用户名: 密码: 验证码:
坡度和坡长尺度效应与尺度变换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡度和坡长是影响土壤侵蚀的两个重要地形因子,在区域尺度土壤侵蚀研究中,坡度和坡长一般是通过中低分辨率DEM来提取,但随着DEM分辨率的降低,提取的坡度发生衰减,坡长发生扩张,这种衰减和扩张致使基于中低分辨率DEM提取的坡度表面和坡长表面不能如实表现地形起伏状况,因之也不能有效地提取与坡度、坡长有关的侵蚀地形参数,进而影响了土壤侵蚀评价的计算精度。本研究针对以上问题,综合应用了小波分析理论、数字图像处理、数字地形分析等方法,首先利用小波多分辨率分析方法实现DEM多尺度表达;其次通过对土壤侵蚀地形因子与分辨率关系的系统分析,深入探讨了随着DEM分辨率的降低,坡度衰减和坡长扩张的规律;第三应用直方图匹配原理,构建了坡度和坡长尺度变换的数学模型;第四以陕西省为例对粗分辨率DEM提取的坡度和坡长进行变换,并利用中国土壤流失方程(CSLE)计算了土壤侵蚀量,进而分析了坡度和坡长尺度变换模型对区域土壤侵蚀评价的适用性。论文主要研究结果如下:
     1.基于小波多分辨率分析方法实现了对侵蚀地形的多尺度表达
     在黄土丘陵沟壑区县南沟典型小流域,选取双正交小波Bior4.4作为小波基函数,以方根规律作为小波高频系数阈值处理方法,以2.5m分辨率Hc-DEM为基础,基于小波多分辨率分析方法,获得一系列具有统一定位控制基础、不同分辨率的DEM,能够较好的反映地形整体起伏状况和地形宏观结构。
     2.深入探讨了随着DEM分辨率的降低,坡度衰减和坡长扩张的规律
     (1)以县南沟流域10m、25m、50m分辨率Hc-DEM为参照,对小波变换生成的不同比例尺参数DEM进行质量评价,建立比例尺参数与分辨率之间的关系式,从而可实现对任意规定的粗分辨率DEM数据的生成。
     (2)以小波变换生成的不同分辨率DEM作为数据源,分析地形因子随分辨率变化的情况。随着分辨率的不断降低,沟道高程不断升高、梁峁顶高程不断下降,细小的沟道和梁峁逐渐消失。坡度平均值与分辨率之间呈较好的线性递减关系,坡度频率和累积频率曲线逐渐向低坡度段移动,整体坡度以衰减为主,且发生衰减的部位主要分布在陡坡,发生顺序是从主沟道到细小的沟和梁。而平均坡长与分辨率之间呈较好的线性递增关系,坡长累积频率逐渐向坡长较大值方向移动,整体坡长以扩张为主,且发生扩张的部位主要分布在坡面中下部。
     3.构建了基于直方图匹配原理的坡度和坡长尺度变换模型
     (1)粗分辨率坡度经变换后,地形复杂地区的坡度整体变陡,坡长整体变短,更加接近高分辨率DEM上提取的数值;而地形平坦地区的坡度对DEM分辨率不敏感,实际应用中可不对平坦地区坡度进行变换。变换后的坡度和坡长图的梁峁正地形和沟道负地形轮廓相对关系正确,空间格局没有发生畸变,对地形起伏表达的能力有了很大提高。
     (2)利用小比例尺(1:1000000)进行坡度和坡长制图时,由于50m分辨率坡度和坡长制图中表现出的细节信息过多,一些宏观特征不能被清晰表达,图面结构特征比较差。而经试验250m分辨率坡度和坡长能够更好的表现地形宏观结构特征,但其上坡度衰减和坡长扩张会影响其在土壤侵蚀评价中的应用,因此,需要对250m分辨率坡度和坡长进行尺度变换。经变换后,坡度和坡长值从总体上达到了参考坡度和坡长的统计特征,既满足了小比例尺地形指标制图的要求,又满足了土壤侵蚀评价的计算精度。
     4.以陕西省为例,分析了坡度和坡长尺度变换模型对区域土壤侵蚀评价的影响
     以中国土壤流失方程(CSLE)为土壤侵蚀强度评价方法,由50m分辨率坡度、坡长经变换后,地形较平坦地区的土壤侵蚀强度减弱,坡长扩张大于坡度衰减的影响作用。而在地形复杂地区,陕北黄土丘陵北部的土壤侵蚀强度略有增加,但变化不明显,坡度衰减和坡长扩张的影响相当;秦巴山地比变换前侵蚀模数由4544.92t×km~(-2)×a~(-1)减少到3796.48×km~(-2)×a~(-1),坡长扩张的影响作用大于坡度衰减的影响作用;陕北黄土丘陵南部土壤侵蚀模数由5118.15t×km~(-2)×a~(-1)增加到6590.29t×km~(-2)×a~(-1),坡度衰减的影响作用大于坡长扩张的影响作用。也即在地形复杂地区经坡度和坡长变换后,对土壤侵蚀强度评价的影响取决于该地区是由坡度衰减或坡长扩张起主要影响作用。因此在土壤侵蚀强度评价中对坡度和坡长进行尺度变换是有必要的。
Slope gradient and slope length are two of the most important terrain indexes whichinfluence soil erosion. These two indexes are normally extracted from DEMs with lowerresolution in the research of regional soil erosion. However, slope gradient tends to decreaseand slope length tends to increase as resolution becomes coarser. These make the calculatedslope gradient and slope length not accurate enough to describe the real relief of terrain. Thusthe accuracy of hydrology and soil erosion model is declined. With the comprehensiveapplication of wavelet analysis theory, digital image analysis and digital terrain analysis, thispaper firstly realizes the multi-scale representation of DEM by using the multi-resolutionanalysis method of wavelet. By systematically analyzing the relationship between the soilerosion terrain factor and resolution, it then deeply reveals that slope gradient decreases andthe slope length increases as the resolution of DEMs becomes coarser. Thirdly, the paperestablishes the slope gradient and slope length re-scaling mathematical model by using themethod of histogram matching. Next, taking Shannxi province as research area, we transformthe slope gradient and slope length extracted from the low-resolution DEMs. We also useChinese Soil Loess Equation (CSLE) to calculate the soil erosion volume, and validate thesuitability of the slope gradient and slope length re-scaling model in assessment of regionalsoil erosion. The main conclusions are as follows.
