用户名: 密码: 验证码:
玉米重要自交系的遗传特征鉴定与株型性状关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对玉米种质资源进行精细遗传评价不仅能为揭示重要自交系形成的遗传基础提供理论支撑,还是等位基因发掘、复杂性状关联分析的重要基础。玉米株型性状作为重要的产量影响因子,在抗倒性、光能利用效率以及增加籽粒产量等方面表现出丰富的遗传多样性。探讨具有理想株型性状的玉米种质中所蕴藏的优异等位基因以及株型性状较差的玉米种质中隐蔽的等位基因是发掘控制理想株型性状QTL位点以及基因克隆的必要研究工作,不仅能够揭示理想株型形成的遗传基础,还能为育种实践中的株型性状改良提供分子遗传学依据。
     本研究在前期构建的多样性种质群体基础上,筛选出一套包含367份重要自交系的关联作图群体。以该群体为试验材料,在表型水平上,对不同玉米生态区、不同年份的株型相关性状进行鉴定:同时在分子水平上利用包含56110个SNP标记的高密度玉米芯片对其遗传多样性、群体结构、亲缘关系和连锁不平衡(LD)进行分析。此外,本研究还对群体中所包含的43份黄早四衍生系进行遗传组分比较。最后,基于全基因组扫描的关联分析策略定位到158个与株型相关性状显著关联的SNP位点,其中97个位于基因内,其余SNP位点则位于基因间隔区域。主要研究结果如下:
     1.基于56110个SNP标记的遗传多样性分析共检测到83638个等位变异,平均基因多样性为0.364,平均PIC为0.291。群体结构分析表明,367份重要自交系群体首先被划分成2个亚群,分别对应于中国玉米育种中的外引种质和本地种质。深入分析发现,以遗传相似性比例≥50%为标准,该群体被进一步细分为5个亚群,分别对应于中国玉米育种中的5大杂种优势类群:瑞德、兰卡斯特、唐四平头、温热Ⅰ和P群,各亚群在所有材料中所占的比例分别为8.45%、8.99%、9.54%、42.23%和5.18%。另外,还有94份自交系与任何亚群的遗传相似性比例均<50%,因此将这些材料划分为一个亚群,称为混合亚群,占总材料的25.61%。亚群遗传多样性分析显示,温热Ⅰ亚群的遗传多样性最高,其余依次是兰卡斯特、瑞德、唐四平头,而P群的遗传多样性水平最低。
     亲缘关系分析结果显示,94.97%的配对亲缘关系系数分布于0.05-0.28之间;0.17%的配对亲缘关系系数等于0;其余配对亲缘关系系数则分布于0.30-0.50之间,说明该群体内个体之间存在着中等程度的亲缘关系。
     黄改系遗传组分比较显示,黄早四的遗传组分在其衍生系785中所占比例最低为1.35%,在72-125中所占比例最高为93.79%,变异幅度较大。共发现15个黄早四的特征区段,分别位于染色体1,2,3,4,5,6,8和10上,这些区段在超过60%的黄早四衍生系中表现出一致性,揭示了骨干自交系黄早四极其衍生系的遗传相似性,为其重要表型性状利用和改良提供了很好的分子遗传学依据。
     LD评价结果表明,367份重要自交系群体的平均LD衰减距离为74.08kb,不同连锁群的LD存在显著差异,其中Chr1的LD衰减距离最短为48.31kb, Chr10的LD衰减距离最长为183.04kb。另外,不同连锁群的LD受群体大小和群体组成的影响程度也各不相同。当群体样本量减小时,LD衰减距离会增大;群体遗传组成复杂会导致遗传多样性增加从而降低LD衰减距离;不同连锁群上或同一连锁群上不同遗传区域间也表现出LD水平的显著差异。
     2.方差分析显示,株型相关性状在不同自交系间存在极显著差异,其中株高的变异系数为43.83%,雄穗一级分支数和穗位高的变异系数分别为34.59%和22.83%,雄穗主轴长的变异系数最小为11.87%,其次是“穗位高/株高”,变异系数为14.69%。另外,5个株型相关性状的Shannon-Weaver多样性指数均在2以上,揭示了本研究群体丰富的表型多样性。
     3.全基因组关联分析结果显示,在P<0.0001水平下,共检测到28个与株高性状显著相关的SNP位点,其中6个在2个环境条件下均被检测到;3个位点同时在3个环境中被检测到。在50个与穗位高显著关联的SNP位点中,10个在两个环境条件下被检测到;1个位点在3个环境条件下被检测到;3个位点在4个环境条件下均被检测到,分别为PZE-105098995、SYN31958和PZE-105099028,均位于第5染色体上;另外一个穗位高显著相关的SNP位点(PZE-104109619)在5个环境条件下均被检测到,位于第4染色体上;其余穗位高相关的SNP位点则仅在单个环境条件下被检测到。在34个与“穗位高/株高”显著关联的SNP位点中,4个在2个环境条件下被检测出来;8个位点在3个环境条件下被检测到;2个位点在4个环境条件下均被检测出来,分别为PZE-105090603和PZE-105090633,均位于第5染色体上;说明这些区域可能与控制“穗位高/株高”的基因位于相近区域;其余“穗位高/株高”相关的SNP位点则仅在单个环境条件下被检测到。14个与雄穗长显著关联的SNP位点以及32个与雄穗分支数显著关联的SNP位点均仅在单环境条件下被检测到。
     BlastN比对显示,在株型性状显著相关的SNP中,部分位点位于已知基因所在区域,如Rht基因所在区域共发现3个株型显著关联的SNP位点,其中PZE-101080319在两个环境下均与株高和穗位高显著关联;PZE-101137671和SYN2469则分别与雄穗主轴长显著关联。sdl基因所在区域发现PZE-102120220与穗位高显著关联。除此之外,大量与株型性状显著关联的SNP位点位于一些预测基因内部或基因间隔区域,说明了这些基因或基因间隔区域可能在玉米株型相关性状的进化、改良等过程中起一定作用,关于这些位点的连锁验证仍在继续中。
