,33:1-27
    13.An H,Roussot C,Suarez-Lopez P,Corbesier L,Vincent C,Pineiro M,Hepworth S,Mouradov A,Justin S,Turnbull C,Coupland G.CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis.Development,2004,131:3615-3626
    14. Arora R, Agarwal P, Ray S, Singh A K, Singh V P, Tyagi A K, Kapoor S. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8:242
    15. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96:10284-10289
    16. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J W, Elledge S J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86:263-274
    17. Briggs W R, Huala E. Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol, 1999,15:33-62
    18. Britz S J, Hungerford W E, Lee D R. Photoperiodic Regulation of Photosynthate Partitioning in Leaves of Digitaria decumbens Stent. Plant Physiol, 1985, 78:710-714
    19. Brzobohaty B, Moore I, Palme K. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol, 1994, 26:1483-1497
    20. Cheng P, He Q, Yang Y, Wang L, Liu Y. Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci USA, 2003,100:5938-5943
    21. Daniel X, Sugano S, Tobin E M. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101:3292-3297
    22. David K M, Armbruster U, Tama N, Putterill J. Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett, 2006, 580:1193-1197
    23. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18:926-936
    24. Du L, Jiao F, Chu J, Jin G, Chen M, Wu P. The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics, 2007, 89:697-707
    25.Dubcovsky J,Loukoianov A,Fu D,Valarik M,Sanchez A,Yan L.Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2.Plant Mol Biol,2006,60:469-480
    26.Dunford R P,Yano M,Kurata N,Sasaki T,Huestis G,Rocheford T,Laurie D A.Comparative mapping of the barley Ppd-H1 photoperiod response gene region,which lies close to a junction between two rice linkage segments.Genetics,2002,161:825-834
    27.Elzinga B M,Roelofs K,Tollenaar M S,Bakvis P,van Pelt J,Spinhoven P.Diminished cortisol responses to psychosocial stress associated with lifetime adverse events a study among healthy young subjects.Psychoneuroendocrinology,2008,33:227-237
    28.Eriksson M E,Hanano S,Southern M M,Hall A,Millar A J.Response regulator homologues have complementary,light-dependent functions in the Arabidopsis circadian clock.Planta,2003,218:159-162
    29.Farre E M,Harmer S L,Harmon F G,Yanovsky M J,Kay S A.Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.Curr Biol,2005,15:47-54
    30.Fornara F,Parenicova L,Falasca G,Pelucchi N,Masiero S,Ciannamea S,Lopez-Dee Z,Altamura M M,Colombo L,Kater M M.Functional characterization of OsMADS18,a member of the AP1/SQUA subfamily of MADS box genes.Plant Physiol,2004,135:2207-2219
    31.Fowler S,Lee K,Onouchi H,Samach A,Richardson K,Morris B,Coupland G,Putterill J.GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains.Embo J,1999,18:4679-4688
    32.Fujimori T,Sato E,Yamashino T,Mizuno T.PRR5(PSEUDO-RESPONSE REGULATOR 5) plays antagonistic roles to CCA1(CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana.Biosci Biotechnol Biochem,2005,69:426-430
    33. Fujino K, Sekiguchi H. Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theor Appl Genet, 2005,111:393-398
    34. Furner I J, Ainscough J F, Pumfrey J A, Petty L M. Clonal analysis of the late flowering fca mutant of Arabidopsis thaliana: cell fate and cell autonomy. Development, 1996,122:1041-1050
    35. Garner W W, Allard H A. Photoperiodism, the Response of the Plant to Relative Length of Day and Night. Science, 1922, 55:582-583
    36. Garner W W, Allard H A. Effect of Short Alternating Periods of Light and Darkness on Plant Growth. Science, 1927, 66:40-42
    37. Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004,37:626-634
    38. Green R M, Tobin E M. The role of CCA1 and LHY in the plant circadian clock. Dev Cell, 2002, 2:516-518
    39. Griffiths S, Dunford R P, Coupland G, Laurie D A. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol, 2003,131:1855-1867
    40. Guo H, Yang H, Mockler T C, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279:1360-1363
    41. Gustafson-Brown C, Savidge B, Yanofsky M F. Regulation of the arabidopsis floral homeotic gene APETALA1. Cell, 1994, 76:131-143
    42. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F_2 population. Genetics, 1998, 148:479-494
    43. Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol, 2002, 43:494-504
    44. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422:719-722
    45. Hennig L, Funk M, Whitelam G C, Schafer E. Functional interaction of cryptochrome 1 and phytochrome D. Plant J, 1999a, 20:289-294
    46. Hennig L, Poppe C, Unger S, Schafer E. Control of hypocotyl elongation in Arabidopsis thaliana by photoreceptor interaction. Planta, 1999b, 208:257-263
    47. Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol, 2007, 48:523-539
