用户名: 密码: 验证码:
3株新菌的分类鉴定及新型耐热琼胶酶基因的克隆表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会和经济的不断发展,陆地资源已经日益匮乏,为寻找支持人类进一步生存和发展的不竭资源,人们把注意力转向了占地球总面积71 %的海洋,对海洋资源的开发利用已成为各国战略性发展的主旋律。海洋是地球上最大的生物栖息地,其中生活的海洋微生物,种类众多且在特殊环境下形成了独特的代谢方式,成为海洋资源开发与利用的新宠。因此,对海洋微生物的生态、生理、遗传特征和生物活性物质等的研究都具有重大的理论意义和实际价值。本文在前期进行的微生物资源多样性研究的基础上,对几株新发现的新菌进行了分类鉴定并对其中一株新菌产生的琼胶酶进行了研究。
     本文对分离自青岛近海的一株革兰氏阴性、严格需氧的琼脂降解菌YM01~T进行了分类学鉴定。结果表明,该菌细胞呈杆状,具有周生鞭毛,细胞首尾相连形成长链。YM01~T生长需要Na~+,不需要海水。能够水解羧甲基纤维素、淀粉、七叶灵和吐温80,不能水解卵磷脂、明胶、尿素以及酪蛋白。甲基萘醌-7(MK-7)为该菌主要的呼吸醌。其主要的脂肪酸组分为C_(16 : 0)(38.3 %), C_(16 : 1)ω7c和/或iso-C_(15 : 0) 2-OH(29.0 %), C_(18 : 1)ω7c(9.3 %)和C_(10 : 0) 3-OH(8.2 %)。主要的极性脂为磷脂酰乙醇胺(PE)、磷脂酰甘油(PG)和氨基磷酸酯(PN)。该菌DNA的G+C含量为44.8 %。YM0~T与所有已经报道的细菌16S rDNA序列相似性都低于91 %,构建的系统进化树显示,YM01~T属γ-变形菌纲的交替单胞菌科,并形成了一个单独的分支类群。根据该菌在表型特征、化学分类特征和系统发生分析上所表现出来的特殊性,认定该菌为γ-变形菌纲中的一个新属新种,命名为嗜琼胶卵链菌(Catenovulum agarivorans gen. nov. sp. nov.)。
     从中国南极中山站沿岸潮间带中分离到一株耐低温(0-30℃)、中度喜盐(7-8 % w/v, NaCl)的专性异养细菌,实验室编号为ZS2-28~T。基于16S rDNA的系统发生分析表明,ZS2-28~T属于α-变形菌纲Roseibaca, Roseinatronobacter和Rhodobaca属细菌分类群中一个单独的进化支,与其他已知种属细菌的相似度均低于97 %,为一株潜在的海洋新菌。该菌能够产生菌绿素-a,胞内含有聚β-羟基丁酸脂颗粒,胞外附着有分泌物。主要的细胞壁脂肪酸组分为C_(18 : 1)ω7c。主要的呼吸醌为泛醌10。主要的极性脂包括磷脂酰甘油、磷脂酰乙醇胺、磷脂酰胆碱和一种无法鉴定的氨基脂。基因组DNA G+C含量为63.3 mol%。根据表型、化学分类特征以及系统发生分析的结果,确定ZS2-28~T代表了一个新属新种。命名为南极红柠檬菌(Roseicitreum antarcticum gen. nov. sp. nov)。
     此外,从人类唾液样品中分离出一株产可溶性棕色色素的细菌,实验室编号为MY15~T。基于16S rDNA序列的系统发生分析表明,该菌株与海洋类香味菌(Myroides marinus JS-08~T)、M. odoratimimus LMG 4092~T和深海类香味菌(M. profundi D25T)亲缘关系最近,序列相似性分别为96.5 %, 96.3 %和96.1 %。该菌革兰氏染色呈阴性,细胞杆状,不具有鞭毛,不能运动。不能产生Flexirubin类色素。MY15~T以甲基萘醌-6为主要的呼吸醌,C_(15:0) iso (51.2%), C_(17:0) iso 3-OH (12.9%)和C_(13:0) iso (10.5%)为主要的细胞壁脂肪酸。DNA G+C含量为34.3 mol%。根据该菌在遗传进化与表型特征上与类香味菌属其他细菌所表现出来的差异性,认定MY15T为类香味菌属的一个新种,命名为棕色类香味菌(Myroides phaeus gen. nov. sp. nov)。
     本文在对嗜琼胶卵链菌YM01~T分类学研究的基础上,对其琼胶水解酶进行了进一步研究,发现YM01~T能够产生耐高温、耐蛋白酶K的琼胶酶,在100℃和90℃分别孵育120 min和240 min后仍能保持33.3 %和44.4 %的活性。此外,利用简并PCR和hiTail-PCR法克隆了一个琼胶酶基因。该基因编码781个氨基酸,理论分子量为89 kDa, SingalP分析其N-端51个氨基酸为信号肽序列,结构域分析表明该酶属于糖苷水解酶42家族。
As the development of society and economy, terrestrial resources have been more and more exhausted. People turned their attention to the oceans which accounted for 70 percent of the total area of the earth for the further development of human beings. The exploration and utilization of marine resources become a theme of the national strategic development. The oceans are the biggest habitat for various organisms, especially the marine microorganisms which contains a great number of species.They play an important role in the ocean exploration and utilization for its unique metabolic mechanism formed under extreme environments. Therefore, it is valuable both theoretically and practically to analyse the ecological, physiological and genetic characteristics of marine microbes, as well as the bioactive substances produced by them. On the basis of the previous research about the diversity of bacteria, we studied the marine microbial resources from two aspects, the taxonomy of novel bacteria and the analysis of their bioactive products.
