用户名: 密码: 验证码:
基于多尺度几何变换的遥感图像处理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感图像在国防和民用方面起着不可替代的作用,由于其成像机制与可见光图像的差异很大,因此研究针对该类图像的特点的处理算法尤为重要。多尺度几何分析从提出到现在已经有十几年的历史了,虽然这些方法本身具有良好的时频性能,且能很好地解决所对应方向的一些多维信号处理的问题。但是由此理论生成的多尺度几何变换还有不少的缺点而有待完善,例如,一些多尺度几何变换不具有移不变性和解析性,方向选择性较差等,而且针对遥感图像的特点不同种类的多尺度几何变换具有不同的处理效果,本文的研究主要基于目前常用的多尺度几何变换——轮廓波(Contourlet)、双树复小波(dual-tree complex wavelet, DTCWT)、剪切波(Shearlet)和超分析小波(hyperanalysis wavelet, HWT)。本文的应用领域主要是遥感图像的处理,包括SAR图像的去噪、机场异物检测、边缘检测、图像分离、遥感图像的融合。本文以多尺度几何变换为主线,针对其在遥感图像处理应用中的关键技术进行了深入系统的研究。
     本文在前人的基础上从以下两个方面进行深入的研究。一方面,改进现有的多尺度几何变换的性质和创造新的具有更好性质的多尺度几何变换。另一方面,根据不同的应用场景构造不同的基于多尺度几何变换的算法将变换应用到遥感图像处理领域中。
     本文的主要贡献如下:
     1.基于多尺度几何变换的SAR图像去噪算法研究
     针对现有多尺度几何变换缺乏方向选择性和移不变性的缺点,本文从这两方面进行了改进,针对Contourlet变换的改进包括Wavelet-Contourlet变换、复轮廓波变换、局部混合滤波,而针对Shearlet变换的改进为复Shearlet变换,最后构造了一种适合机场雷达图像去噪的移不变二维混合变换。改进的变换具有移不变性和良好的方向选择性以及稀疏性,丰富了多尺度几何变换的内容,也更有利于雷达图像的去噪。
     针对SAR图像成像特点,本文基于上述的多尺度几何变换提出了几种去噪算法:一是基于改进后的Contourlet变换的SAR图像去噪算法——基于Wavelet-Contourlet变换的Cycle Spinning去噪算法、基于复Contourlet变换高斯混合去噪算法、基于局部混合滤波的去噪算法;二是基于改进后Shearlet变换的SAR图像去噪算法——基于Shearlet双变量去噪算法、基于复Shearlet变换高斯混合去噪算法、基于稀疏表示的去噪算法、基于贝叶斯收缩的去噪算法;最后则是基于移不变二维混合变换的机场雷达图像去噪。仿真结果表明了所提出的去噪算法的有效性和可靠性。针对上述的算法,本文总结了基于多尺度几何变换去噪的常用框架,并且将上述算法进行一一对比,分析他们在雷达图像去噪中的优缺点,以利于未来进一步的研究。
     2.基于多尺度几何变换的SAP图像边缘检测算法研究
     针对现有的多尺度几何变换在SAR图像边缘检测中没有充分地利用多尺度变换方向信息和多尺度边缘信息融合规则比较简单的缺点,本文总结了多尺度几何变换在SAR图像边缘检测中应用的典型步骤,提出了三种基于多尺度几何变换的SAP图像边缘检测算法。
     第一种边缘检测算法是基于上述的局部混合滤波去噪算法构造的,本文对基于多尺度几何变换的SAR图像边缘检测算法的几个步骤进行了改进,首先改进了平滑过程,然后使用多比例模型Canny算子进行单个尺度的边缘信息检测,最后采用证据理论进行各尺度的边缘信息融合。
     第二种边缘检测算法是基于稀疏去噪和最小二乘支持向量机进行边缘检测,首先使用稀疏表示进行去噪,然后采用最小二乘支持向量机进行边缘检测。
     第三种边缘检测算法是基于稀疏表示去噪算法利用多尺度几何变换的方向性构造的,稀疏表示去噪是一种迭代去噪模型,本文利用形态学算子检测每次迭代的方向边缘信息,然后采用证据理论将其融合为完整的边缘。
     最后本文将上述算法进行一一对比,分析它们在SAP图像边缘检测中的优缺点,以利于未来进一步的研究。
     3.基于多尺度几何分离字典的图像几何分离算法研究
     在研究星星轨迹时需要将天文图像中的点和曲线进行分离,而现有的算法计算复杂度太大和计算时间太长,因此本文提出了三种新的图像几何分离字典进行图像分离,其中一种是基于复Shearlet和双正交小波字典,另外一种是基于圆对称Shearlet和双正交小波字典,还有一种是基于超分析Shearlet和双正交小波字典,对于最后一种字典本文还采用了新的迭代算法进行图像几何分离。为了客观地评价各种算法的图像几何分离效果,本文提出了一种分离效果评价标准一分离度。实验结果证明了该算法的有效性,最后本文分析了上述算法的优缺点,以利于进一步的研究。
     4.基于多尺度几何变换的遥感图像融合算法研究
     针对当前变换域图像融合由于引入人造纹理而导致融合效果比较差的缺点,本文提出了一种基于剪切波变换和向导滤波的图像融合算法,该算法充分的利用了图像的空间连续性,从而抑制了人造纹理的产生,实验结果表明该算法不仅可以有效地提高图像融合的视觉效果,而且还具有很好的鲁棒性,可以应用到包括多聚集图像和不同类型遥感图像的图像融合中。
Remote sensing image plays an irreplaceable role in national defense and civil applications. Its imaging mechanism is different from that of visible images, so the study of remote sensing image processing using its characteristics is particularly important. Multi-scale geometric analysis has10years of history since proposed. The method has a good time-frequency performance and gives a good solution to deal with problems corresponding to multi-dimensional signal processing. However, multi-scale geometric transformations have many disadvantages that