    48. Holmquist R, Jukes T H, Moise H, Goodman M, Moore G W. The evolution of the globin family genes: concordance of stochastic and augmented maximum parsimony genetic distances for alpha hemoglobin, beta hemoglobin and myoglobin phylogenies. J Mol Biol, 1976,105:39-74
    49. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003,100:2574-2579
    50. Huelsenbeck J P, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001,17:754-755
    51. Huq E, Tepperman J M, Quail P H. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA, 2000, 97:9789-9794
    52. Hwang I, Chen H C, Sheen J. Two-component signal transduction pathways in Arabidopsis. Plant Physiol, 2002,129:500-515
    53. Hwang 1, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 2001,413:383-389
    54. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAIIRGAIRHTID8. Plant Cell, 2001, 13:999-1010
    55. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J, 2007,51:1030-1040
    56. Ikeda K, Nagasawa N, Nagato Y. ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol, 2005, 282:349-360
    57. Imaizumi T, Kay S A. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci, 2006,11:550-558
    58. Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309:293-297
    59. Imaizumi T, Tran H G, Swartz T E, Briggs W R, Kay S A. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 2003, 426:302-306
    60. Ishikawa R, Tamaki S, Yokoi S, Inagaki N, Shinomura T, Takano M, Shimamoto K. Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell, 2005, 17:3326-3336
    61. Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R. Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot, 2001, 52:1827-1833
    62. Ishimaru K, Ono K, Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta, 2004,218:388-395
    63. Ito S, Niwa Y, Nakamichi N, Kawamura H, Yamashino T, Mizuno T. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana. Plant Cell Physiol, 2008, 49:201-213
    64. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54:533-547
    65. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell, 2002, 14:57-70
    66. Izawa T. Daylength measurements by rice plants in photoperiodic short-day flowering. Int Rev Cytol, 2007, 256:191-222
    67.Izawa T,Oikawa T,Sugiyama N,Tanisaka T,Yano M,Shimamoto K.Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice.Genes Dev,2002,16:2006-2020
    68.Izawa T,Takahashi Y,Yano M.Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis.Curr Opin Plant Biol,2003,6:113-120
    69.Jack T.Plant development going MADS.Plant Mol Biol,2001,46:515-520
    70.Jaeger K E,Wigge P A.Fr protein acts as a long-range signal in Arabidopsis.Curr Biol,2007,17:1050-1054
    71.Jander G,Norris S R,Rounsley S D,Bush D F,Levin I M,Last R L.Arabidopsis map-based cloning in the post-genome era.Plant Physiol,2002,129:440-450
    72.Jung J H,Seo Y H,Seo P J,Reyes J L,Yun J,Chua N H,Park C M.The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis.Plant Cell,2007,19:2736-2748
    73.Kang H G,Jang S,Chung J E,Cho Y G,An G.Characterization of two rice MADS box genes that control flowering time.Mol Cells,1997,7:559-566
    74.Kardailsky I,Shukla V K,Ahn J H,Dagenais N,Christensen S K,Nguyen J T,Chory J,Harrison M J,Weigel D.Activation tagging of the floral inducer FT.Science,1999,286:1962-1965
    75.Kater M M,Dreni L,Colombo L.Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis.J Exp Bot,2006,57:3433-3444
    76.Kempin S A,Savidge B,Yanofsky M F.Molecular basis of the cauliflower phenotype in Arabidopsis.Science,1995,267:522-525
    77.Kim S J,Moon J,Lee I,Maeng J,Kim S R.Molecular cloning and expression analysis of a CONSTANS homologue,PnCOL1,from Pharbitis nil.J Exp Bot,2003,54:1879-1887
    78.Kim S L,Lee S,Kim H J,Nam H G,An G.OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1,OsMADS14,and Hd3a.Plant Physiol,2007,145:1484-1494
    79. Kim W Y, Fujiwara S, Suh S S, Kim J, Kim Y, Han L, David K, Putterill J, Nam H G, Somers D E. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 2007, 449:356-360
    80. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe W J, Koornneef M, Kakutani T. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J, 2007, 49:38-45
    81. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286:1960-1962
    82. Kobayashi Y, Weigel D. Move on up, it's time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007, 21:2371-2384
    83. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43:1096-1105
    84. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003,130:3841-3850
    85. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol, 2001, 231:364-373
    86. Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol, 2004, 55:521-535
    87. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135:767-774
    88. Koornneef M, Hanhart C J, van der Veen J H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet, 1991, 229:57-66
    89. Kurepa J, Smalle J, Van Montagu M, Inze D. Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J, 1998, 14:759-764