     A novel Gram-negative, strictly aerobic, agar-hydrolyzing bacterium designated YM01T isolated from the Yellow Sea of coastal region of Qingdao was studied using polyphasic approach. Cells were rod-shaped, peritrichously flagellated and formed long chains by end-to-end. This isolate absolutely required Na~+ ions but not sea water for growth. YM01~T was able to hydrolyze cellulose, starch, aesculin and Tween 80, but not egg yolk, gelatin, urea and casein. It contained menaquinone 7 as the predominant isoprenoid quinone and C_(16 : 0) (38.3 %), C_(16 : 1)ω7c and/or iso-C_(15 : 0) 2-OH (29.0 %), C_(18 : 1)ω7c (9.3 %) and C_(10 : 0) 3-OH (8.2 %) as the major cellular fatty acids. Phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and aminophospholipid (PN) were the major constituents of the phospholipids. The DNA G+C content was 44.8 mol%. 16S rDNA sequence analysis demonstrated that this isolate was unique, showing only <91.0 % sequence similarities to all published species and formed a distinct monophyletic clade closely related to the species of the family Alteromonadaceae within the group of Alteromonas-like Gammaproteobacteria. So, strain YM01T was considered to represent a novel genus and species in the Gammaproteobacteria, for which the name Catenovulum agarivorans gen. nov. sp. nov. is proposed.
     Another psychrotolerant (growth occurs at 0–33℃) , moderately halophilic (optimal NaCl concentration of 7–8 %) and obligately heterotrophic marine bacterium, designated ZS2-25 28~T, was isolated from intertidal sediment samples collected from the coastal regions of the Chinese Antarctic Zhongshan Station on the Larsemann Hills. phylogenetic analysis based on 16S rDNA sequences indicated that strain ZS2-28~T formed a distinct evolutionary lineage within the clade of genera Roseibaca, Roseinatronobacter and Rhodobaca of the Alphaproteobacteria with only <91.0 % sequence similarities to those neighbors. This isolate contained bacteriochlorophyll a. Poly-β-hydroxy butyrate accumulation and slime production can be observed. It contained Q-10 as the predominant isoprenoid quinone and C_(18 : 1)ω7c as the major cellular fatty acids. The main polar lipids were phosphatidylglycerol, phospatidylethanolamine, phosphatidylcholine and an unidentified aminolipid. The G+C content of genomic DNA was 63.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain ZS2-28~T was considered to represent a novel genus and species, for which the name Roseicitreum antarcticum gen. nov. sp. nov. is proposed.
     A novel bacterial strain, designated MY15~T, was isolated from human saliva. Phylogenetic analyses based on 16S rDNA gene sequences showed that the novel strain was most closely related to Myroides marinus JS-08~T, Myroides odoratimimus LMG 4092~T and Myroides profundi D25~T with 96.5 %, 96.3 % and 96.1 % sequence similarities, respectively. Cells were Gram-straining-negative, rod-shaped, lack flagella and non-motile. Flexirubin-type pigment is absent. This isolate contained menaquinone 6 as the major respiratory quinone, and C_(15:0) iso (51.2 %), C_(17:0) iso 3-OH (12.9 %) and C_(13:0) iso (10.5 %) as the dominant fatty acids. The G+C content of the DNA was 34.3 mol%. On the basis of this polyphasic study, strain MY15~T represents a novel species of the genus Myroides, for which the name Myroides phaeus sp. nov. is proposed.
     On the basis of taxonomic study of Catenovulum agarivorans YM01~T, further research about the agar-hydrolyzing enzymes was performed. The results showed that this isolate produced a high temperature- and proteinase K- resistant agarase. After treatment at 100 and 90℃for 120 and 240 min respectively, the agarase remained the agar-hydrolyzing capacity for 33.3 and 44.4 %. In addition, one of the genes for the expression of agarase, aga A, was cloned by using degenerate PCR and hiTail-PCR. Aga A contained 781 amino acids and the theoretical molecular weight was 89 kDa. According to the result of SignalP analysis, aga A contained a 51 aa signal peptide. The conserved domain analysis revealed that aga A is a novel agarase belonging to the family glycoside hydrolase-42.
引文
[1]李艳华,张利平.海洋微生物资源的开发与利用.微生物学通报, 2003, 30:113-114.
    [2] Irianto A, Austin B. Probiotics in aquaculture. Journal of Fish Diseases, 2002, 25:633 - 642.
    [3] Jaysankar De, Sarkar A, Ramaiah N. Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology, 2006, 15: 385-389.
    [4] Matsuda M, Yamori T, Naitoh M, Okutani K. Structural revision of sulfated polysaccharide B-1 isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines. Mar Biotechnol, 2003, 5: 13-19.
    [5] Miyasaka T, Asami H, Watanabe K. Impacts of bioremediation schemes on bacterial population in naphthalene-contaminated marine sediments. Biodegradation, 2006, 17: 227-235.
    [6] Newman D J, Hill R T. New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotechnol, 2006, 33: 539-544. [ 7 ] Schweder T, Lindequist U, Lalk M. Screening for new metabolites from marine microorganisms. advances in biochemical Engineering. Biotechnology, 2005, 96: 1-48.
    [8]李越中,陈琦.海洋微生物资源多样性.生物工程进展, 1998, 18(4):34-40
    [9] Fenical W, Jensen P R.. Marine microorganisms: a new biomedical resource. In Marine Biotechnology. Volume I: Pharmaceutical and bioactive natural products. Edited by David H. Attaway,Oskar R. Zaborsky. Plenum press. New York, 1993
    [10] DE GIAXA, V. Veber das Verhalten einiger pathogener Mikroorganismen im Meerwasser. Z. Hyg. Infektionskrankh, 1889, 6:162-224.