Characterization of maize germplasm is an important work for founding allelomorphic gene, association analysis of complex traits, and breeding practice. Plant architecture trait is one of the main factors in maize yield formation. Plant architecture trait showes higher variantation and the ideal plant architecture will improve maize lodging resistance, photosynthesis, grain yield and so on. It is a primary work before QTL analysis and gene clone to found excellent allelomorphic gene included in maize germplasm with good plant architecture trait, which can not only for uncovering the genetic basis of plant architecture but also supplling molecular genetics proofs for plant architecture improving.
     Based on the larger and diverser collection of maize germplasm collected in our previous studies, a subset of367main inbred lines was constructed. Which was planted under different envirments among two years, five plant architecture related traits were investigated. On the molecular level, genetic diversity, population structure, pairvise kinship, and linkage disequilibrium (LD) were evaluated using high throughput'MaizeSNP50'including56110SNPs. Gentic comparing was done among43inbred lines derived from Huangzaosi. And158SNPs associated with plant architecture related traits were found. Main results are listed as follow:
     1. A total of41,819informative SNPs with minor allele number (MAF) of more than0.05were used to estimate the genetic diversity and relatedness, and16,827SNPs with MAF>0.1wore selected to estimate the LD decay. Totally1015SNPs which were evenly distributed in the genome were selected randomly to evaluate the population structure of these accessions. The results showed that two groups could be classified in the accessions, i.e. the introduced germplasm and the local germplasm. Further, five subgroups corresponding to different heterotic groups, that is, Reid, Lancaster, P, TSPT, and Tem-tropic I, were clustered. By using the re-sampling method, the genetic diversity of each subgroups was estimated, with the highest in the Tem-Tropic I and the lowest in the P. Most lines in this panel showed weak or modest relatedness with each other. Comparisons of gene diversity (GD) showed that there existed some conserved genetic regions for specific subgroup across10chromosomes of maize, i.e. seven in Lancaster, seven in Reid, six in TSPT, five in P, and two in Tem-Tropical I. Additionally, the results also revealed that there existed fifteen conservative regions transmitted from Huangzaosi, an important foundation parent, to its descendants, which are important for further studies since the outcomes may provide clues to understand why Huangzaosi could become a foundation parent in Chinese maize breeding. For the entire set, average LD distance was74.08kb and varied among different chromosomes as well as in different genomic regions of one chromosome. This analysis uncovered a rich natural genetic diversity of the elite maize inbred set, suggesting that the panel can be used in association study, esp. for temperate regions.