    90. Kyozuka J, Shimamoto K. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol, 2002, 43:130-135
    91. Lagercrantz U, Axelsson T. Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol, 2000,17:1499-1507
    92. Lagercrantz U, Putterill J, Coupland G, Lydiate D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996, 9:13-20
    93. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185-199
    94. Lang A, Chailakhyan M K, Frolova I A. Promotion and inhibition of flower formation in a dayneutral plant in grafts with a short-day plant and a long-day plant. Proc Natl Acad Sci USA, 1977, 74:2412-2416
    95. Laurie D A. Comparative genetics of flowering time. Plant Mol Biol, 1997, 35:167-177
    96. Lee S, Kim J, Han J J, Han M J, An G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J, 2004,38:754-764
    97. Lee Y, Lloyd A M, Roux S J. Antisense expression of the CK2 alpha-subunit gene in Arabidopsis. Effects on light-regulated gene expression and plant growth. Plant Physiol, 1999,119:989-1000
    98. Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90:929-938
    99. Li J Z, Huang X O, Heinrichs F, Ganal M W, Roder M S. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet, 2005,110:356-363
    100. Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL x environment interactions in rice. 1. heading date and plant height. Theor Appl Genet, 2003, 108:141-153
    101. Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol, 2003, 3:17
    102. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25:402-408
    103. Locke J C, Kozma-Bognar L, Gould P D, Feher B, Kevei E, Nagy F, Turner M S, Hall A, Millar A J. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol, 2006, 2:59
    104. Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol, 2006,47:181-191
    105. Martinez-Zapater J M, Somerville C R. Effect of Light Quality and Vernalization on Late-Flowering Mutants of Arabidopsis thaliana. Plant Physiol, 1990, 92:770-776
    106. Martin-Tryon E L, Kreps J A, Harmer S L. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol, 2007,143:473-486
    107. Mas P, Alabadi D, Yanovsky M J, Oyama T, Kay S A. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell, 2003a, 15:223-236
    108. Mas P, Kim W Y, Somers D E, Kay S A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 2003b, 426:567-570
    109. Matsushika A, Makino S, Kojima M, Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol, 2000, 41:1002-1012
    110. Matsushika A, Makino S, Kojima M, Yamashino T, Mizuno T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: II. Characterization with CCA1 -overexpressing plants. Plant Cell Physiol, 2002, 43:118-122
    111. McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35:89-99
    112. McCouch S R, Doerge R W. QTL mapping in rice. Trends Genet, 1995,11:482-487
    113. Meaburn E, Butcher L M, Schalkwyk L C, Plomin R. Genotyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans. Nucleic Acids Res, 2006, 34:e27
    114. Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107:89-101
    115. Miller T A, Muslin E H, Dorweiler J E. A maize CONSTANS-like gene, conzl, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008,
    116. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H R, Carre I A, Coupland G LHY and CCAl are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell, 2002, 2:629-641
    117. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell, 2005,17:2255-2270
    118. Mizuno T, Nakamichi N. Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). Plant Cell Physiol, 2005, 46:677-685
    119. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002b, 9:11-17
    120. Monna L, Lin X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet, 2002a, 104:772-778
    121.Mouradov A,Cremer F,Coupland G.Control of flowering time:interacting pathways as a basis for diversity.Plant Cell,2002,14 Suppl:S111-130
    122.Murakami M,Ashikari M,Miura K,Yamashino T,Mizuno T.The evolutionarily conserved OsPRR quintet:rice pseudo-response regulators implicated in circadian rhythm.Plant Cell Physiol,2003,44:1229-1236
    123.Murakami M,Matsushika A,Ashikari M,Yamashino T,Mizuno T.Circadian-associated rice pseudo response regulators(OsPRRs):insight into the control of flowering time.Biosci Biotechnol Biochem,2005,69:410-414
    124.Murakami M,Tago Y,Yamashino T,Mizuno T.Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana.Biosci Biotechnol Biochem,2007,71:1107-1110
    125.Murakami M,Tago Y,Yamashino T,Mizuno T.Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa.Plant Cell Physiol,2007,48:110-121
    126.Nakagawa M,Shimamoto K,Kyozuka J.Overexpression of RCN1 and RCN2,rice TERMINAL FLOWER 1/CENTRORADIALIS homologs,confers delay of phase transition and altered panicle morphology in rice.Plant J,2002,29:743-750