should to be improved. For example, some multi-scale geometric transformations lack shift invariance and analysis, and also have less selective direction. What's more, people will get different effects from different multi-scale geometric transformations for different characteristics of remote sensing images. The author mainly focuses on the research of multi-scale geometric transformations and its applications in remote image processing.
     This dissertation mainly focuses on widely used multi-scale geometric transformations such as Contourlet, dual tree complex wavelet (DTCWT), Shearlet and hyperanalysis wavelet (HWT). Their main application area is the radar image processing, including SAR image denoising, edge detection, image separation, the airport foreign object debris detection and remote sensing image fusion.
     This dissertation studies the following two aspects on the basis of our predecessors. On one hand, we improve the property of the existing multi-scale geometric transformation and create new multi-scale geometric transformation with better property. On the other hand, different multi-scale geometric transformations and models are constructed depending on the application scenario in the field of remote sensing image processing. In the course of the study, we want to construct some better multi-scale geometric transformations and propse several methods suitable for remote sensing image processing. The main contribution of this dissertation is as follows.
     1. SAR image de-noising based on multi-scale geometric transformation
     Since the existing multi-scale geometric transformations lack direction selection and shift invariance, this article improved several multi-scale geometric transformations with shift invariant features, including wavelet-Contourlet transform, the complex Contourlet transform, the local hybrid filter, complex Shearlet transform and shift-invariant two-dimensional hybrid transform. These improved transformations overcome the above disadvantages, enrich multi-scale geometric transformations, and they are also easier for radar image denoising.
     Several denoising models based on the multi-scale geometric transformation based on improved Contourlet and Shearlet have been proposed for the imaging features of SAR image, including the cycle spinning denoising model based on Wavelet-Contourlet transform, Gaussian mixture denoising model based on the complex Contourlet transform, denoising model based on local hybrid filter, bivariate denoising model based on Shearlet, denoising model based on sparse representation, Bayesian shrinkage denoising model based on sparse representation, Gaussian mixture denoising model based on the complex Shearlet and de-noising model based on2-D shift-invariant hybrid transform for the airport radar image.
