用户名: 密码: 验证码:
珍稀植物太行花的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太行花(Taihanggia rupestris Yu et Li)是1974年发现,1980年经俞德浚和李朝銮鉴定的蔷薇科单种属植物,为中国特有。太行花是蔷薇科草本仙女木族最原始二倍体植物,染色体2n = l4,属古老的残遗种。太行花花的结构由两性花向单性花演变,这在仙女木族进化上占有特殊的位置,对阐明蔷薇科一些类群的起源和演化问题具有重要意义。但由于其分布区狭小,生境独特,且植株稀少,随着植被的破坏而导致生境的改变,分布范围日益缩减,濒临灭绝;被列为我国二级保护植物。
     一般而言,只有在弄清物种的遗传结构和遗传多样性现状的前提下,才能够制定出切实可行的保护策略,否则,任何物种保护措施的实施,都不会取得实质性的成效。分子标记能直接从DNA水平反映物种水平上的遗传差异,是研究植物遗传多样性的有效工具。ISSR标记具有简单、快速、无种属特异性、节约成本的优点,被广泛应用于遗传多样性的研究。本试验应用ISSR标记对10个居群220个太行花个体的遗传多样性进行了研究。主要结果如下:
     (1)筛选并优化了太行花DNA的提取方法。通过比较常规CTAB法、改良CTAB法和SDS法对太行花叶片总DNA的提取效果,发现常规CTAB法提取的DNA难以完全溶解,且有褐化现象;SDS法提取的DNA产率及纯度都很低;改良CTAB法提取的DNA产率高且稳定,无明显降解,杂质少,OD260/OD280值在1.8左右,并以改良CTAB法提取的DNA为模板,应用线粒体通用引物扩增出了特异性的高效产物。
     (2)从测试的50条ISSR随机引物中选出了扩增效果稳定、条带丰富的12条引物进行220个样品的ISSR检测。12条引物共扩增出184条清晰可识别的条带,每条引物扩增出的条带数在11~19之间,平均为15.33;各条带分子量在130bp~2000bp之间。在扩增出的184条带中,共有148条带为多态条带,物种水平上多态位点比率为80.43%,居群上平均多态条带的百分比(PPB)为47.01%;物种和居群水平的平均Nei遗传多样性(h)分别为0.2479和0.1865,Shannon信息指数(I)分别为0.3785和0.2726;物种水平上等位基因数目为1.8043,每个位点平均有效等位基因数为1.4126。
     (3)10个居群间的Nei遗传一致性的平均值为0.9223,其中QPG与XXT遗传一致性最高,达到0.9728,DPB和SSM遗传一致性最低,为0.8706;居群间的遗传距离在0.034~0.144之间,其中QPG与XXT居群遗传距离最小,DPB和SSM居群间的遗传距离最大。
     (4)基于Nei遗传距离,利用UPGMA聚类法对10个太行花居群进行聚类分析,10个居群聚为两个大组。其中南部居群(DPB、YDS、LHP、XXT、QPG)聚为一组,北部5个居群,即HHS、JG、SSM、NY、DLG,聚为另一组。主成分分析(PCA)显示,南部居群主要集中在坐标轴的右下方,而北部群体主要集中在坐标轴的左上方,主成分分析支持UPGMA聚类的结果。
     (5)利用GenAlEx6.1软件进行mantel检验,结果显示居群间的遗传距离和地理距离之间有显著的相关性(r = 0.611, P<0.001),说明地理因素对太行花的群体遗传结构有较大的影响。(6)利用POPGENE 1.32分析软件,计算不同居群之间的遗传分化水平。结果表明,10个居群总的基因多样性Ht为0.2465,居群内的基因多样性Hs为0.1865,居群间的遗传分化系数Gst=0.2435,居群间的基因流Nm=1.5537。同时,AMOVA分析显示73.51%的总基因变异发生在居群内,26.49%的变异发生在居群之间,组间的变异为9.24%,AMOVA分析验证了Nei基因多样性对群体结构的分析结果。
Taihangia Rupestris Yu et Li was firstly found in 1974, and then formally described in 1980 as the only species of the Taihanggia belonging to the family Rosaceae. T. Rupestris is an perennial herb endemic to China. T. Rupestris is the most primitive diploid species (2n = l4) in the tribe Dryadeae belong to the family Rosaceae according to its morphology, anatomy of carpel, chromosome counting, microscopic and submicroscopic structure of pollen, so it is an ancient relic species. T. Rupestris, with the characterization of evolvement from bisexual flower to unisexual flower, is at an important systematic position in the tribe Dryadeae, and study on it could throw a new light on evolution of the tribe Dryadeae. However, due to its small distribution area, unique habitats and rare plants, the destruction range of Taihangia Rupestris becomes smaller. It is endangered specie and listed as protected plants in China.