    [11]田黎,陈杰,何运转,田玲.农用抗生素的新资源----海洋微生物.中国生物防治, 2003, 19(3):121-124
    [12] Jensen P R, Fenical W.Marine Microorganisms and Drug Discovery: Current Status and Future Potential In Drugs from the Sea. Edited by Fusetani N. Basel, Karger, 2000, pp 6–29
    [13] RappéM S, Giovannoni S J. The uncultured microbial majority. Annu Rev of Microbiol, 2003, 57: 369–394.
    [14] Keller M, Zengler K. Tapping into microbial diversity. Nature Reviews, 2004, 2:141-150
    [15] Brenner D J, Staley J T, Krieg N R. Classification of prokaryotic organisms and the concept of bacterial speciation. In Bergey’s manual of systematic bacteriology. second edition vol 2.27-32
    [16]张晓华,陈皓文.海洋原核生物名称.北京:科学出版社,2009.
    [17] Martínez-Murcia A J, Benlloch S, Collins, M D. Phylogenetic interrelationships of members of the genera Aeromonas and Pleisiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol, 1992, 42:412–421.
    [18] Fox G E, Pechman K R, Woese C R. Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int J Syst Bacteriol, 1977, 27:44–57.
    [19] Ursing J B, Rosselló-Mora R A, García-Valdés E. Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol, 1995, 45: 604.
    [20] Goris J, Konstantinidis K T, Klappenbach J A et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Internatioan Journal of Systematic and Evolutionary Microbiology, 2007, 57: 81–91.
    [21] Pavel S, Marc V, Milan S. Evaluation of (GTG)5-PCR for identification of Enterococcus spp. FEMS Microbio Lett, 2005, 247:59-63
    [22] Saiki R K, Gelfand D H, Stoffel S, Scharf S J, Higuchi R, Horn G T, Mullis K B, Erlich H A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239: 487-491
    [23] Amann R I., Lin C, Key R, Montgomery L, Stahl D A. Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst Appl Microbiol, 1992,15:23–31.
    [24] Collins M D, Rodrigues U, Ash C, Aguirre M, Farrow J A E, Martinez-Murcia A, Phillips B A, Williams A M, Wallbanks S. Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett, 1991, 77:5–12.
    [25] Fox G E, Wisotzkey J D, Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol, 1992, 42:166–170.
    [26] Martínez-Murcia A J, Collins M D. A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. FEMS Microbiol Lett, 1990, 70:73–83.
    [27] Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer K H, Ludwig W, Gl?ckner, F O, Rosselló-Móra R. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol, 2008, 31(4): 241-250.
    [28] De Ley J. Molecular biology and bacterial phylogeny. In Evolutionary Biology, vol. 2, Edited by Dobzhansky T, Hects M K, Steare W C. Amsterdam, The Netherlands: North Holland Publishing Co. 1968, p. 103–156.
    [29] Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett, 1984, 25: 125-128.
    [30] Mesbah M, Premachandran U, Whitman W B. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol, 1989, 39: 159-167.
    [31] Johnson J L, Whitman W B. Similarity analysis of DNAs. In Methods for General and Molecular Microbiology. Edited byReddy C A, Beveridge T J, Breznak J A, Marzluf G, Schmidt T M, Snyder L R. ASM Press, Washington DC. 2007. p. 624-652.
    [32] De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol, 1970, 101: 738-754.
    [33] Brenner D J, Martin M A, Hoyer B H. Deoxyribonucleic acid homologies among some bacteria. J Bacteriol, 1967, 94: 486-487.
    [34] De Ley J, Park I W, Tijtgat R, van Ermengem J. DNA homology and taxonomy of Pseudomonas and Xanthomonas. Microbiol, 1966, 42: 43-56.
    [35] McCarthy B J, Bolton E T. An approach to 1453 the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U.S., 1963, 50: 156-164.
    [36] Brenner D J.. Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bacteriol, 1973, 23:298–307.
    [37] Johnson J L. Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol, 1973, 23:308–315.
    [38] Johnson J L. Nucleic acids in bacterial classification. In Bergey’s Manual of Systematic Bacteriology, vol. 1. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins. 1984, p. 8–11
    [39] Wayne L G, Brenner D J, Colwell R R, Grimont P A D, Kandler O, Krichevsky M I, Moore L H, Moore W E C, Murray R G E. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol, 1987, 37:463–464.
    [40] Maiden M C. Multilocus sequence typing of bacteria. Annu Rev Microbiol, 2006, 60: 561-88.
    [41] Sawabe T, Kita-Tsukamoto K, Thompson F L. Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol, 2007, 189: 7932-7936.
    [42] Thompson F L, Gromez-Gil B, Vasconcelos A T R, Sawabe T. Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. Appl Environ Microbiol, 2007, 73: 4279-4285.
    [43] Ibarz Pavón A B, Maiden M C. Multilocus sequence typing. Methods Mol Biol, 2009, 551: 129-140.
    [44] Zeigler D R. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol, 2003, 53: 1893–1900.
    [45] Santos S R, Ochman H. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol, 2004, 6: 754–759.
    [46]张晓华.海洋微生物学.青岛:中国海洋大学出版社,2007.
    [47] Ratledge C, Wilkinson S G. (1988). Microbial lipids, vol. 1. London: Academic Press.
    [48] Tindall BJ. Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual, Akkermans, edited by Bruijn A, Elsas, D. Kluwer Publishers, Dordrecht, Netherlands. Section 4.1.5, Supplement 1 2nd edn. 2005.
    [49] Collins M D, Gilbart J. New members of the Coenzyme Q series from the Legionellaceae. FEMS Microbiol Letts, 1983, 16:251-255.
    [50] Karr D E, Bibb W F, Moss C W. Isoprenoid quinones of the genus Legionella. J Clin Microbiol, 1982, 15:1044–1048.