     Simulation results show the validity and reliability of the proposed denoising model. In view of the above algorithms, this dissertation summarizes the common framework of denoising method based on multi-scale geometric transformation, and gives the algorithms'of comparisons, which analyze their advantages and disadvantages in radar image denoising in order to facilitate further research in the future.
     2. Multi-scale geometric transformation for SAR image edge detection
     Since the existing multi-scale geometric transformations in SAR image edge detection do not take full advantage of the directions information of multi-scale transform and the fusion rules of multi-scale edge information are relatively simple, this dissertation summarizes the typical steps of SAR image edge detection based on multi-scale geometric transformation, and three SAR image edge detection models based on multi-scale geometric transformation are proposed.
     The first edge detection algorithm is based on local hybrid filter denoising model. We have improved several steps of the SAR image edge detection algorithm based on multi-scale geometric transformation. First, smoothing process is improved. Then the Canny operator based on ROEWA model is used for single scale edge detection. Finally, the edge of the scale information fusion using evidence theory is improved as well.
     The second edge detection algorithm is based on sparse denoising and least squares support vector machine. Firstly, use sparse representation to de-noise, and then use the least squares support vector machine to detect edge.
     The third edge detection algorithm is based on the sparse representation denoising model. Sparse representation denoising is an iterative denoising model. Use morphological operators to detect the direction edge information during each iteration and fuse all information to complete the whole edge using evidence theory.
     Finally, the proposed algorithms are compared, and their advantages and disadvantages in the SAR image edge detection are analyzed in order to facilitate further research in the future.
     3. Multi-scale geometric transformation for image separation
     In the study of stars trajectory, the points and curves in astronomical images need to be separated, but the complexity of existing algorithms is very high and their computation time is too long. So in this dissertation, three new image geometric separation dictionaries for image separation are proposed. One is based on complex Shearlet and biorthogonal wavelet dictionary, another is based on circular symmetric Shearlet and biorthogonal wavelet dictionary, the last one is based on the hyperanalysis Shearlet and biorthogonal wavelet dictionary. This article also uses a new iterative algorithm for image geometric separating in the last dictionary. To get the objective evaluation of image geometry separation efficiency, this dissertation presents an evaluation of criteria separation. Experimental results show the effectiveness of the proposed algorithm. The dissertation also analyzes the advantages and disadvantages of the algorithm, in order to facilitate further research.
     4. Multi-scale geometric transformation for remote sensing fusion
     Since the fusion effects of the current image fusion rules in transform domain are relatively poor, which are caused by the artificial texture, the dissertation proposes a new fusion method based on Shearlet transform with guided filtering. This method greatly suppresses the artificial texture by using the spatial continuity of the image. The experimental results show that the algorithm not only effectively improves the image fusion visual effects, but also has good robustness, can be applied to the image fusions multi-gathering imagery and remote sensing images, as well as other types of image fusion.
引文
[1]J.W.Goodman. Some fundamental properties of speckle. Journal Optical Society America. 1976,6(11):1145-1150.
    [2]Z. X. Liu, S. H. Hu, Y. Xiao, et al.. SAR image target extraction based on 2-D leapfrog filtering. Proceedings of 2010 IEEE 10th International Conference on Signal Processing, (ICSP2010),2010, Beijing, IEEE Press,2010, pp.1943-1946.
    [3]R. Touzi. A review of speckle filtering in the context of estimation theory. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2392-2404.
    [4]J. S. Lee, L. Jurkevich, P. Dewaeleb, A. Oosterlinck. Speckle filtering of synthetic aperture radar images:a review. Remote Sensing Reviews,1994,8 (4):313-340.
    [5]I. Daubechies. Ten lectures on wavelets. Philadelphia:SIAM,1992.
    [6]S. Mallat. A wavelet tour of singnal processing. Academac Press,1998.
    [7]Y. Xiao, T. Xiao, S. H. Hu, M. H. Lee. Two-dimensional hybrid transform (DCT-DWT) for 2-D signal processing. ICSP 2006, Beijing, IEEE Press,2006, pp.247-250.
    [8]N. G. Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. Journal of Applied and computational Harmonic Analysis,2001,10(3):234-253.