     1. Based on the multi-resolution analysis of wavelet, the multi-scale representation ofsoil erosion terrain is realized.
     A database of DEM is established, which has a gradually-changing resolution and aunified position control base, and effective ability in representing the overall topographiccharacteristics and landform macro structure. The database is generated by using the multi-resolution analysis method of wavelet, and the biorthogonal wavelet function Bior4.4was selected as the wavelet basis function. The Radical Law Selection Principles, traditionallyused in cartographic generalization, was used to set different scale parameters during thethreshold processing on the wavelet high frequency coefficients. Meanwhile, the research areais a typical small-scale watershed, i.e., XianNanGou mountains and gully district, and theoriginal DEM data is the hydrological correct DEMs (hc-DEMs) of high resolution (2.5m).
     2. This paper deeply reveals that slope gradient decreases and the slope length increasesas the resolution of DEMs becomes coarser.
     (1) Taking the Hc-DEM data with the resolution of10m,25m and50m in XianNanGouwatershed as reference data, the paper evaluates the quality of the generated DEMs, whichhave different scalar parameters and obtained by using wavelet transform method. Then, therelationship between the scale parameter and resolution of DEMs is established. Hence, thegeneration of DEMs with arbitrary coarser resolutions is realized.
     (2) Based on the multi-resolution database obtained by using wavelet transform, thevariation pattern of terrain along with the changing of resolution is analyzed. With thereduction of DEM resolution, the gully elevation is rising, while the Liang and Mao topelevation is decreasing, and the small-scale gully, Liang and Mao top are graduallydisappeared. Average slope shows a linearly decreasing trend with the reduction of DEMresolution, and slope frequency and cumulative frequency curves are moving towards gentleslope. In general, the overall slope gradient is declined, and the declining mainly happens insteep slope and with a changing order from main channel to small gully. Average slope lengthhas a linearly increasing trend with the reduction of DEM resolution, and slope lengthcumulative frequency curve is moving towards larger value. In general, the overall slopelength is enlarged, and the enlarging mainly happens in the middle and bottom of slopes.
     3. This work establishes slope gradient and slope length re-scaling transformationmodels based on histogram matching principle.
     (1) After scale transformation, in the area of complex topography, the value of slopegradient and slope length are more close to those derived from high-resolution DEMs: theslope become steeper and the slope length becomes shorter. Compared to the area of complextopography, the effects of slope scale transformation is not crucial at the flat topography.Therefore, it was not necessary to do the slope scale transformation in the regions with flat topography. In addition, after scale transformation, the spatial distribution of outlines ofmountains and channels is corrected and the spatial pattern is kept without distortion. Scaletransformation can improve terrain interpretation ability.
     (2) In drawing the maps of slope gradient and slope length with small-scale scalar, toomuch detail is kept and little overall characteristics is obviously shown when50m resolutionis chosen. This case gives a poor mapping quality. While, our experimental results show theresolution of250m can provide better representation of terrain macro-structure. However, itsreduction of slope gradient and the expansion of slope length seriously impacted theapplication in soil erosion assessment. So it was necessary to do scale transformation ofterrain indexes. The slope gradient and slope length after transform generally meet thereference standard. That is, the scale transformation results not only satisfy the requirement ofsmall-scale terrain indexes mapping but also improve calculated accuracy of soil erosionassessment.
     4. The effectiveness of the slope gradient and slope length scale transformation model isassessed taking the application in Shaanxi province as an example.