    [51] Rochas C, Lahaye M, Yaphe W, Phan Viet M T. 13C-N.M.R-spectroscopic investigation of agarose oligomers. Carbohydr Res, 1986, 148:199-207.
    [52] Kloareg B, Quatrano R S. Structure of the cell walls of marine algae and ecophysiological function of the matrix polysaccharides. Oceanogr. Mar Biol Annu Rev, 1988, 26:259-315.
    [53] Arnott S, Fulmer A, Scott W E, Dea I C, Moorhouse R. and Rees D. A. The agarose double helix and its function in agarose gel structure. J Mol Biol, 1974, 90:269-284.
    [54] Forrd S A, Atkins E D T. New A-ray diffranction results from agarose: Extended single helix structures and implications for gelation mechanism. Biopolymers, 1989, 28:1345-1365.
    [55]纪明侯等.海藻化学.北京:科学出版社,1997, 29-30
    [56]刘美英,梅建凤,易喻,陈建澍,应国清.琼胶寡糖生物活性的研究进展.药物生物技术. 2008,15(6):493-496
    [57]Flament D, Barbeyron T, Jam M. Alpha-agarases define a new family of glycoside hydrolases,distinct from beta-agarase families. Appl Environ Microbiol , 2007:4691~4694.
    [58] Ishimatsu K, Kibesake Y. Agar-liquefying bacteria XV. Properties of the reducing agar formed from agar by agarase. Sci and Ind, 1955, 29:129-132.
    [59] Young K S, Bhattacharjee S S, Yaphe W. Enzyme cleavage of the alpha linkages in agarose to yield agarooligosaccharides. Carbohydr Res. 1978, 66:207-212.
    [60] Potin P, Richard C, Rochas C. Purification and characterization of theα-agarase from Alteromonas agarlyticus (cataldi), strain GJ1B. Eur J Biochem, 1993, 214:599-607.
    [61] Potion P. Production and separation of a1pha-agarase from Alteromonas agarlyticus strain GJ1B. Bioresour Technol, 2001, 79:47一51.
    [62] Ohta Y., Hatada Y., Mtyazakt M. et al. Purification and characterization of a novel alpha-agarase from a Thalassomonas sp. C Microbiol, 2005, 50:212-216.
    [63] Aoki T, Araki T, Kitamikado M. Purification and characterization ofβ-agarase from Vibrio sp. AP-2. Nippon Suisan Gakkaishi, 1990, 56:825–830.
    [64] Sugano Y, Terada I, Arita M, Noma M, Matsumoto T. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol, 1993, 59:1549–1554.
    [65] Suzuki H, Sawai Y, Suzuki T, Kawai K, Purification and characterization of an extracellularβ-Agarase from Bacillus sp. MK03. Journal of Biosci and Bioeng, 2003, 95:328-334.
    [66] Lakshmikanth M, Manohar S, Souche Y, Lalitha J. Extracellularβ-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World J Microbiol Biotechnol, 2006, 22:1087–1094.
    [67] Fu W, Han B, Duan D, Liu W, Wang C. PuriWcation and characterization of agarases from a marine bacterium Vibrio sp. F-6. J Ind Microbiol Biotechnol, 2008, 35:915–922.
    [68] Bannikova G E, Lopatin S A, Varlamov V P, Kuznetsov B B, Kozina I V, Miroshnichenko M L, Chernykh N A, Turova T P, Bonch-Osmolovskaya E A. The thermophilic bacteria hydrolyzing agar: characterization of thermostable agarase. J Biol Chem Microbiol, 2008, 44:366–369.
    [69] Ma C P, Lu X Z, Shi C, Li J B, Gu Y C, Ma Y M, Chu Y, Han F, Gong Q H, Yu W G. Molecular cloning and characterization of a novelβ-Agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem, 2007, 82:3747–3754.
    [70] Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, Hidaka Y, Goda S, Ito S, Horikoshi K. Enzymatic properties and nucleotide and amino acid sequences of a thermostableβ-agarase from a novel species of deep-sea Microbulbifer. Appl Microbiol Biotechnol, 2004, 64: 505–514.
    [71] Dong J, Tamaru Y, Araki T. A uniqueβ-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol, 2007, 74:1248–1255.
    [72] Lu X, Chu Y, Wu Q, Gu Y, Han F, Yu W. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. Biotechnol Lett, 2009, 31:1565–1570.
    [73] Lee D G, Park G T, Kim N Y, Lee E J, Jang M Y, Shin Y G, Park G S, Kim T M, Lee J H, Lee J H, Kim S J, Lee S H. Cloning, expression, and characterization of a glycoside hydrolase family 50β-agarase from a marine Agarivorans isolate. Biotechnol Lett 2, 2006,8:1925–1932.
    [74] Lee D G, Jang M K, Lee O H, Kim N Y, Ju S, Lee S H. Over production of a glycoside hydrolase family 50-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening evect of its product. Biotechnol Lett, 2008, 30:911–918.
    [75] Ohta Y, Hatada Y, Nogi Y C, Li Z, Ito S, Horikoshi K. Cloning, expression, and characterization of a glycoside hydrolase family 86β-agarase from a deep-sea Microbulbifer-like isolate. Appl Microbiol Biotechnol, 2004, 66:266–275.
    [76] Long M. Yu Z, Xu X. A Novelβ-Agarase with High pH Stability from Marine Agarivorans sp. LQ48. Mar Biotechnol, 2010, 12:62–69.
    [77] White A, Rose D R. Mechanism of catalysis by retaining beta-glycosyl hydrolases.Curr Opin Struct Bio, 1997, 7:645~651.