    [9]闫敬文,屈小波.超小波分析及应用.国防工业出版社,2008,6.
    [10]N. G. Kingsbury. The dual-tree complex wavelet transform:A new efficient tool for image restoration and enhancement. Proc. of the Island of Rhodes Greece, EURASIP Press,1998, pp. 319-322.
    [11]N. G. Kingsbury. Image processing with complex wavelets. Philosophical Transactions: Mathematical Physical and Engineering Sciences,1999,357(1760):2543-2560.
    [12]N. G. Kingsbury. Shift invariant properties of the dual-tree complex wavelet transform. Proc. of IEEE International Conference on Acoustics Speech and Signal, Phoenix, Arizona, IEEE Press,1999, pp.1221-1224.
    [13]E. J. Candes, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure and Appl. Math.2004,57(2):219-266.
    [14]M. N. Do, M. Vetterli. Contourlets:A directional multiresolution image representation. IEEE International Conference on Image Processing, Rochester, NY, IEEE Press,2002, pp. 357-360.
    [15]D. D. Po, M. N. Do. Directional multiscale modeling of images using the Contourlet transform. IEEE Trans. Image Process.2006,15(6):1610-1620.
    [16]R. Eslami, H. Radha. The Contourlet transform for image de-noising using cycle spinning. Asilomar Conference on Signals, Systems,and Computers. Pacific Grove, USA, IEEE Press, 2003, pp.1982-1986.
    [17]R. Eslami, H. Radha. Wavelet based contourlet transform and it's application to image coding. IEEE International Conference on Image Processing. Singapore, IEEE Press,2004, pp.3189-3192.
    [18]A. L. Cunha, J. P. Zhou, M. N. Do. The nonsubsampled contourlet transform:Theory, design and application. IEEE Trans.on Image Processing,2006,15 (10):3089-3101.
    [19]练秋生,陈书贞.基于解析轮廓波变换的图像稀疏表示及其在压缩传感中的应用.电子学报,2010,38(6):1293-1298.
    [20]梁栋,李瑶,沈敏,高清维等.一种基于小波-Contourlet变换的多聚焦图像融合算法.电子学报,2007,35(2):320-322.
    [21]K. Guo, G. Kutyniok, D. Labate. Sparse multidimensional representations using anisotropic dilation and shear operators. Wavelets und Splines (Athens, GA,2005), G. Chen und MJ Lai, eds., Nashboro Press, Nashville, TN,2006:189-201.
    [22]K. Guo, G. Kutyniok. Optimally Sparse multidimensional representation using shearlets. SIAM Journal on Mathematical Analysis,2007,39(1):298-318.
    [23]Glenn Easley, Demetrio Labate, Wang-Q Lim. Sparse directional image representation using the discrete shearlets transform. Applied and Computational Harmonic Analysis,2008,25(1): 25-46.
    [24]W. Q. Lim. The discrete shearlets transform:A new directional transform and compactly supported Shearlets frames. IEEE Trans. Image Proc.,2010,19 (5):1166-1180.
    [25]胡海智,孙辉,邓承志等.基于Shearlet变换的图像去噪算法.计算机应用,2010,30(6):1562-1564.
    [26]S. C. Olhede, G. Metikas. The hyperanalytic wavelet transform. Dept. Math., Imperial College, London, U.K., Imperial College Statistics Section Tech. Rep. TR-06-02,2006.
    [27]I. Adam, C. Nafornita, J. M. Boucher, A. Isar. A new implementation of the hyperanalytic wavelet transform. ISSCS 2007, Iasi, Romania, IEEE Press,2007, pp.401-404.
    [28]I. Firoiu, A. Isar, J. M. Boucher. An improved version of the inverse hyperanalytic wavelet transform. ISSCS 2009, Iasi, Romania, IEEE Press,2009, pp.1-4.
    [29]I. Adam, C. Nafornita, J. M. Boucher, A. Isar. Image denoising using a new implementation of the hyperanalytic wavelet transform. IEEE Trans. Instrum. Meas.,2009,58(8):2410-2416.