     Using CSLE in soil erosion intensities assessment, the soil erosion intensity without andwith the scale transformation are calculated and compared. The result showed that, in the flatarea, the soil erosion intensity is declined and the force of slope length enlarging is more thanthat of slope gradient. In the steep area of the north part of the loess gully of Northern Shaanxiprovince, the erosion intensity has a little increase, and the forces of slope length and gradientis equal. In the steep area of the QinBa mountain area, the erosion intensity module decreasesfrom4544.92t×km~(-2)×a~(-1)to3796.48×km~(-2)×a~(-1), and the forces of slope length enlarging is morethan that of the slope gradient declining. In the steep area of the south part of the loess gullyof Northern Shaanxi province, the erosion intensity module decreases from5118.15t×km~(-2)×a~(-1)to6590.29t×km~(-2)×a~(-1), and the forces of slope length enlarging is less than that of the slopegradient declining. These means the main impacts of scale transform depend on the mainforce type (the force of slope length enlarging or that of slope gradient declining). Therefore,it is crucial to do the slope gradient and slope length scale transformation in the assessment ofregional soil erosion in future.
引文
[1] Wischmeier, W. H. and Smith, D. D. Predicting rainfall eosion losses from cropland east of the RockyMountains: A Guide for soil and water conservation planning[M]. USDA Agriculture Handbook,1978.537.
    [2]朱显谟.黄土高原水蚀的主要类型及其有关因素(2地貌与地质因素)[J].水土保持通报,1981,(4):13-18.
    [3]杨勤科,李锐,梁伟.区域水土流失地形因子的地图学分析[J].水土保持研究,2006,13(1):56-58,99.
    [4] Wolock, D. M. and McCabe, G. J. Differences in topographic characteristics computed from100-and1000-m resolution digital elevation model data[J]. Hydrological Processes,2000(14):987-1002.
    [5] Yang, Q. K., Jupp, D., Li, R., et al. Re-scaling lower resolution slope by histogram matching[M]. In:Advances in Digital Terrain Analysis (Lecture Notes in Geoinformation and Cartograph)[M], Zhou, Q.M., Lees, B. G., and Tang, G. A.,(Editors). Springer,2008.193-210.
    [6]汤国安,赵牡丹,李天文,等. DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(6):824-830.
    [7] David, M. W.,Gregory, J. M. Differences in topographic characteristics computed from100-and1000-m resolution digital elevation model data[J]. hydrological processes,2000,14:987-1002.
    [8] Gao, J. Resolution and Accuracy of Terrain Representation by Grid DEMs at a Micro-scale[J].International Journal of Geographical Information Science,1997,11(2):199-210.
    [9] James, A., Thompson, J. C. B., Charles, A., et al. Digital elevation model resolution: effects on terrainattribute calculation and quantitative soil-landscape modeling[J]. Geoderma,2001(100):67-69.
    [10] Yin, Z. Y. and Wang, X. H. A cross-scale comparison of drainage basin characteristics derived fromDigital Elevation Models.[J]. Earth Surface Processes and Landforms,1999(24):557-562.
    [11]刘志红.基于遥感与GIS的全国水蚀区水土流失评价[D].陕西杨凌:中国科学院教育部水土保持与生态环境研究中心,2007.
    [12]郭伟玲,杨勤科,王春梅,等.区域土壤侵蚀定量评价中的坡长因子尺度变换方法[J].中国水土保持科学,2010,8(4):73-78.
    [13]汤国安,杨玮莹,秦鸿儒,等. GIS技术在黄土高原退耕还林草工程中的应用[J].水土保持通报,2002,22(5):46-50.
    [14]刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中应用[J].水土保持通报,2001,21(1):57-59,62.
    [15] Wilson, J. P. Digital terrain modeling[J]. Geomorphology,2012,137(1):107-121.
    [16] Pike, R. J., Evans, I. S., Hengl, T. Geomorphometry: a brief guide[M]. In: Geomorphometry: Concepts,Software, Applications [M], Hengl, T., Reuter, H. I.(eds), Editor Elsevier Amsterdam,2009.3-30.
    [17] Daubechies, I. Ten lectures on wavelets[M]. Society for Industrial and Applied Mathematics,1992.
    [18] Hengl, T. and Reuter, H. I. Geomorphometry Concepts, Software, Applications[M]. AmsterdamBoston: Elsevier,2009.
    [19]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [20] McVicar, T. R., Jupp, D., Yang, Q. K., et al. An introduction to temporal-geographic informationsystems(TGIS) for assessing, monitoring and modeling regional water and soil processes[M]. In:Regional water and soil assessment for managing sustainable agriculture in China and Australia [M],McVicar, T. R., Li, R., Walker, J., et al.,(Editors). Canberra: ACIAR Monograph,2002.205-223.
    [21] Hutchinson, M. F. A new procedure for gridding elevation and stream line data with automatic removalof spurious pits[J]. Journal of Hydrology,1989,106(3):211-232.
    [22] Hutchinson, M. F. A Locally Adaptive Approach to the Interpolation of Digital Elevation Models inThird Conference[C]. In: Workshop on Integrating GIS and Environmental Modeling. Santa Barbara:National Centre for Geographic Information and Analysis, University of California.1996.
    [23] Tang, G. A research on the accuracy of Digial Elevation Models. Beijing: Science Press[C]. Beijing:Science Press.2000.