    [78] Jang M, Lee S W, Lee D, Kim N, Yu K, Jang H J, Kim S, Kim A, Lee S. Enhancement of the thermostability of a recombinant b-agarase, AgaB, from Zobellia galactanivorans by random mutagenesis. Biotechnol Lett 2010, DOI 10.1007/s10529-010-0237-5
    [79] Shi C, Lu X, Ma C, Ma Y, Fu X, Yu W. Enhancing the Thermostability of a Novelβ-agarase AgaB through Directed Evolution. Appl Biochem Biotechnol, 2008, 151:51–59.
    [80] Araki T, Lu Z. Optimization of parameters for isolation of protoplasts Gracilaria Verrucosa. Journal of Marine Biotechnology, 1998, 6:193-197.
    [81]杜宗军,王祥红等.琼胶酶的研究进展.微生物学通报, 2003, 30:64~67.
    [82] Cole K D, and ?kerman B. Enhanced capacity for electrophoretic capture of plasmid DNA by agarase treatment of agarose gels.Biomacromolecules 2000, 1, 771-781.
    [83] Sugano Y, Terada I, Arita M, Noma M. Purification and characterization of a new agarase from amarine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol, 1993, 59:1549–1554
    [84] Saiki R K, Scharf S, Faloona F, Mullis K B, Hom G T, Erlich H A, Amheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Sci, 1985, 230:l 350-1 354.
    [85] Ochman H, Gerber A S, Hanl D L. Genetic applications of an inverse polymerase chain reaction. Genetics, 1988, 1 20:621-623.
    [86] Silver J, Keerikate V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Viro1, 1989, 63:1924—1928.
    [87] Tsuei D J, Chen P J, Lai M Y, Chen D S, Yang C S, Chen J Y. Inverse polymerase chain reaction for cloning cellular sequences adjacent to integrated hepatitis B virus DNA in hepatocellular carcinomas. J Viro1 Methods, l994, 49: 269-284.
    [88] Knapp S, Larondelle Y, Rossberg M, Furtek D, Theres K. Transgenic tomato lines containing Ds elements at defined genomic positions as tools for targeted transposon tagging, Mol Gen Genet.1994, 243:666-673.
    [89] Souer E, Quattrocchio F, Veten N, Mol J, Koes R. A general method to isolate genes tagged by a high copy number transposable element,Plant J, 1995, 7:677—685.
    [90] Yoshitomo-Nakagawa K, Muramatsu M, Sugano S. Cloning of the promoter regions of mouse TGF-beta receptor genes by inverse PCR with highly overlapped primers. DNA Res, 1997, 4:73-75.
    [91] Ge Y, Charon N W. Identification of a large motility operon in Borrelia burgdorferi by semi-random PCR chromosome walking. Gene, 1997, 189:195-201.
    [92] Yuanxin Y, Chengcai A, Li L, Jiayu G, Guihong T, Zhangliang C. T-linker specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res, 2003, 31:68.
    [93] Nthangeni M B, Ramagoma F, Tlou M G, Lithauer D. Development of a versatile cassette for directional genome walking using cassete ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species. J Microb Meth, 2005, 6 l:225-234.
    [94] Rosenthal A, Jones D S. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic acids Research, 1990, 18:3095-3096.
    [95] Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith J C, Markham A F. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clone. Nucleic Acids Res, 1990, 18 :2887-2890.
    [96] TaKaRa LA PCRTM in vitro Cloning Kit. Code No.DRR015. TaKaRa Bio Catolog, 2004-2005, E34-36.
    [97] Nelson D L, Ledbetter S A, Corbo L, Victoria M F, Ramirez-Solis R, Webster T D, Ledbetter D H, Caskey C T. Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA, 1989, 86:6686-6690.
    [98] Nelson D L, Ballabio A, Victoria M F, Pieretti M, Bies R D, Gibbs R A, Maley J A, Chinault A C, Webster T D, Caskey C T. Alu-primed polymerase chain reaction for regional assignment of 110 yeast artificial chromosome clones from the human X chromosome: identification of clones associated with a disease locus. Proc Natl Acad Sci USA, 1991, 88:6157-6161.
    [99] Taek H I, Kim Y J, Kim S H, Kwak C I, Gu Y Y, Chun J Y. Annealing control primer system for improving specificity of PCR amplification. Biotechniques, 2003, 35:l l80-1184.
    [100] Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25:674-681.
    [101] Liu Y-G, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques, 2007,43:649-656.
    [102] Liu Y G, Norihiro M, Teruko, Wittier R. Efficient isolation and mapping of A rabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal, 1995, 8:457 - 463.
    [103] Grossniklaus U, Philippe J, Calzada V. Maternal control of embrogenesis by MEDEA, a polycomb group gene in A rabidopsis.Science, 1998, 280:446 - 450.
    [104] Gyeong C H, Choe M S. Molecular analysis of rice plants harboring an Ac/ Ds transposable elementmediatd gene trapping system. The Plant Journal, 1999, 9:615 - 623.
    [105]方进,翟文学,王文明等.转基因水稻T2DNA侧翼序列的扩增与分析.遗传学报, 2001, 28:345 - 351.
    [106] Hahn S A, Schutte M, Hooue A. A candidate tumer-suppressor gene at human-chromosome. Science, 1996, 271:350 - 353.
    [107] Nakayama T, Soma M, Rahmutula D, Ozawa Y, Kanmatsuse K. Isolation of the 5’-flanking region of genes by thermal asymmetric interlaced polymerase chain reaction. Med Sci Monit, 2001, 7:345-349
    [108] Ivanova E P, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol, 2004, 54:1773-1788.
    [109] Baumann L. Baumann P, Mandel M, Allen R D. Taxonomy of aerobic marine eubacteria. J Bacteriol, 1972, 110:402–429.
    [110] Gauthier M J, Lafay B, Christen R, Fernandez L, Acquaviva M, Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol, 1995, 45: 755-761.