    [30]I. Adam, C. Nafornita, J. M. Boucher, A. Isar. A new implementation of the hyperanalytic wavelet transform. Proc. IEEE Sympo. ISSCS 2007, Iasi, Romania, IEEE Press,2007, pp. 401-404.
    [31]C. Nafornita, I. Firoiu, D. Isa, et al. A second order statistical analysis of the hyperanalytic wavelet transform.9th Int. Symp. on Electronics and Telecommunications. IEEE Press,2010: 311-314.
    [32]R. R. Coifman, D. L. Donoho. Translation invariant denoising. Wavelets and Statistics, Springer Lecture Notes in Statistics. New York, Springer-Verlag,1995, pp.125-150.
    [33]肖扬,张颖康.一种基于二维混合变换的SAR回波信号去噪预处理方法.中国专利:2009100083345.7,2009-05-04.
    [34]D. L. Donoho. De-noising by soft-thresholding. IEEE Trans, on Information Theory,1995 41(3):613-627.
    [35]J. Portilla, V. Strela, M. J. Wainwright, etc al. Image denoising using a scale mixture of Gaussians in the wavelet domain. IEEE Trans. Image Processing,2003,12(11):1338-1351.
    [36]S. M. M. Rahman, M. O. Ahmad, M. N. S. Swamy. Bayesian wavelet-based image denoising using the Gauss-Hermite expansion. IEEE Transactions on Image Processing,2008,17(10): 1755-1771.
    [37]Z. F. Zhou. Contourlet-based image denoising algorithm using directional windows. Electronics Letters,2007,43(2):92-93.
    [38]O. O. V. Villegas, R. P. Elias, P. R. Villela, et al.. Edging out the competition:Lossy image coding with wavelets and contourlets. IEEE Potentials,2008,27(2):39-44.
    [39]Hyeokho Choi, R. G. Baraniuk. Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Transactions on image Processing,2001,10(9):1309-1321.
    [40]王敏杰,杨唐文,韩建达等.图像边缘检测技术综述.中南大学学报(自然科学版),2011,42(增刊1):811-816.
    [41]Sheng Yi, D. Labate, G. R. Easley, et al.. A shearlet approach to edge analysis and detection. IEEE Transactions On Image Processing,2009,18 (5):929-941.
    [42]Jianwei Ma, A. Antoniadis, F. X. Le Dimet. Curvelet-based snake for multiscale detection and tracking of geophysical fluids. IEEE Transactions on Geoscience and Remote Sensing.2006, 44(12):3626-3638.
    [43]G. Y. Zhou, Y. Cui, Y. L. Chen, et al.. SAR image edge detection using curvelet transform and Duda operator. Electronics Letters,2010,46(2):167-169.
    [44]田秀伟,郑喜凤,丁铁夫.基于小波-Contourlet变换的图像压缩算法.数据采集与处理,2010,25(4):437-441.
    [45]Z. Zhang, R. S. Blum. A categorization of multiscale decomposition based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, 1999,87(8):1315-1326.
    [46]S. E. EI-Khamy, M. M. Hadhoud, M. I. Dessouky, et al. Wavelet fusion:a tool to break the limits on LMMSE image super-resolution. International Journal of Wavelets, Multiresolution and Information Processing,2006,4(01):105-118.
    [47]R. Yu, B. Zhu, K. Zhang. New image fusion algorithm based on PCNN and BWT. Guangdianzi Jiguang.2008,19(7):956-959.
    [48]M. Li, Y. Li, H. Wang, et al.. Fusion algorithm of infrared and visible images based on NSCT and PCNN. Opto-Electron. Eng.,2010,37(6):90-95.
    [49]X. B. Qu, J. W. Yan, H. Z. Xiao, et al. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica,2008,34(12):1508-1514.
    [50]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [51]皮亦鸣等.合成孔径雷达成像原理.西安:电子科技大学出版社.2007.
    [52]倪伟.基于多尺度几何分析的图像处理技术研究.西安:西安电子科技大学,2008.
    [53]M. Soumekh. Synthetic aperture radar signal processing with MATLAB algorithms. New York:Jone Wiley & Sons, Inc,1999.