     In general, we must know the genetic structure and genetic diversity of species before we make the conservation strategy. If not, any protection measures can not achieve the expected results. Molecular markers are useful tools in the Genetic Diversity study. Inter-simple sequence repeat (ISSR) is a molecular marker targeting simple sequence repeats (SSR), by which the length variation of DNA fragment between adjacent microsatellites is detected in the entire genome. Freedom from the necessity of obtaining flanking sequence information, high level of polymorphism and simple technology, ISSR has been widely used for Genetic Diversity studies. Inter-simple sequence repeat (ISSR) markers were employed to estimate the genetic diversity and genetic differentiation of ten populations. The main results are as follows:
     (1)We filtered and optimized the DNA extraction method of Taihangia Rupestris. The total DNA was isolated from the leaf of Taihanggia rupestris YU et LI by the conventional CTAB method,improved CTAB method and SDS method. The results showed the extracts by conventional CTAB method were brown and could not dissolve completely, and those by SDS method had a low quality and yield. As for the improved CTAB method, there was a high production rate of the extracts,that was pure with little degradation,and A260/ A280 was 1.8 or so. With these leaf DNA serving as template, PCR at two loci of mitochondrial genomes was effective and special highly.
     (2) We selected 12 ISSR primers from 50 ISSR primers for the Amplification of 220 samples. Amplification of the ISSR fragments in 220 individuals sampled with 12 primers generated 184 clearly identifiable bands, with a mean of 15.33 bands per primer. In all, there were 148 polymorphic bands, the percentage of polymorphic band (PPB) was 47.01 % on average and 80.43% at the species level. The Nei’s gene diversity (h) was estimated to be 0.1865 on average at the population level, 0.2479 at the species level, while Shannon indices (I) were 0.2726 and 0.3785 respectively. The number of alleles was estimated to be 1.8043 at the species level and the average effective number of alleles per locus was estimated to be 1.4126.
     (3)Pairwise Nei’s unbiased measures of genetic identity of the ten populations was high as 0.9233 on average, QPG and XXT are the closest with 0.9728, whereas DPB and SSM are the most distant populations with a identity coefficient of 0.8706. Genetic distance was detected to be 0.034~0.144 between populations, QPG and XXT are the Least, whereas DPB and SSM are the largest.
     (4)The UPGMA analysis clustered 10 populations into two groups. GroupⅠcontained populations DPB, YDS, LHP, QPG and XXT. GroupⅡincluded populations HHS、JG、SSM、NY、DLG. Principal coordinate analysis (PCA) shows: Samples from the southern population were founded in the lower and right side of the diagram, samples from the northern populations in the upper and left side, Principal component analysis supports the results of UPGMA clustering.
     (5)Mantel test was performed using GenAlEx 6.1.The mantel test showed that there was significant positve correlation between geographical distance and genetic distance (r = 0.611, P<0.001), indicating the role of geographic isolation in shaping the present population genetic structure of Taihanggia Rupestris.
     (6)Using POPGENE 1.32 to estimate the level of genetic differentiation among the different populations. The result shows that the total genetic diversity of ten populations(Ht) was estimated to be 0.2465 and genetic diversity within populations(Hs) was detected to be 0.1865. Genetic differentiation coefficient between Population(Gst) was 0.2435 and gene flow(Nm) among populations was estimated to be 1.5537.Analysis of molecular variance revealed that 73.51% of the total genetic variability occurred within populations, 26.49 % was found among populations, in which only 9.24% resided between regions, indicating a low level of among–population genetic differentiation. The results of the population structure analysis by AMOVA and Nei genetic diversity is the same.