    [111] Ivanova E P, Mikhailov V V. A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina, and Colwellia. Mikrobiologiya, 2001, 70:15–23 (in Russian).
    [112] Kurahashi M, Yokota A. Agarivorans albus gen. nov., sp. nov., aγ-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol, 2004, 54:693-697.
    [113] Jean W D, Huang S P, Liu T Y, Chen J S, Shieh W Y. Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation. Int J Syst Evol Microbiol, 2009, 59:1880-1887.
    [114] Jean W D, Chen J S, Lin Y T, Shieh W Y. Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol, 2006, 56:2463-2467.
    [115] Brown G R., Sutcliffe I C, Cummings S P. Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol, 2001, 51:67–72
    [116] Ekborg N A, Gonzalez J M, Howard M B, Taylor L E, Hutcheson S W, Weiner R M. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol, 2005, 55:1545-1549.
    [117] Urios L, Intertaglia L, Lesongeur F, Lebaron P. Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol, 2008, 58:1233-1237.
    [118] Urios L, AgoguéH, Intertaglia L, Lesongeur F, Lebaron P. Melitea salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean sea. Int J Syst Evol Microbiol, 2008, 58:2479-2483.
    [119] Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K. (editors) Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley. 1995.
    [120] Chun J, Lee J H, Jung Y, Kim M, Kim S, Kim B K, Lim Y W. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol, 2007, 57:2259–2261.
    [121] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25, 4876–4882.
    [122] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24, 1596–1599.
    [123] Mesbah M, Whitman W B. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr, 1989, 479, 297–306.
    [124] Ostle A G, Holt J G. Nile Blue A as a fluorescent stain for polyβ-hydroxybutirate. Appl Environ Microbiol, 1982, 44, 238–241.
    [125] Breznak J A, Costilow R N. Physicochemical factors in growth. In Methods for General and Molecular Bacteriology. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology, 1994, pp.137-154.
    [126] Collins M D, Pirouz T, Goodfellow M, Minnikin D E. Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol, 1977, 100, 221-230.
    [127] Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol, 1983, 54, 31-36.
    [128] Minnikin D E, O’Donnell A G, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J H. An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods, 1984, 2, 233-241.
    [130] Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol, 1987, 19, 161-203.
    [130] Xie C H, Yokota A. Phylogenetic analysis of Lampropedia hyaline based on the 16S rRNA gene sequence. J Gen Appl Microbiol, 2003, 49, 345-349.
    [131] Bowman J P, McCammon S A, Brown J L, McMeekin T A. Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol, 1998, 48, 1213–1222.
    [132] Romanenko L A, Zhukova N V, Rohde M, Lysenko A M, Mikhailov V V, Stackebrandt E. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol, 2003, 53, 647–651.
    [133] Yong J J, Park S J, Kim H J, Rhee S K. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol, 2007,57, 951–953.
    [134] Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T, Yumoto I. Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol, 2006, 56, 2883–2886.
    [135] Baik K S, Park Y D, Seong C N, Kim E M, Bae K S, Chun J. Glaciecola nitratireducens sp. nov., isolated from seawater. Int J Syst Evol Microbiol, 2006, 56, 2185–2188.
    [136] Van Trappen S, Tan T L, Yang J, Mergaert J, Swings J. Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Arctic Ocean, and emended description of thegenus Glaciecola. Int J Syst Evol Microbiol, 2004, 54, 1765–1771.
    [137] Zhang D C, Yu Y, Chen B, Wang H X, Liu H C, Dong X Z, Zhou P J. Glaciecola psychrophila sp. nov., a novel psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol, 2006, 56, 2867–2869.
    [138] Baumann L, Baumann P, Mandel M, Allen R D. Taxonomy of aerobic marine eubacteria. J Bacteriol, 1972, 110,402–429.
    [139] Gauthier M J, Lafay B, Christen R, Fernandez L, Acquaviva M, Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol, 1995, 45, 755–761.
    [140] Yoon J H, Kim I G, Kang K H, Oh T K, Park Y H. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol, 2003, 53,1625–1630.
    [141] Chiu H H, Shieh W Y, Lin S Y, Tseng C M, Chiang P W, Wagner-D?bler I. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol, 2007, 57, 1209–1216.
    [142] Ivanova E P, Bowman J P, Lysenko A M, Zhukova N V, Gorshkova N M, Sergeev A F, Mikhailov V V. Alteromonas addita sp. nov. Int J Syst Evol Microbiol, 2005, 55, 1065–1068.
    [143] Martínez-Checa F, Béjar V, Llamas I, del Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acidproducing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol, 2005, 55, 2385–2390.
    [144] Yoon J H, Yeo S H, Oh T K, Park Y H. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol, 2004, 54, 1197–1201.
    [145] Van Trappen S, Tan T L, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol, 2004, 54, 1157–1163.
    [146] Yi H, Bae K S, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and amended description of Alteromonas macleodii. Int J Syst Evol Microbiol, 2004, 54, 571–576.
    [147] Wang Y, Wang H, Liu J, Lai Q, Shao Z, Austin B, Zhang X H. Aestuariibacter aggregatus sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS Microbiol Lett, 2010, 309, 48-54.
    [148] Jeon C O, Lim J M, Park D J, Kim C J. Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol, 2005, 55, 239–243.
    [149] Lai Q, Yuan J, Wang B, Sun F, Qiao Nan, Zheng T, Shao Z. Bowmanella pacifica sp. nov., isolated from a pyrene-degrading consortium. Int J Syst Evol Microbiol, 2009, 59, 1579-1582.
    [150] Kurahashi M. Yokota A. Agarivorans albus gen. nov., sp. nov., aγ-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol, 2004, 54, 693–697.