     2. Among this subset of367inbred lines, ANOVA analysis showed that there was significant deviation among5plant architecture related traits between any two inbred lines. The coefficient variation ranged from22.83%to11.87%. Plant height showed the highest coefficient variation of43.83%. The second two were Tassel primary branch number and Ear height with coefficient variation of34.59%and22.83%, respectively. The smallest coefficient variation was found in phenotype of Tassel length with11.87%, coefficient variation of "Ear height/Plant height" was14.69%. Otherwise, all the Shannon-Weaver indexes of5plant architecture related traits were beyond2. These results suggested that this subset used here were diverser in phehotypes.
     3.158SNPs were significant association with plant architecture related traits with P<0.0001.28SNPs were significant association with plant height, of which, six SNPs were found under two envirments at the same time, three SNPs were found under three envirments at the same time.50SNPs were significant association with ear height, of which, ten SNPs were found under two envirments at the same time, one SNPs were found under three envirments at the same time, three SNPs named PZE-105098995, SYN31958and PZE-105099028were found under four envirments at the same time, another important ear related SNP named PZE-104109619is on Chrom4, which was found under five envirments at the same time, the other ear height SNPs were found under one envirment only.34SNPs were significant association with "ear height/plant height", of which,4SNPs were found under two envirments at the same time, Eight SNPs were found under three envirments at the same time, two important SNPs named PZE-105090603and PZE-105090633, which were found under four envirments at the same time.14tassel length related SNPs and32tassel primary branch number related SNPs were found under one envirment only. These results revealed that genetic regions including these markers were close to genetic regions containing plant architecture related genes.
     BlastN search showed, among the158plant architecture related SNPs, some were in the regions with known plant architecture related genes. For example,3SNPs named PZE-101080319, PZE-101137671and SYN2469were close to the region with Rht gene which was related with plant height. PZE-102120220was close to the region with sdl gene which was related with plant architecture related traits. Except that, most significant association with plant architecture were found in the predication genes or intergenic regions, these variation may play important role in maize domestication and plant architecture formation.
引文
[1]Riedelsheimer C, Czedik-Eysenberg A, Grieder C, et al. Genomic and metabolic prediction of complex heterotic traits in hybrid maize[J]. Nature Genetics.2012, 44(2):217-220.
    [2]Yan J, Shah T, Warburton M L, et al. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers[J]. PLoS ONE. 2009,4(12):e8451.
    [3]Prasanna B. Diversity in global maize germplasm:Characterization and utilization[J]. Journal of Biosciences.2012,37(5):843-855.
    [4]Hoisington D, Khairallah M, Reeves T, et al. Plant genetic resources:What can they contribute toward increased crop productivity? [J]. Proc Natl Acad Sci U S A.1999,96(11): 5937-5943
    [5]王永普,刘继平,姜鸿勋.我国玉米地方种质资源在育种中的应用[J].中国种业.2003,(10):15-16.
    [6]黎裕,王天宇.我国玉米育种种质基础与骨干亲本的形成[J].玉米科学.2010,18(5):1-8.
    [7]Weng J, Xie C, Hao Z, et al. Genome-wide association study Identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) Inbred Lines[J]. PLoS ONE.2011,6(12):e29229.
    [8]Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am J Hum Genet.1989, 44(3):397-401.
    [9]Nakamura Y, Leppert M, O'Connell P, et al. Variable number of tandem repeat (VNTR) markers for human gene mapping[J]. Science.1987,235(4796):1616-1622.
    [10]Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Reseach.1989,17(16):6463-6471.
    [11]孙友位,李明顺,张德贵,等.利用SSR标记研究85个玉米自交系的遗传多样性[J].玉米科学.2007,15(6):19-26.
    [12]滕文涛,曹靖生,陈彦惠,等.十年来中国玉米杂种优势群及其模式变化的分析[J].中国农业科学.2004,37(12):1804-1811.
    [13]杨晓军,路明,张世煌,等.玉米株高和穗位高的QTL定位[J].遗传.2008, 30(11):1477-1486.
    [14]袁力行,傅骏骅,刘新芝,等.利用分子标记预测玉米杂种优势的研究[J].中国农业科学.2000,33(6):6-12.