    [24]杨勤科,张彩霞,李领涛,等.基于信息含量分析法确定DEM分辨率的方法研究[J].长江科学院院报,2006,23(5):21-23,28.
    [25] Zhang, W. H. and Montgomery, D. R. Digital elevation model grid size, landscape representation, andhydrologic simulations[J]. Water Resources Research,1994,30(4):1019-1028.
    [26] Bloschl, G. and Sivaplan, M. Scale issues in hydrological modeling: a review[J]. HydrologicalProcesses,1995,9:313-330.
    [27]朱庆,李志林,龚健雅,等.论我国“1:1万数字高程模型的更新与建库”[J].武汉测绘科技大学学报,1999,24(2):129-133.
    [28] Florinsky, I. V. and Kuryakova, G. A. Determination of grid size for digital terrain modeling inlandscape investigations-exemplified by soil moisture distribution at a mirco-scale[J]. InternationalJournal of Geographical Information Science,2000,14(8):815-832.
    [29] Hengl, T. Finding the Right Pixel Size[J]. Computer&Geosciences,2006,32(9):1283-1298.
    [30]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [31]刘学军,龚健雅,周启鸣,等. DEM结构特征对坡度坡向的影响分析[J].地理与地理信息科学,2004,20(6):1-5,39.
    [32]王东华,刘建军,商瑶玲.全国1:25万数字高程模型数据库的设计与建库[C]. In://中国地理信息系统协会.2001.
    [33]王东华,吉建培,刘建军,等.论国家1:50000数字高程模型数据库建设[J].地理信息世界,2003,1(2):12-15.
    [34]王雷,杨勤科,王春梅,等.采样数据密度及栅格尺寸对高程中误差的影响分析[J].武汉大学学报(信息科学版),2012,37(3):366-369.
    [35]杨勤科,师维娟, McVicar, T. R.,等.水文地貌关系正确的DEM建立方法的初步研究[J].中国水土保持科学,2007,5(4):1-6.
    [36]张彩霞,杨勤科,段建军.高分辨率数字高程模型的构建方法[J].水利学报,2006,37(8):1009-1014.
    [37]师维娟,杨勤科,赵东波,等.中分辨率水文地貌关系正确DEM建立方法研究----以黄土丘陵区为例[J].西北农林科技大学学报(自然科学版),2007,35(2):143-148.
    [38]郭伟玲,杨勤科,汪翠英,等.适用于地形复杂地区水土流失评价的高分辨率DEM建立方法[J].干旱地区农业研究,2008,26(3):246-252.
    [39]李俊,杨勤科,杜继龙,等.陕西省水文地貌关系正确的DEM的建立及评价[J].西北农林科技大学学报(自然科学版),2010,38(11):227-234.
    [40]罗仪宁,杨勤科,古云鹤,等.江西省水文地貌关系正确的DEM建立[J].水土保持通报,2011,31(2):146-149.
    [41]周买春,黎子浩, Jayawardena, A. W.数值地形图的生成及其水文地貌特征评价[J].水利学报,2002,2(2):71-74.
    [42] Hutchinson, M. F. ANUDEM version5.1user guide[M]. Canberra: Centre for resource andenvironmental studies, The Australian National University,2004.
    [43] Florinsky, I. V. Accuracy of local topographic variables derived from digital elevation models[J].International Journal of Geographical Information Science,1998,12(1):47-61.
    [44]李霖,吴凡.空间数据多尺度表达模型及其可视化[M].北京:科学出版社,2005.
    [45]李志林,朱庆.数字高程模型(第二版)[M].武汉:武汉大学出版社,2003.
    [46]杨勤科, Jupp, D.,郭伟玲,等.基于滤波方法的DEM尺度变换方法研究[J].水土保持通报,2008,28(6):58-62.
    [47]吴凡,祝国瑞.基于小波分析的地貌多尺度表达与自动综合[J].武汉大学学报(信息科学版),2001,26(2):170-176.
    [48]吴纪桃,王桥.复杂地貌形态多比例尺表达的二维小波分析研究[J].遥感学报,2003,7(2):93-97.
    [49]杨族桥,郭庆胜,牛冀平,等. DEM多尺度表达与地形结构线提取研究[J].测绘科学,2005,34(2):134-137.
    [50]于浩,杨勤科,张晓萍,等.基于小波多尺度分析的DEM数据综合研究[J].测绘科学,2008,33(3):93-95,115.
    [51]万刚,朱长青.多进制小波及其在DEM数据有损压缩中的应用[J].测绘学报,1999,28(1):36-40.
    [52] MALLAT.S. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation[J].Transaction on Pattern Analysis and Machine Intelligence,1989,11(4):674-693.
    [53] Mallat, G. Multifrequency chnnel decompositions of images and waveletmodels[J]. Trans A ConstSignal Processing,1989,37(12):2091-2109.
    [54] Gunawan.D. Denoising Images Using Wavelet Transform[A]. Computers and Signal Processing[C]. In:[s. l.]:[s. n.].1999.
    [55] Weaver.J. Filtering Noise from Images with Wavelet Transform[J]. Magnetic Resonance in Medicine,1995,21(2):288-295.