    [151] Sawabe T, Makino H, Tatsumi M, Nakano K, Tajima K, Iqbal M M, Yumoto I, Ezura Y,Christen R. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int J Syst Bacteriol, 1998, 48, 769–774.
    [152] Kobayashi T, Imada C, Hiraishi A, Tsujibo H, Miyamoto K, Inamori Y, Hamada N, Watanabe E. Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int J Syst Evol Microbiol, 2003, 53, 1807–1811.
    [153] Baik K S, Park Y D, Seong C N, Kim E M, Bae K S, Chun J. Glaciecola nitratireducens sp. nov., isolated from seawater. Int J Syst Evol Microbiol, 2006, 56, 2185–2188.
    [154] Chen L P, Xu H , Fu S Z, Fan H X, Liu Y H, Liu S J, Liu Z P. Glaciecola lipolytica sp. nov., isolated from seawater near Tianjin city, China. Int J Syst Evol Microbiol , 2009, 59, 73-76.
    [155] Ivanova E P, Bowman J P, Lysenko A M, Zhukova N V, Gorshkova N M, Sergeev A F, Mikhailov V V. Alteromonas addita sp. nov. Int J Syst Evol Microbiol, 3005, 55, 1065–1068.
    [156] Martínez-Checa F, Béjar V, Llamas I, del Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acidproducing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol, 2005, 55, 2385–2390.
    [157] Chiu H H, Shieh W Y, Lin S Y, Tseng C M, Chiang P W, Wagner-D?bler I. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary, Int J Syst Evol Microbiol, 2007, 57, 1209–1216.
    [158] Labrenz M, Lawson P A, Tindall B J, Hirsch P. Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int J Syst Evol Microbiol, 2009, 59, 1935–1940.
    [159] Sorokin D Yu, Tourova T P, Kuznetsov B B, Bryantseva I A, Gorlenko V M. Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a Soda Lake. Microbiology, 2000, 69, 75–82.
    [160] Boldareva E N, Bryantseva I A, Tsapin A, Nelson K, Sorokin D, Yu, Tourova T P, Boichenko V A, Stadnichuk I N, Gorlenko V M. The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline Soda Mono Lake (California, United States). Microbiology, 2007, 76, 82–92
    [161] Milford A D, Achenbach L A, Jung D O, Madigan M T. Rhodobaca bogoriensis gen nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol, 2000, 174, 18–27.
    [162] Boldareva E N, Akimov V N, Boychenko V A, Stadnichuk I N, Moskalenko A A, Makhneva Z K, Gorlenko V M. Rhodobaca barguzinensis sp. nov., a New Alkaliphilic Purple Nonsulfur Bacterium Isolated from a Soda Lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology, 2008, 77, 206–218.
    [163] Peck L S, Convey P, Barnes D K A. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev, 2006, 81, 75–109.
    [164] Yu Y, Li H, Zeng Y, Chen B. Phylogenetic diversity of culturable bacteria from Antarctic sandy intertidal sediments, 2010, Polar Biol DOI: 10.1007/s00300-009-0758-3
    [165] Felsenstein J. (2009). PHYLIP (phylogeny inference package), v3.69. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
    [166] Martens T, Heidorn T, Pukall R, Simon M, Tindall B J, Brinkhoff T. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol, 2006, 56, 1293-1304.
    [167] Biebl H, Drews GDas in-vivo Absorptionsspektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. Zentbl Bakteriol Parasitenkd Infektionskr Hyg , 1969, 123, 425–452 (in German).
    [168] Labrenz M, Collins M D, Lawson P A, Tindall B J, Schumann P, Hirsch P. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol, 1999, 49, 137–147.
    [169] Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol, 1994, 44, 846–849.
    [170] Zuber H, Cogdell R J. Structure and organization of purple bacterial antenna complexes. In Anoxygenic photosynthetic bacteria. Edited by R. E. Blankenship, M. T. Madigan & C. E. Bauer. Dordrecht: Springer. 1995, pp. 315–348. [ 171 ] Eckersley K, Dow C S. Rhodopseudomonas blastica sp.nov.: a Member of the Rhodospirillaceae. J Gen Microbiol, 1980, 119, 465–473.
    [172] Imhoff J F. Polar lipids and fatty acids in the genus Rhodobacter. System Appl Microbiol, 1991, 14, 228–234.
    [173] Milford A D, Achenbach L A, Jung D O, Madigan M T. Rhodobaca bogoriensis gen nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol,2000, 174, 18–27. [ 174 ] Sorokin D Y, Tourova T P, Kuznetsov B B, Bryantseva I A, Gorlenko V M. Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a Soda Lake. Microbiology, 2000,69, 75–82.
    [175] Boldareva E N, Bryantseva I A, Tsapin A, Nelson K, Sorokin D Yu, Tourova T P, Boichenko V A, Stadnichuk I N, Gorlenko V M. The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline Soda Mono Lake (California, United States). Microbiology, 2007, 76, 82–92.
    [176] Boldareva E N, Akimov V N, Boychenko V A, Stadnichuk I N, Moskalenko A A, Makhneva Z K, Gorlenko V M. Rhodobaca barguzinensis sp. nov., a NewAlkaliphilic Purple Nonsulfur Bacterium Isolated from a Soda Lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology, 2008, 77, 206–218.
    [177] Labrenz M Lawson P A, Tindall B J, and Hirsch PRoseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int J Syst Evol Microbio,2009, 59, 1935–1940.
    [178] Chakravarthy S K, Sucharitha, K., Sasikala, Ch. & Ramana, Ch. V. Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline sodalakes of Central Asia. Int J Syst Evol Microbiol, 2009,59, 1615–1619.