引文
[1]洪德元,葛颂,张大明等.植物濒危机制研究的原理和方法[M].见:钱迎倩,甄容德(主编).生物多样性研究进展.北京:中国科技出版社,1995,125-133.
    [2]Solbrig O T,马克平译.社会生物多样性—有关的科学问题与合作研究建议[M].见:中科院生物多样性委员会生物多样性译丛(一).北京:中国科学技术出版社,1992,195-236.
    [3]王伯荪,彭少麟.植被生态学一群落与生态系统[M].北京:中国环境科学技术出版社,1997,7.
    [4]葛颂,洪德元.遗传多样性及其检测方法[M].北京:中国科学技术出版社出版,1994.10-22.
    [5]施立明,贾旭,胡志昂.遗传多样性[M].北京:科学出版社,1993:99-113.
    [6]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [7]董玉琛.生物多样性及作物遗传多样性检测[J].植物品种资源,1995,(3):1-5.
    [8]杨玉慧,李义明.分子生态学研究与动物多样性保护[J].生物多样性,2001,9(3):284-293.
    [9]昝启杰,李鸣光,张军丽等.分子遗传保护研究进展[J]生态科学,2000,19(2):30-36.
    [10]Soltis P S,D E Soltis. Genetic variation in endemic and widespread plant species: Examples from Saxifragaceae and Polystichum,Aliso,1991,13:215-223.
    [11]Ayala F J,J W Valentine(胡凯译).现代综合进化论[M].成都:四川教育出版社,1990,114-136.
    [12]陈佩度.作物育种生物技术[M].北京:中国农业出版社,2001,124-125.
    [13]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001,1-9.
    [14]洪德元.植物细胞分类学[M].北京:科学出版社,1990.
    [15]张传军,刘亦肖,肖娅萍.遗传多样性与植物的遗传标记[J].陕西师范大学学报(自然科学版),2006,(1):275-278.
    [16]冯涛.新疆野苹果部分表型性状遗多样性研究[硕士学位论文].济南:山东农业大学,2007,5.
    [17]刘华,贾继增.指纹图谱在作物品种鉴定中的应用[J].作物品种资源,1997(2):45-48.
    [18]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学技术出版社,2000:1-50,122-150,190-195.
    [19]肖祖梅.观赏南瓜种质资源遗传多样性的RAPD和ISSR分析[硕士学位论文].西南大学,2008,5.
    [20]黄德娟,李素云等.两种重要的分子标记—RFLP和RAPD[J].抚州师专学报,1999(3):49-53.
    [21]王培训,周联,赖小平主编.分子生物学技术与中药鉴别一RAPD技术的研究与应用[M].广东:世界图书出版社,23-25.
    [22]Grivet D, Sork V L, Westfall R D and Davis F W. 2008. Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genetic approach to conservation planning. Molecular Ecology 10.1111/j.1365-294X.2007.03498.x About DOI
    [23]He T M, Chen X S, Xu Z, Gao J S, Lin P J, Liu W, Liang Q, Wu Y. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Valley of West China. Genetic Resources and Crop Evolution, 2007, 54(3): 563-572
    [24]Li T H, LI Y X, Li Z C, Zhang H L, Qi Y W, Wang T. Simple Sequence Repeat Analysis of Genetic Diversity in Primary Core Collection of Peach (Prunus persica). Journal of Integrative Plant Biology,2008,50(1): 102-110.
    [25]廖伯寿,雷永,王圣玉,李栋,黄家权,姜慧芳,任小平.花生重组近交系群体的遗传变异与高油种质的创新[J].作物学报,2008,34(6):999-1004.
    [26]Zietkiewicz E, Rafalsi A, Labuda D. Genome fingerprinting by simple secquence repeat(SSR) anchored polymerise chain reaction amplification[J].Genomics,1994,20:176-183.
    [27]陈俊秋,慈秀芹,李巧明,李捷.樟科濒危植物思茅木姜子遗传多样性的ISSR分析[J].生物多样性,2006,14(5): 410-420.