    [56]吴纪桃,王桥.小波分析在GIS线状数据图形简化中的应用[J].测绘学报,2000,29(1):71-75.
    [57]朱长青,王玉海,李清泉,等.基于小波分析的等高线数据压缩模型[J].中国图象图形学报,2004,9(7):841-845.
    [58]邵巨良.小波理论与航空影像中建筑物的自动识别[D].武汉:武汉测绘科技大学,1993.
    [59] Mallat, S. A theory for multiresolution signal decomposition: the wavelet representation[J].Transaction on Pattern Analysis and Machine Intelligence,1989,11(4):674-693.
    [60]常占强,吴立新.基于小波变换和混合熵编码的山区格网DEM数据压缩[J].地理与地理信息科学,2004,20(1):24-27.
    [61]肖志刚,王亮,田丽芳.小波分析在空间数据处理中的应用研究[J].测绘科学,2005,30(1):57-59.
    [62]张力强,杨崇俊,刘冬林.基于M进制小波的视点相关多分辨率地形模型的简化[J].系统仿真学报,2004,16(9):1970-1977.
    [63]吴凡,祝国瑞.基于小波变换的数字地图自动综合谱方法研究[M].西安:西安地图出版社,1998.
    [64]方鹏.基于小波变换的DEM多尺度表达和实时显示[D].武汉:武汉大学,2003.
    [65]杨族桥,郭庆胜.基于提升方法的DEM多尺度表达研究[J].武汉大学学报(信息科学版),2003,28(4):496-498.
    [66]刘春,王家林.多尺度小波分析用于DEM网格数据综合[J].中国图象图形学报,2004,9(3):340-344.
    [67] Chang, K. T.,Tsai, B. W. The Effect of DEM Resolution on Slope and Aspect Mapping[J]. Cartographyand Geographic Information Systems,1991,18(1):69-77.
    [68]唐新建,朱同林,柳健,等. DEM地形表面B样条小波多尺度建模[J].中山大学学报(自然科学版),2005,44(4):20-24.
    [69]李含璞.基于小波变换的DEM多尺度综合研究[D].兰州:兰州大学,2006.
    [70]吴勇,汤国安,杨昕.小波派生多尺度DEM的精度分析[J].测绘通报,2007(4):38-41.
    [71]林璐.基于小波分析的多尺度DEM表达及地形分析效应研究——以黄土高原样区为例[D].西安:西北大学,2008.
    [72]何振芳.基于小波的DEM无级比例尺转换研究[D].西安:西北大学,2008.
    [73] Smith, D. D. and Wischmeier, W. H. Factors affecting sheet and rill erosion[J]. Transactions of theAmerican Geophysical Union,1957,38:889-896.
    [74]唐克丽.中国水土保持[M].北京:科学出版社,2004.
    [75]吴险峰,刘昌明,王中根.栅格DEM的水平分辨率对流域特征的影响分析[J].自然资源学报,2003,18(2):148-154.
    [76]刘红艳,杨勤科,牛亮,等.坡度与水平分辨率关系的初步研究[J].水土保持研究,2010,17(4):34-37.
    [77]刘红艳,杨勤科,王春梅,等.坡度随水平分辨率变化及其空间格局研究[J].武汉大学学报(信息科学版),2012,37(1):105-109.
    [78] Cochrance, T. A. and Flanagan, D. C. Effect of DEM resolutions in the runoff and soil loss predictionsof the WEPP watershed model[J]. Transactions of the ASAE,2004,47(6):1-12.
    [79]任希岩,张雪松,郝芳华,等. DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004,1(1):1-4,26.
    [80]毕华兴,谭秀英,李笑吟.基于DEM的数字地形分析[J].北京林业大学学报,2005,27(2):49-53.
    [81]孙立群,胡成,陈刚. TOPMODEL模型中的DEM尺度效应[J].水科学进展,2008,19(5):699-706.
    [82]汤国安,龚健雅,陈正江,等.数字高程模型地形描述精度量化模拟研究[J].测绘学报,2001,30(4):361-365.
    [83]郝振纯,池宸星,王玲,等. DEM空间分辨率的初步分析[J].地球科学进展,2005,20(5):499-504.
    [84] Walker, J. P. and Willgoose, G. R. On the effect of digital elevation model accuracy on hydrology andgeomorphology[J]. Water Resources Research,1999,35(7):2259-2268.
    [85] Baxter, E. V. Distributed hydrologic modeling using GIS[M]. Netherlands: Kluwer AcademicPublishers,2001.
    [86] Wang, G., Gertner, G., Parysow, P., et al. Spatial prediction and uncertainty assessment of topographicfactor for revised universal soil loss equation using digital elevation models[J]. ISPRS journal ofphotogrammetry and remote sensing,2001,56(1):65-80.
    [87] Moore, I. D. and Butch, G. J. Physical basis of the length-slope factor in the Universal Soil LossEquation[J]. Soil Science Society of America Journal,1986b,50(5):1294-1298.
    [88] Moore, I. D. and Wilson, J. P. Length-slope factors for the revised universal soil loss equation:simplified method of estimation[J]. Journal of Soil&Water Conservation,1992,47(5):423-428.