    [54]J. C. Curlander, R. N. McDonough. Synthetic aperture radar:systems and signal processing. New York:John Wiley & Sons, Inc,1991.
    [55]I. G. Cumming, F. H. Wong. Digital processing of synthetic aperture radar data:algorithms and implementation. Norwood MA:Artech House Inc,2005.
    [56]V. C. Chen, H. Ling. Time-frequency transforms for radar imaging and signal analysis. Boston: Artech House,2002.
    [57]邢孟道.基于实测数据的雷达成像方法研究.西安:西安电子科技大学,2002.
    [58]A. Achim, P. Tsakalides, A. Bezerianos. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing,2003,41(8):1773-1784.
    [59]M. N. Do. Directional multiresolution image representation. PhD thesis, EPFL, Lausanne, Switzerland,2001.
    [60]J. J. Ranjani, S. J. Thiruvengadam. Dual-tree complex wavelet transform based SAR despeckling using interscale dependence. IEEE Transactions on Geoscience and Remote Sensing,2010,48(6):2723-2731.
    [61]D. Gleich, M. Kseneman, M. Datcu. Despeckling of TerraSAR-X data using second-generation wavelets. IEEE Geoscience and Remote Sensing Letters,2010,7(1):68-72.
    [62]刘成皓,刘文波,张弓.基于Shearlet变换的SAR图像自适应去噪算法.电子科技,2012,25(6):83-86.
    [63]P. Paillou. Detecting step edges in noisy SAR images:A new linear operator. IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):191-196.
    [64]赵凌君,贾承丽,匡纲要.SAR图像边缘检测方法综述.中国图像图形学报,2007,12(12):2043-2049.
    [65]J. L. Starck, M. Elad, D. Donoho. Image decomposition via the combination of sparse representation and a variational approach. IEEE Transactions on Image Processing,2005, 14(10):1570-1582.
    [66]D. L. Donoho, G. Kutyniok. Microlocal analysis of the geometric separation problems. Communications on Pure and Applied Mathematics,2013,66(1):1-47.
    [67]G. Kutyniok, W. Q. Lim. Image separation using wavelets and shearlets.7th International Conference of Curves and Surfaces, Avignon, France,2010:416-430.
    [68]焦立成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12A):1975-1981.
    [69]Stephane Mallat.杨力华等译.信号处理的小波导引.北京:机械工业出版社,2003.
    [70]D. L. Donoho,M. Vetterli. R. A. DeVore, I. Daubechies. Data compression and harmonic analysis. IEEE Trans on Information Theory,1998,4(6):2435-2476.
    [71]D. L. Donoho, A. G. Flesia. Can recent innovations in harmonic analysis 'explain' key findings in natural image statistics?. Network:Computation in Neural Systems.2001.12(3): 371-393.
    [72]刘帅奇,胡绍海,肖扬.基于小波-Contourlet变换与Cycle Spinning相结合的SAR图像去噪.信号处理,2011,27(06):837-842.
    [73]刘帅奇,胡绍海,肖扬.基于复轮廓波域高斯比例混合模型SAR图像去噪.北京交通大学学报,2012,36(2):89-93
    [74]G. E. P. Box, C. Tiao. Bayesian inference in statistical analysis. Reading, MA:Addison Wesley,1992:159-163.
    [75]刘帅奇,胡绍海,肖扬.基于局部混合滤波的SAR图像去噪.系统工程与电子技术,2012,34(2):17-23.
    [76]A. Jalobeanu, L. Blanc-Feraud, J. Zerubia. Satellite image deconvolution using complex wavelet packets. IEEE International Conference on Image Process. Vancouver, IEEE Press, 2000, pp.809-812.
    [77]边肇祺,张学工.模式识别.北京:清华大学出版社,2000:212-226.
    [78]郑宇杰,胡文宁,吴小俊.基于Contourlet域主成分分析SAR图像去噪.计算机仿真,2009,26(6):242-245
    [79]J. S. Lee. A simple speckle smoothing algorithm for synthetic aperture radar images. IEEE Trans. On Systems, Man and Cyvernetics,1983,13(1):85-89.