    127.Nakamichi N,Kita M,lto S,Sato E,Yamashino T,Mizuno T.The Arabidopsis pseudo-response regulators,PRR5 and PRR7,coordinately play essential roles for circadian clock function.Plant Cell Physiol,2005,46:609-619
    128.Nakamichi N,Kita M,Ito S,Yamashino T,Mizuno T.PSEUDO-RESPONSE REGULATORS,PRR9,PRR7 and PRR5,together play essential roles close to the circadian clock of Arabidopsis thaliana.Plant Cell Physiol,2005,46:686-698
    129.Nakamichi N,Kita M,Niinuma K,Ito S,Yamashino T,Mizoguchi T,Mizuno T.Arabidopsis clock-associated pseudo-response regulators PRR9,PRR7 and PRR5coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway.Plant Cell Physiol,2007,48:822-832
    130.Nelson D C,Lasswell J,Rogg L E,Cohen M A,Bartel B.FKF1,a clock-controlled gene that regulates the transition to flowering in Arabidopsis.Cell,2000,101:331-340
    131. Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J, 2003, 36:82-93
    132. Oliverio K A, Crepy M, Martin-Tryon E L, Milich R, Harmer S L, Putterill J, Yanovsky M J, Casal J J. GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol, 2007,144:495-502
    133. Onouchi H, Igeno M I, Perilleux C, Graves K, Coupland G Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell, 2000,12:885-900
    134. Para A, Fane E M, Imaizumi T, Pruneda-Paz J L, Harmon F G, Kay S A. PRR3 Is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell, 2007,19:3462-3473
    135. Park D H, Somers D E, Kim Y S, Choy Y H, Lim H K, Soh M S, Kim H J, Kay S A, Nam H G Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science, 1999, 285:1579-1582
    136. Patton E E, Willems A R, Tyers M. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet, 1998,14:236-243
    137. Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999, 400:256-261
    138. Peng L T, Shi Z Y, Li L, Shen G Z, Zhang J L. Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochem Biophys Res Commun, 2007, 360:251-256
    139. Piffanelli P, Droc G, Mieulet D, Lanau N, Bes M, Bourgeois E, Rouviere C, Gavory F, Cruaud C, Ghesquiere A, Guiderdoni E. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol, 2007, 65:587-601
    140. Pineiro M, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998, 117:1-8
    141. Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J, 2005, 43:915-928
    142. Putterill J, Robson F, Lee K, Simon R, Coupland G The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80:847-857
    143. Ratcliffe O J, Amaya I, Vincent C A, Rothstein S, Carpenter R, Coen E S, Bradley D J. A common mechanism controls the life cycle and architecture of plants. Development, 1998,125:1609-1615
    144. Reed J W, Nagpal P, Poole D S, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell, 1993, 5:147-157
    145. Remington D L, Ungerer M C, Purugganan M D. Map-based cloning of quantitative trait loci: progress and prospects. Genet Res, 2001, 78:213-218
    146. Reyes J C, Muro-Pastor M I, Florencio F J. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol, 2004,134:1718-1732
    147. Robert L S, Robson F, Sharpe A, Lydiate D, Coupland G Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol, 1998,37:763-772
    148. Robson F, Costa M M, Hepworth S R, Vizir I, Pineiro M, Reeves P H, Putterill J, Coupland G Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J, 2001, 28:619-631
    149. Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003,19:1572-1574
    150. Rubio V, Deng X W. Plant science. Standing on the shoulders of GIGANTEA. Science, 2007, 318:206-207
    151. Sablowski R. Flowering and determinacy in Arabidopsis. J Exp Bot, 2007, 58:899-907
    152.Sakamoto T.Phytohormones and rice crop yield:strategies and opportunities for genetic improvement.Transgenic Res,2006,15:399-404
    153.Sakamoto T,Miura K,Itoh H,Tatsumi T,Ueguchi-Tanaka M,Ishiyama K,Kobayashi M,Agrawal G K,Takeda S,Abe K,Miyao A,Hirochika H,Kitano H,Ashikari M,Matsuoka M.An overview of gibberellin metabolism enzyme genes and their related mutants in rice.Plant Physiol,2004,134:1642-1653
    154.Salome P A,McClung C R.PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock.Plant Cell,2005,17:791-803
    155.Samach A,Onouchi H,Gold S E,Ditta G S,Schwarz-Sommer Z,Yanofsky M F,Coupland G.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.Science,2000,288:1613-1616
    156.Sasaki A,Ashikari M,Ueguchi-Tanaka M,Itoh H,Nishimura A,Swapan D,Ishiyama K,Saito T,Kobayashi M,Khush G S,Kitano H,Matsuoka M.Green revolution:a mutant gibberellin-synthesis gene in rice.Nature,2002,416:701-702
    157.Sawa M,Nusinow D A,Kay S A,Imaizumi T.FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis.Science,2007,318:261-265
    158.Schaffer R,Ramsay N,Samach A,Corden S,Putterill J,Carre I A,Coupland G.The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.Cell,1998,93:1219-1229
    159.Schultz T F,Kiyosue T,Yanovsky M,Wada M,Kay S A.A role for LKP2 in the circadian clock of Arabidopsis.Plant Cell,2001,13:2659-2670
    160.Shalitin D,Yang H,Mockler T C,Maymon M,Guo H,Whitelam G C,Lin C.Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation.Nature,2002,417:763-767