    [89] Thompson, J. A., Bell, J. C., Butler, C. A. Digital elevation model resolution: effects on terrainattribute calculation and quantitative soil-landscape modeling[J]. Geoderma,2001,100:67-89.
    [90] Armstrong, R. N. and Martz, L. W. Topographic parameterization in continental hydrology: a study inscale[J]. Hydrological Processes,2003,17:3763-3781.
    [91] Moore, I. D., Grayson, R. B., Landson, A. R. Digital Terrain Modelling: a Review of Hydrological,Geomorphological, and Biological Applications[J]. Hydrological Processes,1991,5(1):3-30.
    [92]杨勤科,贾大韦,李锐,等.基于DEM的坡度研究——现状与展望[J].水土保持通报,2007,27(1):146-150.
    [93]刘学军,王叶飞,曹志东,等.基于DEM的坡度坡向误差空间分布特征研究[J].测绘通报,2004,12(1):11-13.
    [94] Robert, H. Slope angle and slope length solutions for GIS[J]. Cartography,2000,29(1):1-8.
    [95] Hickey, R., Smith, A., Jankowsk, P. Slope Length Calculations from a DEM Within ARC/INFOGRID[J]. Computers, Environment and Urban Systems,1994,18(5):365-380.
    [96] Van, R. R., Hamilton, M., Hickey, R. Estimating the LS factor for RUSLE through iterative slopelength processing of digital elevation data[J]. Cartography,2001,30(1):27-35.
    [97]汪邦稳,杨勤科,刘志红,等.基于DEM和ArcGIS的修正通用土壤流失方程的地形因子值提取[J].中国水土保持科学,2007,5(2):18-23.
    [98]杨勤科,郭伟玲,张宏鸣,等.基于DEM的流域坡度坡长因子计算方法研究初报[J].水土保持通报,2010,30(2):203-206,211.
    [99]张宏鸣.流域分布式土壤侵蚀学坡长提取与分析[D].陕西杨凌:西北农林科技大学,2012.
    [100]张宏鸣,杨勤科,李锐,等.流域分布式侵蚀学坡长的估算方法研究[J].水利学报,2012,43(4):437-444.
    [101]张宏鸣,杨勤科,李锐,等.基于GIS和多流向算法的流域坡度与坡长估算[J].农业工程学报,2012,28(10):159-164.
    [102]张宏鸣,杨勤科,刘晴蕊,等.基于GIS的区域坡度坡长因子提取算法[J].计算机工程,2010,36(9):246-248.
    [103]陈楠,汤国安,刘咏梅,等.基于不同比例尺的DEM地形信息比较[J].西北大学学报(自然科学版),2003,33(2):237-240.
    [104]杨勤科,李锐,徐涛,等.区域水土流失过程及其定量描述的初步研究[J].亚热带水土保持,2006,18(2):20-23,31.
    [105]汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究——以在黄土丘陵沟壑区的试验为例[J].水土保持通报,2001,21(1):53-56.
    [106]刘新华,张晓萍,杨勤科,等.不同尺度下影响水土流失地形因子指标的分析与选取[J].西北农林科技大学学报(自然科学版),2004,32(6):107-111.
    [107]赵牡丹.基于DEM的区域尺度水土流失地形因子研究[D].南京:中国科学院南京土壤研究所,2007.
    [108]陈燕,齐清文,汤国安.黄土高原坡度转换图谱研究[J].干旱地区农业研究,2004,22(3):180-185.
    [109]陈燕,汤国安,齐清文.不同空间尺度DEM坡度转换图谱分析[J].华侨大学学报(自然科学版),2004,25(1):79-82.
    [110]张勇,汤国安,彭才.数字高程模型地形描述误差的量化模拟——以黄土丘陵沟壑区的实验为例[J].山地学报,2003,21(2):252-256.
    [111] Zhang, X. Y., Drake, N. A., Wainwright, J., et al. Comparison of slope estimates from low resolutionDEMs: scaling issues and a fractal method for their solution[J]. Earth Sruface Processes andLandforms,1999(24):763-779.
    [112] Klinkenberg, B. and Goodchild, M. F. The fractal properties of topography: a comparison ofmethods[J]. Earth Sruface Processes and Landforms,1992,17(3):217-234.
    [113] Andrale, R. and Abrahams, A. D. Fractal techniques and surface roughness of talus slopes[J]. EarthSruface Processes and Landforms,1989(14):197-209.
    [114]朱永清,李占斌,鲁克新,等.地貌形态特征分形信息维数与像元尺度关系研究[J].水利学报,2005,36(3):333-338.
    [115]朱永清.黄土高原典型流域地貌形态分形特征与空间尺度转换研究[D].西安:西安理工大学,2006.
    [116]师维娟.基于DEM和GIS的坡度变换方法研究[D].陕西杨凌:西北农林科技大学,2007.
    [117]程琳,杨勤科,谢红霞,等.基于GIS和CSLE的陕西省土壤侵蚀定量评价研究[J].水土保持学报,2009,23(5):45-50.