    [15]曹永国,向道权,黄烈健,等.SSR分子标记与玉米杂种优势关系的研究[J].农业生物技术学报.2002,2:120-123.
    [16]刘志斋,吴迅,刘海利,等.基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构[J].中国农业科学.2012,45(11):2107-2138.
    [17]Li Y, J.Du, Wang T, et al. Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers[J]. Maydica.2002,47:93-101.
    [18]Zhang Y, Wang Y, Li Y, et al. Correlations and QTL detection in maize line per se and testcross progenies for plant height and ear height[J]. Plant Breeding 2011, 130(6):617-624.
    [19]Teng F, Zhai L, Liu R, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize[J]. Plant J.2012,73(3):405-416.
    [20]郝晨阳,王兰芬,贾继增,等.SSR荧光标记和银染技术的比较分析[J].作物学报.2005,31(2):144-149.
    [21]庄启南,张静,熊晓燕,等.应用毛细管电泳技术进行高效、准确的微卫星位点自动基因组扫描[J].中华医学遗传学杂志.2002,19(2):253-256.
    [22]易红梅,王风格,赵久然,等.玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究[J].华北农学报.2006,21(5):64-67.
    [23]Yan J, Yang X, Shah T, et al. High-throughput SNP genotyping with the GoldenGate assay in maize[J]. Molecular Breeding.2010,25(3):441-451.
    [24]Peng B, Li Y, Wang Y, et al. QTL analysis for yield components and kernel-related traits in maize across multi-environments[J]. Theor Appl Genet.2011,122(7):1305-1320.
    [25]Lu Y, Shah T, Hao Z, et al. Comparative SNP and Haplotype Analysis Reveals a Higher Genetic Diversity and Rapider LD Decay in Tropical than Temperate Germplasm in Maize[J]. PLoS ONE.2011,6(9):e24861.
    [26]Riedelsheimer C, Lisec J, Czedik-Eysenberg A, et al. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize[J]. Proc Natl Acad Sci U S A.2012,109(23):8872-8877.
    [27]Gupta P K, Rustgi S, Mir R R. Array-based high-throughput DNA markers for crop improvement. [J]. Heredity 2008,101(1):5-18.
    [28]Fan J B, Chee M S, Gunderson K L. Highly parallel genomic assays[J]. Nat Rev Genet.2006,7(8):632-644.
    [29]Rostoks N, Ramsay L, MacKenzie K, et al. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties[J]. Proc Natl Acad Sci U S A.2006,103(49):18656-18661.
    [30]McMullen M D, Kresovich S, Villeda H S, et al. Genetic properties of the maize nested association mapping population[J]. Science.2009,325(5941):737-740.
    [31]Mikel M A, Dudleyb J W. Evolution of North American Dent Corn from Public to Proprietary Germplasm[J]. Crop Science.2006,46(3):1193-1205.
    [32]Heerwaarden J, Hufford M B, Ross-Ibarra J. Historical genomics of North American maize[J]. Proc Natl Acad Sci U S A.2012,109(31):12420-12425.
    [33]Lu Y, Yan J, Guimaraes C T, et al. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms[J]. Theor Appl Genet.2009,120(l):93-115.
    [34]Yang X, Gao S, Xu S, et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize[J]. Molecular Breeding.2011,28:511-526.
    [35]Yang X, Yan J, Shah T, et al. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection[J]. Theor Appl Genet.2010, 121(3):417-431.
    [36]王向东.玉米育种学的发展回顾及展望[J].玉米科学.2004,12(增刊):5-9.
    [37]曾三省.中国玉米杂交种的种质基础[J].中国农业科学.1990,23(4):1-9.
    [38]王懿波,王振华,王永普,等.中国玉米主要种质杂交优势利用模式研究[J].中国农业科学.1997,30(4):16-24.
    [39]刘志斋,宋燕春,石云素,等.中国玉米地方品种的种族划分及其特点研究[J].中国农业科学.2010,43(5):899-910.
    [40]刘新芝,彭泽斌,傅骏骅等.RAPD在玉米类群划分研究中的应用[J].中国农业科学.1997,3:44-51.
    [41]黄益勤,李建生.利用RFLP标记划分45份玉米自交系杂种优势群的研究[J].中国农业科学.2001,34(3):244-250.