    [179] Girija, K. R., Sasikala, Ch., Ramana, Ch. V., Spr?er, C., Takaichi, S., Thiel, V. & Imhoff, J. F. Rhodobacter johrii sp. nov., an endospore producing cryptic Rhodobacter species isolated from semi-arid tropical soils. Int J Syst Evol Microbiol, 2009, doi: 10.1099/ijs.0.011718-0
    [180] Venkata Ramana, V., Anil Kumar, P., Srinivas,T. N. R., Sasikala, Ch. & Ramana, Ch. V. Rhodobacter aestuarii sp. nov., a phototrophic alphaproteobacterium isolated from an estuarine environment. Int J Syst Evol Microbiol, 2009, 59, 1133–1136.
    [181] Kompantseva, E. I., Komova, A. V. & Kostrikina, N. A. Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia. Int J Syst Evol Microbiol , 2010, 60, 1210–1214.
    [182] Vancanneyt, M., Segers, P., Torck, U., Hoste, B., Bernardet, J.-F., 261 Vandamme, P. & Kersters, K. Reclassification of Flavobacterium odoratum (Stutzer 1929) strains to a new genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. Int J Syst Bacteriol, 1996, 46, 926–932.
    [183] Stutzer M J. Zur Frageüber die F?ulnisbakterien im Darm. Zentralbl. Bakteriol. Parasitenkd. Infektionskr.Hyg. Abt. I. Orig, 1923, 91, 87–90.
    [184] Stutzer, M., and A. Kwaschnina. In Aussaaten aus den F?zes des Menschen gelbe Kolonien bildende Bakterien (Gattung Flavobacterium u.a.). Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I. Orig, 1929, 113, 219– 225.
    [185] Holmes, B., Snell, J. J. S. & Lapage, S. P. Revised description, from clinical isolates, of Flavobacterium odoratum Stutzer and Kwaschnina 1929, and designation of the neotype strain. Int J Syst Bacteriol,1977, 27, 330–336.
    [186] Vancanneyt, M., Segers, P., Torck, U., Hoste, B., Bernardet, J.-F., Vandamme, P. & Kersters, K. Reclassification of Flavobacterium odoratum (Stutzer 1929) strains to a new genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. Int J Syst Bacteriol, 1996, 46, 926–932.
    [187] Hugo, C.J., Bruun, B. & Jooste, P.J. The genera Empedobacter and Myroides, in M. Dworkin et al., eds., The Prokaryotes, a Handbook on the Biology of Bacteria, third edition, vol. 7, 2006, 630-637.
    [188] Cho, S.-H., Chae, S.-H., Im, W.-T. & Kim, S. B.. Myroides marinus sp. nov., a member of the Family Flavobacteriaceae, isolated from seawater. Int J Syst Evol Microbiol, 2010, doi:10.1099/ijs.0.024067-0.
    [189] Yoon, J., Maneerat, S., Kawai, F. & Yokota, A. Myroides pelagicus sp. nov., isolated from seawater in Thailand. Int J Syst Evol Microbiol, 2006, 56, 1971-1920.
    [190] Zhang, X.-Y., Zhang, Y.-J., Chen, X.-L., Qin, Q.-L., Zhao, D.-L., Li, T.-G., Dang, H.-Y., & Zhang, Y.-Z. Myroides profundi sp. nov., isolated from deep-sea sediment of the southern Okinawa Trough. FEMS Microbiol Lett 87, 2002, 273, 108–112.
    [191] Bernardet, J.-F., Nakagawa, Y. & Holmes, B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol, 2002, 52, 1049-1070.
    [192] Daniel B. Kearns and Richard Losick. Swarming motility in undomesticated Bacillus subtilis.Molecular Microbiology, 2003, 49 :581–590
    [193] Tindall, B. J., Sikorski, J., Smibert, R. M., & Krieg, N. R. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology. C. A. Reddy, T. J. Beveridge, 258 J. A. Breznak, G. Marzluf, T. M. Schmidt, & L. R. Snyder (ed.) ASM Press, Washington DC. 2007, p. 330-393.
    [194] Vancanneyt, M., Segers, P., Torck, U., Hoste, B., Bernardet, J.-F., Vandamme, P. & Kersters, K. (1996). Reclassification of Flavobacterium odoratum (Stutzer 1929) strains to a new genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. Int J Syst Bacteriol 46, 926–932.
    [195] Cho, S.-H., Chae, S.-H., Im, W.-T. & Kim, S. B. Myroides marinus sp. nov., a member of the Family Flavobacteriaceae, isolated from seawater. Int J Syst Evol Microbiol , 2010.doi:10.1099/ijs.0.024067-0.
    [196] Vancanneyt, M., Segers, P., Torck, U., Hoste, B., Bernardet, J.-F., Vandamme, P. & Kersters, K. Reclassification of Flavobacterium odoratum (Stutzer 1929) strains to a new genus, Myroides, as Myroides odoratus comb. nov. and Myroides odoratimimus sp. nov. Int J Syst Bacteriol, 1996, 46, 926–932.
    [197] Yoon, J., Maneerat, S., Kawai, F. & Yokota, A Myroides pelagicus sp. nov., isolated from seawater in Thailand. Int J Syst Evol Microbiol, 2006, 56, 1971-1920.
    [198] Zhang, X.-Y., Zhang, Y.-J., Chen, X.-L., Qin, Q.-L., Zhao, D.-L., Li, T.-G., Dang, H.-Y., & Zhang, Y.-Z. Myroides profundi sp. nov., isolated from deep-sea sediment of the southern Okinawa Trough. FEMS Microbiol Lett, 2008, 287, 108–112.
    [199] Cho, S.-H., Chae, S.-H., Im, W.-T. & Kim, S. B. Myroides marinus sp. nov., a member of the Family Flavobacteriaceae, isolated from seawater. Int J Syst Evol Microbiol, 2010, doi:10.1099/ijs.0.024067-0.
    [200] Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory. 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700