    [118] Smith, B. and Sandwell, D. Accuracy and resolution of shuttle radar topography mission data[J].Geophysical Research Letters,2003,30(9):201-204.
    [119] Hirano, A., Welch, R., Lang, H. Mapping from ASTER stereo image data:DEM validation andaccuracy assessment[J]. ISPRS Journal of Photogrammetry&Remote Sensing,2003,57(5):356-370.
    [120] Cowan, D. and Cooper, G. The Shuttle Radar Topography Mission? a new source of near-globaldigital elevation data[J]. ASEG Extended,2004,1(4):334-340.
    [121] Bernhard, R., Michael, E., Achim, R. The Shuttle Radar Topography Mission-A new class of DigitalElevation Models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry&RemoteSensing,2003,57:241-262.
    [122]唐新明,李莉,季小燕,等.全国七大江河流域重点防范区1:1万数字高程模型(DEM)数据库的建立[J].测绘通报,2002,19(6):19-22.
    [123] Hutchinson, M. F., Stein, J. A., Stein, J. L. Upgrade of the9second Australian digital elevationmodel[M]. Canberra: Australian National University,2001.
    [124] Homer, C., Dewitz, J., Fry, J., et al. Completion of the2001National Land Cover Database for theCounterminous United States[J]. Photogrammetric Engineering and Remote Sensing,2007,73(4):337-341.
    [125]国家测绘局.基础地理信息数字产品1:10000,1:50000数字高程模型(CH/T1008-2001)[M].北京:测绘出版社,2001.
    [126]杨勤科, McVicar, T. R., van Niel, T. G.,等. ANUDEM和TIN两种建立DEM方法的对比研究[J].水土保持通报,2006,26(6):84-88.
    [127]赵帮元,汤国安,马安利,等.不同地貌类型区1:25万比例尺DEM的建立方法[J].水土保持通报,2002,22(2):45-48.
    [128]杨勤科, Mcvicar, T. R.,李领涛,等. ANUDEM—专业化数字高程模型插值算法及其特点[J].干旱地区农业研究,2006,24(3):36-41.
    [129] Kiss, R. Determination of drainage network in digital elevation models, utilities and limitations[J].Journal of Hungarian Geomathematics,2004,2:16-29.
    [130] Underwood, J. and Crystal, R. E. Hydrologically enhanced, high-resolution DEMs[J]. GeospatialSolutions,2002,14(1):8-14.
    [131] Yang, Q. K., van Niel, T. G., McVicar, T. R., et al. Developing a digital elevation model usingANUDEM for the Coarse sandy hilly catchments of the loess plateau, China [M]. Canberra, Australia:Csiro Publishing,2005.
    [132]张彩霞,杨勤科,段建军.一种高质量的数字高程模型(DEM)建立方法—ANUDEM法[J].中国农学通报,2005,21(12):411-415.
    [133] Clarke, S. and Burnett, K. Comparison of digital elevation models for aquatic data development[J].Photogrammetric Engineering and Remote Sensing,2003,69(12):1367-1375.
    [134] Yang, Q. K., McVicar, T. R., Van Niel, T. G. Improving a Digital Elevation Model by ReducingSource Data Errors and Optimizing Interpolation Algorithm Parameters: An Example in the LoessPlateau, China[J]. International Journal of Applied Earth Observation and Geoinformation,2007,9(3):235-246.
    [135]杨勤科, McVicar, T. R., VanNiel, T. G.,等.用ANUDEM建立水文地貌关系正确DEM的方法研究[J].测绘科学,2006,31(6):155-157,148.
    [136] Topfer, F. and Pillewizer, W. The principles of selection, a means of cartographic generalization[J].Cartographic Journal,1966,3(1):10-16.
    [137] Coifman, R. R. and Donoho, D. L. Translation invariant denoising[C]. In: Springer lecture notes instatistics103: waveletes and statistics. New York: Springer-Verlag.1995.
    [138]中国科学院水利部水土保持研究所.全国坡度坡长因子计算分析与制图[R].陕西杨凌.2012.
    [139] Quinn, P., Beven, K., Chevallier, P., et al. The prediction of hillslope flow paths for distributedhydrological modelling using digital terrain models[J]. Hydrological Processes,1991,5(1):59-79.
    [140]谢红霞.延河流域土壤侵蚀时空变化及水土保持环境效应评价研究[D].西安:陕西师范大学,2008.
    [141]葛哲学,沙威.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [142]吴凡.地理空间数据的多尺度处理与表示研究[D].武汉:武汉大学,2002.
    [143]杨晓慧,金海燕,焦李成.基于广义交叉验证和Cycle Spinning的SAR图像相干斑抑制[J].电子与信息学报,2007,29(8):1779-1783.
    [144]王家耀,孙群,王光霞,等.地图学原理与方法[M].北京:科学出版社,2006.
    [145]郭庆胜.地图自动综合问题的分解和基本算子集合[J].武汉测绘科技大学学报,1999(2):149-153.
    [146]朱雪龙.应用信息论基础[M].北京:清华大学出版社,2001.