    [42]Wang R, Yu Y, Zhao J, et al. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China[J]. Theoretical and Applied Genetics.2008, 117(7):1141-1153.
    [43]Yu Y, Wang R, Zhao J, et al. Genetic diversity and structure of the core collection for maize inbred lines in China[J]. Maydica.2007,52(2):181-194.
    [44]Reif J C, Warburton M L, Xia X C, et al. Grouping of accessions of Mexican races of maize revisited with SSR markers[J]. Theor Appl Genet.2006,113(2):177-185.
    [45]Patto M C V, Moreira P M, Almeida N, et al. Genetic diversity evolution through participatory maize breeding in Portugal [J]. Euphytica.2008,161:283-291.
    [46]Vigouroux Y, Mitchell S, Matsuoka Y, et al. An analysis of genetic diversity across the maize genome using microsatellites[J]. Genetics.2005,169:1617-1630.
    [47]Vigouroux Y, Glaubitz J C, Matsuoka Y, et al. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites[J]. Am J Bot.2008, 95(10):1240-1253.
    [48]Warburton M L, Reif J C, Frisch M, et al. Genetic diversity in CIMMYT nontemperate maize germplasm:Landraces, open pollinated varieties varieties, and inbred lines[J]. Crop Sciences.2008,48:617-624.
    [49]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants:present status and future prospects[J]. Plant Mol Biol.2005,57(4):461-485.
    [50]王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡[J].遗传.2007,29(11):1317-1323.
    [51]Nordborg M. Linkage Disequilibrium, Gene Trees and Selfing:An Ancestral Recombination Graph With Partial Self-Fertilization[J]. Genetics.2000,154:923-929.
    [52]Przeworski M. The Signature of Positive Selection at Randomly Chosen Loci[J]. Genetics.2002,160:1179-1189.
    [53]Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time[J]. Nat Genet.2001,28(3):286-289.
    [54]Palaisa K A, Morgante M, Williams M, et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci[J]. Plant Cell. 2003,15(8):1795-1806.
    [55]Wilson L M, Whitt S R, Ibanez A M, et al. Dissection of maize kernel composition and starch production by candidate gene association[J]. Plant Cell.2004, 16(10):2719-2733.
    [56]Szalma S J, Buckler E S t, Snook M E, et al. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks[J]. Theor Appl Genet.2005, 110(7):1324-1333.
    [57]Andersen J R, Zein I, Wenzel G, et al. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds[J]. Theor Appl Genet.2007,114(2):307-319.
    [58]Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population[J]. Nat Genet.2011, 43(2):159-162.
    [59]Wang M, Yan J, Zhao J, et al. Genome-wide association study (GWAS) of resistance to head smut in maize[J]. Plant Sci.2012,196:125-131.
    [60]Yu J, Buckler E S. Genetic association mapping and genome organization of maize[J]. Curr Opin Biotechnol.2006,17(2):155-160.
    [61]Veyrieras J, Camus-Kulandaivelu L, Gouesnard B, et al. Bridging genomics and genetic diversity:Linkage disequilibrium structure and association mapping in maize and other cereals[J]. Crop Science.2007,47:60-71.
    [62]Khush G. Green revolution:the way forward[J]. Nature Reviews Genetics.2001, 2(10):815-822.
    [63]Cassani E, Villa D, Durante M, et al. The brachytic 2 and 3 maize double mutant shows alterations in plant growth and embryo development J]. Plant Growth Regulation 2011,64(2):185-192
    [64]Peng J, Richards D E, Hartley N M, et al.'Green revolution' genes encode mutant gibberellin response modulators [J]. Nature.1999,400(6741):256-261.
    [65]Monna L, Lin X, Kojima S, et al. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice[J]. Theor Appl Genet.2002,104(5):772-778.
    [66]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus intomato[J]. Proc Natl Acad Sci USA.1996,93:15503-15507.
    [67]Slatkin M. Disequilibrium mapping of a quantitative-trait locus in an expanding population[J]. Am J Hum Genet.1999,64(6):1764-1772.
    [68]Baxter S W, Davey J W, Johnston J S, et al. Linkage Mapping and Comparative Genomics Using Next-Generation RAD Sequencing of a Non-Model Organism[J]. PLoS ONE.2011,6(4):e19315.