    [80]J. S. Lee. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. On Pattern Analysis and Machine Intelligence,1980,2(2):165-168.
    [81]刘帅奇,胡绍海,肖扬.基于Shearlets变换的SAR图像去噪.应用科学学报,2012,30(6):629-634.
    [82]秦翰林,李佳,周慧鑫等.采用剪切波变换的红外弱小目标背景抑制.红外与毫米波学报,2011,30(2):162-166.
    [83]侯彪,胡育辉,焦李成.SAR图像水域的改进Shearlet边缘检测.中国图像图形学报,2011,15(10):1549-1554.
    [84]F. Colonna, G. R. Easley. Generalized discrete radon transforms and their use in the ridgelet transform. Journal of Mathematical Imaging and Vision,2005,23 (2):145-165.
    [85]J. R. Sveinsson, J. Atli Benediktsson. Almost translation invariant wavelet transformations for speckle reduction of SAR images. IEEE Transaction on Geoscience and Remote Sensing, 2003,41(10):2404-2408
    [86]L. Sendur, I. W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transaction Signal Processing,2002,50(11): 2744-2756.
    [87]刘帅奇,胡绍海,肖扬.基于复Shearlet域的高斯混合模型SAR图像去噪.航空学报,2013,34(1):173-180.
    [88]B. Han, G. Kutyniok, Z. W. Shen. Adaptive multiresolution analysis structures and shearlet systems. SIAM Journal on Numerical Analysis,2011,49(5):1921-1946.
    [89]H. W. Cao, W. Tian, C. Z. Deng. Shearlet-based image denoising using bivariate model.2010 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, IEEE Press,2010, pp.818-821.
    [90]B. Hou, X. H. Zhang, X. M. Bu, et al. SAR image despeckling based on nonsubsampled shearlet transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5 (3):809-823.
    [91]刘帅奇,胡绍海,肖扬.基于稀疏表示的Shearlet域SAR图像去噪.电子与信息学报,2012,34(9):2110-2115.
    [92]S. Q. Liu, S. H. Hu, Y. Xiao, et al. Bayesian Shearlet shrinkage for SAR image de-noising via sparse representation. Multidimensional Systems and Signal Processing,2013:1-19.
    [93]I. Tosic, B. A. Olshausen, B. J. Culpepper. Learning sparse representations of depth. IEEE Journal of Selected Topics in Signal Processing,2011,5 (5):941-952.
    [94]E. J. Candes, T. Tao. Near-optimal signal recover from random projection:universal encoding strategies?.IEEE Trans.on Information Theory,2006,52 (12):5406-5425.
    [95]李恒建,张家树,陈怀新.基于稀疏模型的Bandelet图像去噪方法.铁道学报,2010,32(5):108-113.
    [96]孙玉宝,韦志辉,吴敏等.稀疏性正则化的图像泊松去噪算法.电子学报,2011,39(2):285-290.
    [97]P. Fletcher. Practical methods of optimization, Unconstrained optimization. New York:John Wiley & Sons,1980, vol.1:63-75.
    [98]王鄂芳,石生明.高等代数(第三版).北京:高等教育出版社,2003:231-232.
    [99]Ruizhen Zhao, Xiaoyu Liu, Chingchung Li, et al.. Wavelet denoising via sparse representation. Science in China Series F,2009,52 (8):1371-1377.
    [100]H. Chipman, E. Kolaczyk, R. McCulloch. Adaptive bayesian wavelet shrinkage. J. Amer. Statist. Assoc.,1997,92 (440):1413-1421.
    [101]Min Dai, Cheng Peng, A. K. Chan, et al.. Bayesian wavelet shrinkage with edge detection for SAR image despeckling. IEEE Transactions on Geoscience and Remote Sensing,2004,42 (8): 1642-1648.
    [102]刘帅奇,胡绍海,肖扬,成威.基于移不变二维混合变换的机场雷达成像噪声抑制,系统工程与电子技术,已投.