    [147]陈楠,林宗坚,李成名,等.基于信息论的不同比例尺DEM地形信息比较分析[J].理论研究(遥感信息),2004(3):5-9.
    [148]程昌秀,陆锋,牛方曲.栅格地图信息量计算方法的验证分析[J].地球信息科学,2006,8(1):127-130.
    [149]李发源,汤国安,贾旖旎,等.坡谱信息熵尺度效应及空间分异[J].地球信息科学,2007,9(4):13-18.
    [150] Hutchinson, M. F. and Gallant, J. C. Digital elevation models and representation of terrain shape. In:Terrain Analysis: Principles and Applications[M]. New York: John Wiley&Sons. Inc.,2000.29-50.
    [151]胡鹏,吴艳兰,胡海.数字高程模型精度评定的基本理论[J].地球信息科学,2003,3:64-70.
    [152]胡鹏,杨传勇,吴艳兰.新数字高程模型:理论、方法、标准和应用[M].北京:测绘出版社,2007.
    [153]林丽惠.一种改进的颜色直方图相似性度量算法[J].武夷学院学报,2009,28(2):58-61.
    [154] Reuter, H. I., Hengl, T., Gessler, P., et al. Preparation of DEMs for geomorphometric analysis[M]. In:Geomorphometry: Concepts, Software, and Applications [M], Hengl, T., Reuter, H. I., Editor Elsevier:Amsterdam,2009.87-120.
    [155] Dunn, M. and Hickey, R. The Effect of Slope Algorithms on Slope Estimates within a GIS[J].Cartography and Geographic Information Science,1998,27(1):9-15.
    [156] Horn, B. K. P. Hill shading and the reflectance map[J]. Proceedings of IEEE,1981,69(1):14-47.
    [157] Sharpnack, D. A. and Akin, G. An algorithm for computing slope and aspect from elevations[J].Photogrammetric Engineering and Remote Sensing,1969,35(3):247-248.
    [158] Skidmore, A. K. A Comparison of Techniques for Calculating Gradient and Aspect from a GriddedDigital Elevation Model[J]. International Journal of Geographical Information Systems,1989,3(4):323-334.
    [159] Skidmore, A. K. Evolution of Methods for Estimating Slope Gradient and Aspect from DigitalElevation Models[M]. In: Classics from IJGIS: twenty years of the International journal ofgeographical information science and systems [M], Fisher, P., Editor London: Taylor and Fracis Group,2007.111-118.
    [160] Warren, S. D., Hohmann, M. G., Auerswald, K., et al. An evaluation of methods to determine slopeusing digital elevation data[J]. Catena,2004,58(3):215-233.
    [161] Horton, R. Erosional development of streams and their drainage basin; hydrophysical approach toquantitative morphology[J]. Geological Society of America Bulletin,1945,56(3):275-370.
    [162] Mark, D. M. Automated detection of drainage networks from digital elevation models[J].Cartographica,1984,21(2-3):168-178.
    [163] Renard, K. G., Foster, G. R., Weesies, G. A., et al. Predicting rainfall eosion by Water: A Guide toconservation planning with the Revised Universal Soil Loss Equation (RUSLE)[J]. USDA Agric.Handb,1997:703.
    [164] Liu, B. Y., Zhang, K. L., Xie, Y. An empirical soil Loss equation [C]. In:12th International SoilConservation Organization Conference. Beijing: Tsinghua press.2002:143-149.
    [165]国务院第一次全国水利普查领导小组办公室.第一次全国水利普查培训教材之六水土保持情况普查[M].北京:中国水利水电出版社,2010.11.
    [166]刘宝元.西北黄土高原区土壤侵蚀预报模型开发项目研究成果报告[R].北京:水利部水土保持监测中心,2006:41.
    [167] De Jong, S. M., Paracchini, M. L., Bertolo, F., et al. Regional assessment of soil erosion using thedistributed model SEMMED and remotely sensed data[J]. Catena,1999,37(3-4):291-308.
    [168]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,18(2):168-173.
    [169]王家耀.普通地图制图综合原理[M].北京:测绘出版社,1993.
    [170] Gonzalez, R. C. and Woods, R. E. Digital Image Processing,3rd Edition[M]. Beijing: PublishingHouse of Electonics Industry,2010.
    [171] Fu, B. J., Zhao, W. W., Chen, L. D., et al. Assessment of soil erosion at large watershed scale usingRUSLE and GIS: a case study in the Loess Plateau of China[J]. Land Degradation&Development,2005,16(1):73-85.
    [172] Lu, H., Prosser, I. P., Moran, C. J., et al. Predicting sheetwash and rill erosion over the Australiancontinent[J]. Australian Journal of Soil Research2003,41(6):1037-1062.
    [173]汪邦稳.基于USLE的延河流域土壤侵蚀评价.硕士[D].陕西,杨凌:中国科学院水利部水土保持研究所,2007.
    [174]谢红霞,杨勤科,李锐,等.延河流域水土保持措施减蚀效应分析[J].中国水土保持科学,2010,8(4):13-19.
    [175]章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征[J].山地学报,2003,21(1):33-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700