    [69]Tuberosa R, Salvi S. Genomics-based approaches to improve drought tolerance of crops[J]. Trends Plant Sci.2006,11(8):405-412.
    [70]谭巍巍,李永祥,王阳,等.在干旱和正常水分条件下玉米穗部性状QTL分析[J].作物学报.2011,37(2):235-248.
    [71]杨钊钊,李永祥,刘成,等.基于多个相关群体的玉米雄穗相关性状QTL分析[J].作物学报.2012,38(8):1435-1442.
    [72]Mauricio R. Mapping quantitative trait loci in plants:uses and caveats for evolutionary biology[J]. Nat Rev Genet.2001,2(5):370-381.
    [73]Zondervan K T, Cardon L R. The complex interplay among factors that influence allelic association[J]. nature reviews genetics.2004,5:89-100.
    [74]Stich B, Melchinger A. An introduction to association mapping in plants [J]. CAB Reviews.2010,5:1-9.
    [75]Meuwissen T H, Goddard M E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci[J]. Genetics.2000,155(l):421-430.
    [76]Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proc Natl Acad Sci U S A.2001,98(20):11479-11484.
    [77]Flint-Garcia S A, Thuillet A C, Yu J, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection[J]. Plant J.2005, 44(6):1054-1064.
    [78]Hansen M, Kraft T, Ganestam S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genet Research.2001,77:61-66.
    [79]Kraakman A T, Niks R E, Van den Berg P M, et al. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars[J]. Genetics.2004, 168(1):435-446.
    [80]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars[J]. Genetics.2006,172(2):1165-1177.
    [81]Belo A, Zheng P, Luck S, et al. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize[J]. Mol Genet Genomics.2008, 279(1):1-10.
    [82]Andersen J R, Schrag T, Melchinger A E, et al. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.)[J]. TheorAppl Genet.2005, 111(2):206-217.
    [83]Camus-Kulandaivelu L, Veyrieras J B, Madur D, et al. Maize adaptation to temperate climate:relationship between population structure and polymorphism in the Dwarf8 gene[J]. Genetics.2006,172(4):2449-2463.
    [84]Cardon L R, Palmer L J. Population stratification and spurious allelic association[J]. Lancet.2003,361(9357):598-604.
    [85]Knowler W C, Williams R C, Pettitt D J, et al. Gm3;5,13,14 and type 2 diabetes mellitus:an association in American Indians with genetic admixture[J]. Am J Hum Genet. 1988,43:520-526.
    [86]Lu Y, Zhang S, Shah T, et al. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize[J].PNAS.2010.
    [87]Li Y, Shi Y, Cao Y, et al. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data[J]. Genetic Resources and Crop Evolution 2005,51(8):845-852
    [88]Lai J, Li R, Xu X, et al. Genome-wide patterns of genetic variation among elite maize inbred lines [J]. Nature Genetics.2010,42(11):1027-1031.
    [89]Saghai-Maroof M A, Soliman K M, Jorgensen R A, et al. Ribosomal DNA spacer-length polymorphisms in barley:mendelian inheritance, chromosomal location, and population dynamics[J]. Proc Natl Acad Sci.1984,81(24):8014-8018.
    [90]Pritchard J K, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data[J]. Genetics.2000,155(2):945-959.
    [91]Hubisz M J, Falush D, Stephens M, et al. Inferring weak population structure with the assistance of sample group information[J]. Molecular Ecology Resources.2009, 9(5):1322-1332.
    [92]Bradbury P J, Zhang Z, Kroon D E, et al. TASSEL:software for association mapping of complex traits in diverse samples[J]. Bioinformatics.2007,23(19):2633-2635.
    [93]Yang X, Gao S, Xu S, et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize[J]. Molecular Breeding.2010,28(4):511-526.
    [94]Liu K, Muse S V. PowerMarker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics.2005,21(9):2128-2129.
    [95]Preacher K J, Hayes A F. SPSS and SAS procedures for estimating indirect effects in simple mediation models[J]. Behavior Research Methods.2004,36(4):717-731.
    [96]Pressoir G, Berthaud J. Population structure and strong divergent selection shape phenotypic diversification in maize landraces[J]. Heredity.2004,92(2):95-101.