    161.Shannon S,Meeks-Wagner D R.A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development.Plant Cell,1991,3:877-892
    162.Shin B S,Lee J H,Lee J H,Jeong H J,Yun C H,Kim J K.Circadian regulation of rice(Oryza sativa L.) CONSTANS-like gene transcripts.Mol Cells,2004,17:10-16
    163. Simon R, Igeno M I, Coupland G Activation of floral meristem identity genes in Arabidopsis. Nature, 1996, 384:59-62
    164. Sjodin P, Hedman H, Shavorskaya O, Finet C, Lascoux M, Lagercrantz U. Recent degeneration of an old duplicated flowering time gene in Brassica nigra. Heredity, 2007, 98:375-384
    165. Somers D E, Webb A A, Pearson M, Kay S A. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development, 1998,125:485-494
    166. Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39:623-630
    167. Soppe W J, Jacobsen S E, Alonso-Blanco C, Jackson J P, Kakutani T, Koornneef M, Peeters A J. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell, 2000, 6:791-802
    168. Sothern R B, Tseng T S, Orcutt S L, Olszewski N E, Koukkari W L. GIGANTEA and SPINDLY genes linked to the clock pathway that controls circadian characteristics of transpiration in Arabidopsis. Chronobiol Int, 2002,19:1005-1022
    169. Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99:9043-9048
    170. Strayer C, Oyama T, Schultz T F, Raman R, Somers D E, Mas P, Panda S, Kreps J A, Kay S A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 2000, 289:768-771
    171. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410:1116-1120
    172. Sugano S, Andronis C, Ong M S, Green R M, Tobin E M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci USA, 1999, 96:12362-12366
    173. Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98:7922-7927
    174. Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005,17:3311-3325
    175. Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316:1033-1036
    176. Theissen G, Saedler H. MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. Curr Opin Genet Dev, 1995, 5:628-639
    177. Thompson J D, Higgins D G, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22:4673-4680
    178. Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun C Q. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet, 2006,113:619-629
    179. Tudzynski B, Kawaide H, Kamiya Y. Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr Genet, 1998, 34:234-240
    180. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437:693-698
    181. Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Two-component systems in plant signal transduction. Trends Plant Sci, 2000, 5:67-74
    182. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004,303:1003-1006
    183. Wang Z Y, Tobin E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 1998, 93:1207-1217
    184. West M A, van Leeuwen H, Kozik A, Kliebenstein D J, Doerge R W, St Clair D A, Michelmore R W. High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res, 2006, 16:787-795
    185. Whitelam G C, Johnson E, Peng J, Carol P, Anderson M L, Cowl J S, Harberd N P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell, 1993, 5:757-768
    186. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003,35:418-427
    187. Xie X, Jin F, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa x O. rufipogon cross. Theor Appl Genet, 2008, 116:613-622
    188. Xing Z, Tan F, Hua P, Sun L, Xu G, Zhang Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002,105:248-257
    189. Xu J L, Xue Q Z, Luo L J, Li Z K. QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Yi Chuan Xue Bao, 2001, 28:752-759
    190. Xue F, Cooley L. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell, 1993, 72:681-693
    191. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40:761-767
    192. Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS box genes 0SMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006,18:15-28
    193. Yamamoto T, Lin H, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000,154:885-891
    194. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12:1591-1606
    195. Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet, 2007,115:1093-1100
    196. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004,303:1640-1644
    197. Yanagisawa S. A novel DNA-binding domain that may form a single zinc finger motif. Nucleic Acids Res, 1995,23:3403-3410
    198. Yang X, Tuskan G A, Cheng M Z. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol, 2006,142:820-830
    199. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12:2473-2484
    200. Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol, 2001,127:1425-1429
    201. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94:9226-9231
    202. Yu S B, Li J X, Xu C G, Tan Y F, Li X H, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002,104:619-625
    203. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700