    [28]张杰,吴迪,汪春蕾,屈红军,邹学忠,杨传平.应用ISSR-PCR分析蒙古栎种群的遗传多样性[J].生物多样性,2007,15(3):292-299.
    [29]Belaid Y, Chtourou-Ghorbel N, Marrakchi M and Trifi-Farah N. Genetic diversity within and between populations of Lathyrus genus (Fabaceae)revealed by ISSR markers. Genetic Resources and Crop Evolution,2006,53:1413-1418.
    [30]杨明博,熊友才,王红芳,巫晓华,薛泽冰,牟硕,刘志才,葛剑平.黄土高原不同气象因子对中国沙棘亚居群遗传多样性的影响[J].应用生态学报,2008,19(1):1-7.
    [31]俞德浚,李朝銮.太行花属——蔷薇科一新属[J].植物分类报,1980,18(4):469-472.
    [32]沈世华,陆文梁,王伏雄.太行花生殖生物学研究Ⅰ太行花生境的分析[J].生物多样性,1994,2(4):210-212.
    [33]张惠源,张志英,岳俊三等.中国中药资源志要[M].北京:科学出版社,1994.
    [34]王皓,温远影.太行花的化学成分研究[J].中草药杂志,2001,32(8):20-21.
    [35]李景原,李发启,王太霞.太行花(Taihangia rupestris Yu et Li)叶的解剖结构[J].河南师范大学学报:自然科学版,1994,22(2):112.
    [36]和严然,黎明.太行花叶的解剖构造与生态环境的关系[J].河南农业大学学报,1988(4):45-49.
    [37]陆文樑.太行花性器官发育的研究—两性花中雌雄性器官发育对温度的不同要求[J].植物学报,1996,38(3):174-179.
    [38]陆文樑,沈世华,王伏雄.太行花生殖生物学研究Ⅱ有性生殖与无性生殖的调查与研究[J].生物多样性,1995,3(1):8-14.
    [39]唐敏.太行花的保护生物学[博士学位论文].2004,中国科学院植物研究所.
    [40]余德浚,李朝銮.蔷薇科太行花属系统位置的研究.植物分类学报,1983,21(3):229-235.
    [41]许桂芳,李孝伟,孟丽.河南太行山区主要野生草本花卉资源[J].安徽农业科学,2006, 34:2380-2381.
    [42]王建书.野生珍稀观赏植物太行花的研究[J].安徽农业科学,2008,36:6209-6210.
    [43]时明芝,肖宜安,李晓红.保护遗传学及其在濒危植物研究中的应用[J].世界林业研究,2003,16(4):13-16.
    [44]范喜梅,李淑萍.珍稀濒危植物一太行花[J].安徽农业科学,2007,35(15):4491-4492.
    [45]邹喻苹,汪小全,雷一丁等.几种濒危植物及其近缘类群总DNA的提取与鉴定[J].植物学报,1994,36(7):528-533.
    [46]蒋细旺,包满珠,李智崎等.菊花DNA提纯方法的优化[J].江汉大学学报.2002,19 (3):42-44.
    [47]汤文开,谭新,张辉等.一种快速简单高效提取植物DNA的方法[J].华中师范大学学报, 2007,41(3):447-449.
    [48]Demesure B,Sodzi N,Petit R J.A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants[J]. Molecular Ecology,1995,4(1):129-134.
    [49]Yeh F C,Yang R C,Boyle T,Ye Z H and Mao J X.1997.POPGENE.The user friendly shareware for population gnenetic analysis.Molecular Biology and Biotechnology Center. University of Alberta.Edmonton.Canada.
    [50]Nei M. Estimation of average heterozygosity and genetic distance from a small number Of individuals.Genetics,1978,89:583-590.
    [51]Hartl D L and Clark A G. Principles of Population Genetics. Sunderland:Sinauer Associates. 1989,49-470.
    [52]Wright S. Evolution mendelian populations.Genetics.1931,16:97.
    [53]Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res, 1967,27:209–220.
    [54]Nei M. Genetic distance between populations. The American Naturalist,1972,106: 283-292.