    [97]Bernardo R. Methods used in developing maize inbreds[J]. Maydica.1990, 35(1):1-16.
    [98]Charcosset A, Essioux L. The effect of population structure on the relationship between heterosis and heterozygosity at marker loci[J]. Theoretical and Applied Genetics. 1994,89(2):336-343.
    [99]李新海,袁力行,李晓辉,等.利用SSR标记划分70份我国玉米自交系的杂种优势群[J].中国农业科学.2003,36(6):622-627.
    [100]Hamblin M T, Warburton M L, Buckler E S. Empirical Comparison of Simple Sequence Repeats and Single Nucleotide Polymorphisms in Assessment of Maize Diversity and Relatedness[J]. PLoS ONE.2007,2(12):e1367.
    [101]Jung M, Ching A, Bhattramakki D, et al. Linkage disequilibrium and sequence diversity in a 500-kbp region around the adh1 locus in elite maize germplasm[J]. Theoretical and Applied Genetics.2004,109(4):681-689.
    [102]Heerwaarden J, Doebley J, Briggs W H, et al. Genetic signals of origin, spread, and introgression in a large sample of maize landraces[J]. Proc Natl Acad Sci.2011, 108(3):1088-1092.
    [103]王振华,张新.我国玉米骨干自交系形态性状的鉴定与评价[J].玉米科学.2004,12(2):7-9.
    [104]荣廷昭,潘光堂,黄玉碧(2003).数量遗传学(北京,中国科学技术出版社),pp.72-106.
    [105]Poole R W. An introduction to quantitative ecology[J]. McGraw-Hill, New York. 1974.
    [106]Wang T, Li Y, Shi Y, et al. Phenotypic diversity, utilization and strategies of genetic enhancement of maize landraces collected in China[J]. Prospects of Maize Genetics and Breeding for the 21st Century-Paper Collection of International Maize Genetics and Breeding Symposium.2000:99-104.
    [107]刘志斋,郭荣华,石云素,等.中国玉米地方品种核心种质花期相关性状的表型多样性研究[J].中国农业科学.2008,41(6):1591-1602.
    [108]吴渝生,郑用琏,孙荣,等.基于SSR标记的云南糯玉米、爆裂玉米地方种质遗传多样性研究[J].作物学报.2004,30(1):36-42.
    [109]Comas D, Calafel F, Mateu E, et al. Trading genes along the silk road:mtDNA sequences and the origin of central Asian populations[J]. Am J Hum Genet.1998, 63(6):1824-1838.
    [110]于长春,谢力,张小雷,等.拓跋鲜卑和匈奴之间亲缘关系的遗传学分析[J].遗传.2007,29(10):1223-1229.
    [111]Yu J, Pressoir G, Briggs W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nat Genet.2006, 38(2):203-208.
    [112]Jiao Y, Zhao H, Ren L, et al. Genome-wide genetic changes during modern breeding of maize[J]. Nat Genet.2012,44(7):812-815.
    [113]Astle W, Balding D. Population structure and cryptic relatedness in genetic association studies[J]. Statistical science.2009,24:451-471.
    [114]Atwell S, Huang Y S, Vilhjalmsson B J, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines[J], Nature.2010,465(7298):627-631.
    [115]季香,马月辉,叶绍辉,等.山羊mtDNA多态性及其遗传结构的研究[J].云南农业大学学报.2008,23(2):220-224.
    [116]Donald C M. The breeding of crop ideotypes[J]. Euphytica.1968, (3):385-403.
    [117]彭勃,张宝石,杨一,等.玉米株型育种及其主要性状遗传基础研究进展[J].河南农业科学.2007,(3):16-18.
    [118]王元东,段民孝,邢锦丰,等.玉米理想株型育种的研究进展与展望[J].玉米科学.2008,16(3):47-50.
    [119]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments:Ⅰ. Grain yield and yield components[J]. Crop Science.1996, 36(5):1310-1319.
    [120]Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1:rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis[J]. DNA Res.2002,9(1):11-17.
    [121]Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis[J]. Plant Cell.1995,7(8):1307-1317.
    [122]Bensen R J, Johal G S, Crane V C, et al. Cloning and characterization of the maize Anl gene[J]. Plant Cell.1995,7(1):75-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700