    [55]Peakall ROD, Smouse PE.GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Mol Ecol Notes,2006,6:288-295.
    [56]Tamura K,Dudley J,Nei M,Kumar S.MEGA 4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Mol Biol Evol,2007,24:1596-1599.
    [57]Excoffier L,Smouse PE,Quattro JM.Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics,1992,131:479-491.
    [58]张富民,葛颂.群体遗传学研究中的数据处理方法I.RAPD数据的AMOVA分析[J].生物多样性,2002,10(4):438-44.
    [59]罗禹,王天志,杨兵,彭爱华.川芎DNA提取方法的研究[J].华西药学杂志,2007, 22(2):124-126.
    [60]Demesure B,Sodzi N,Petit R J.A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants[J]. Molecular Ecology, 1995, 4(1):129-134.
    [61]Dellaporta S L,Wood J,Hicks J B.A plant DNA mini preparation: version II[J].Plant Biol Rep, 1983,1(4):19-21.
    [62]彭建营,束怀瑞,彭士琪.一种适合枣和酸枣基因组DNA的提取方法[J].河北农业大学学报, 2000,23(4):46-48.
    [63]王卓伟,余茂德,鲁成.PVP在桑叶总DNA提取中的应用[J].西南农业大学学报,200l,23 (1): 61-65.
    [64]刘玉皎,李萍,张小田.β-巯基乙醇和PVP对蚕豆DNA质量的影响[J].湖北农业科学. 2008. 47(3):248-250.
    [65]Arise J C and Hamrick J L.1996.Conservation genetics.Case Histories from Nature.Chapman&Hall.New York.
    [66]Matthes-sears U,Nash C H,Llarson D W. Constrained growth of trees in a hostile environment: the roll of water and nutrient availability for Thuja occidentalis on cliff faces[J].Int. J Plant Sci, 1995,156:311-319.
    [67]Jones B,Gliddon C,Good J E G. The conservation of variation in geographically peripheral populations:Lloydia serotina (Liliaceae) in Britain[J].Biol Conserv. 2001,101:147-156.
    [68]Segarra-moragues J,Catalan P. Low allozyme variability in the critically endangered Borderea chouardii and in its congener Borderea pyrenaica (Dioscoreaceae), two paleoendemic relicts from the central Pyrenees[J]. Int. J Plant Sci,2002,163:159-166.
    [69]Colas B,Olivieri I,Riba M.Centaurea corymbosa,a cliff-dwelling species tottering on the brink of extinction:A demographic and genetic study [J].Proc Natl Acad.Sci USA, 1997, 94: 3471-3476.
    [70]Hughes M,Hollingsworth P M,Miller A G.Population genetic structure in the endemic Begonia of the Socotra archipelago[J].Biol Conserv,2003,113:277-284.
    [71]Zhang D F,Chen S L,Chen S Y,Zhang D J,Gao Q B.Pattern of genetic variation in Swertiaprzewalskii,an endangered endemic species of the Qinghai-Tibet plateau[J].Biochem Genet,2007,45:33-50 DOI:10.1007/s10528-006-9057-7.
    [72]Sarwat M,Das S,Srivastava P S.Analysis of genetic diversity through AFLP,SAMPL,ISSR and RAPD markers in Tribulus terrestris,a medicinal herb[J]:Plant Cell Rep,2008,27:519-528.
    [73]Hu Y P,Wang L,Xie X L,Yang J,Li Y,Zhang H G.Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis[J].Biochem Syst Ecol,2010.doi:10.1016/j.bse.2010.01.006.
    [74]Slatkin M.Isolation by distance in equilibrium and non-equilibrium populations.Evolution, 1993.47:264-279.
    [75]Slatkin M.Gene flow and the geographic structure of populations.Science,1987,236:787-792.
    [76]Hamrick JL.Gene flow and distribution of genetic variation in plant populations.1987,53-67. In K.Urbanska editor.Differentiation patterns in higher plants.Academic Press,New York,USA.
    [77]Ayres DR and Ryan FJ.Genetic diversity and structure of the narrow endemic Wyethia reticulata and its congener W.bolanderi (Asteraceae) using RAPD and allozyme techniques.Am J Bot.1999,86:344-353.
    [78]Cavallari MM,Forzza RC,Veasey EA,Zucchi MI and Oliveira GCX.Genetic variation in three endangered species of Encholirium (Bromeliaceae) from Cadeia do Espinha?o,Brazil,setected using RAPD Markers.Biodivers and Conserv,2006,15:4357-4373.
    [79]Kostrakiewicz K,Wróblewska.A low genetic variation in subpopulations of an endangered clonal plant Iris sibirica in southern Poland.Ann Bot Fenn,2008,45:186-194.
    [80]Ge S,Hong D Y,Wang X Q,Liu Z Y,Zhang C M.Population genetic structure and conservation of an endangered conifer,Cathaya argyrophylla (Pinaceae).Int J Plant Sci,1998,159:351-357.
    [81]Lira CF,Cardoso SRS,Ferreira PCG,Cardoso MA and Provan J.Long-term population isolation in the endangered tropical tree species Caesalpinia echinata Lam.reveraled by chlotoplast microsatellites.Mol Ecol,2003,12:3219-3225.
    [82]Cardoso SRS,Provan J,Lira CDF,Pereira LDOR,Ferreira PCG and Cardoso MA. High levels of genetic structuring as a result of population fragmentation in the tropical tree species Caesalpinia echinata Lam.Biodivers and Conserv,2005,14:1047-1057.
    [83]Farwig N,Braun C and Bohning-Gaese K. Human disturbance reduces genetic diversity of an endangered tropical tree, Prunus africana (Rosaceae). Conserv and genet,2008,9:317-326.
    [84]Zhou T H,Qian Z Q, Li S,Guo Z G,Huang Z H,Liu Z L and Zhao G F.2009.Genetic diversity of the endangered Chinese endemic herb Saruma henryi Oliv.(Aristolochiaceae) and its implications for conservation.Popul Ecol,DOI 10.1007/s10144-009-0139-3.
    [85]White GM,Boshier DH,Powell W.Increased pollen flow counteracts fragmentation in atropical dry forest:an example from Swietenia humilis Zuccarini.Proc Natl Acad Sci USA, 2002,99:2038-2042.
    [86]O′Connell M,Mosseler A and Rajora OP.Extensive long-distance pollen dispersal in a fragmented landscape maintains genetic diversity in White Spruce.J hered ,2007,98:640-645.
    [87]Culley TM,Sbita SJ and Wick. A population genetic effects of urban habitat fragmentation in the perennial Herb Viola pubescens (Violaceae) using ISSR markers.Ann Bot,2007,100:91-100.
    [88]Tang M,Yu F H,Zhang S M,Niu S L,Jin X B. Taihangia rupestris,a rare herb dwelling cliff faces:responses to irradiance[J].Photosynthetica,2004,42(2):237-242.
    [89]魏春景,公丕昌,包颖.基于叶绿体单倍型的山东丹参居群遗传结构分析[J].西北植物学报,2009,29(4):0683-0690.
    [90]高龙宵,岳彩伟,李景豹.太行花与缘毛太行花—原产于南太行山区的濒危珍稀植物系列介绍[J].南方农业,2009,3(6):16-17.
    [91]陈灵芝,马克平.生物多样性科学:原理与实践[M].上海:上海科学技术出版社,2001.
    [92]Lowe A, Harris S and Ashton P.2004.Ecological genetics: design, analysis and application. Blackwell Publishing, Oxford, United Kingdom.
    [93]葛颂,洪德元.泡沙参复合体(桔梗科)的物种生物学研究Ⅳ.等位酶水平的变异和分化[J].植物分类学报.1998,36(6):58l-589.
    [94]Nadeem M, Palni LMS, Perohit AN, Pandey H, Nandi SK. Propagation and Conservation of Podophyllum hexandrum Royle: all important medicinal herb. Biological Conservation 2000, 92: 121-129.
    [95]Chang C,Chen C T,Tsai Y C,Chang W C.A tissue culture protocol for propagation of a rare plant,Lilium speciosum Thunb.Var.gloriosoides Baker.Botanical Bulletin of Academia Sinica, 2000,41:139-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700