    [103]P. D. L. Beasley, G. Binns, R. D. Hodges, et al.. A millimetre wave radar for airport runway debris detection. First European Radar Conference, Amsterdam,2004, pp.261-264.
    [104]H. Essen, F. Lorenz, S. Hantscher, et al.. Millimeterwave radar for runway debris detection. 2011 Tyrrhenian International Workshop on Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Wachtberg,, Germany,2011, pp.65-68.
    [105]李煜,肖刚.机场跑道异物检测系统设计与研究.激光与红外,2011,41(8):909-915.
    [106]郭晓静,于之靖.机场跑道异物定位算法研究.测控技术,2012,31(5):41-44.
    [107]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报,2001,22(sup):s16-s25.
    [108]左磊,李明,张晓伟,等.基于改进Hough变换的海面微弱目标检测.电子与信息学报,2012,34(4):923-928.
    [109]韩福江,王秀森,刘瑞鹏.基于多尺度几何变换的导航雷达图像去噪仿真.中国惯性技术学报,2009,17(2):1-3.
    [110]肖扬,张超,胡绍海.应用二维混合变换的脂肪肝超声波图像特征提取.应用科学学报,2008,26(4):362-369.
    [111]Yingkang Zhang, Yang Xiao, Zhixing Liu. A denoising pre-process for SAR echo signal based on the 2-D hybrid transform. The 13th International Workshop on Multimedia Signal Processing & Transmission, Queensland, IEEE Press,2010, pp.10-17.
    [112]I. Firoiu, C. Nafornita, D. Isar, et al.. Bayesian hyperanalytic denoising of SONAR images. Geoscience and Remote Sensing Letters,2011,8 (6):1065-1069.
    [113]王炳和.现代数字信号处理.西安:西安电子科技大学出版社,2011:144-200.
    [114]T. Benoit, A. Bertrand. A fast multi-scale edge detection algorithm. Pattern Recognition Letters,2004,25 (6):603-618.
    [115]周何,黄山,盛贤.基于B样条小波的图像边缘检测.计算机仿真,2011,28(11):214-217.
    [116]薛笑荣,张艳宁,赵荣椿等.基于小波变换的SAR图像边缘提取新方法研究.西北工业大学学报,2003,21(3):332-335.
    [117]胡晓辉,张晓颖,陈俊莲.一种融合小波变换和数学形态学的边缘检测算法.铁道学报,2011,33(3):45-48.
    [118]白婷婷,邓彩霞,耿英.基于小波变换与Canny算子的图像边缘检测方法.哈尔滨理工大学,2010,15(1):44-51.
    [119]Genfeng Zheng, Longxu Jin, Shuangli Han, Ranfeng Zhang. Directional multiscale edge detection using the contourlet transform.2010 2nd International Conference on Advanced Computer Control (ICACC), Changchun, China, IEEE Press,2010, pp.58-62.
    [120]张悦庭,孟晓锋,尹忠科等.基于Contourlet模极大值的图像边缘检测.铁道学报,2008,30(5):41-45.
    [121]Q. W. Li, G. Y. Huo, H. Li, etc. Bionic vision-based synthetic aperture radar image edge detection method in non-subsampled contourlet transform domain. IET Radar, Sonar and Navigation.2012,6 (6):526-535.
    [122]刘帅奇,胡绍海,肖扬,安永丽.基于局部混合滤波的SAR图像边缘检测.电子与信息学报,2013,35(5):8-18.
    [123]孔莹莹,周建江,张焱.基于ROEWA和Gabor滤波的SAR图像边缘提取.光电子.激光,2010,21(8):1257-1263.
    [124]G. Shafer. A mathematical theory of evidence. Princeton:Princeton University Press,1976.
    [125]霍冠英,王敏,程晓轩等.用于侧扫声纳图像边缘检测的改进Canny算子.应用科学学报,2011,29(6):613-618.
    [126]才辉,张光新,张浩等.一种新的基于多信息测度融合的边缘检测方法.浙江大学学报(工学版),2008,42(10):1671-1675.
    [127]Q. S. Liu, S. H. HU, Y. Xiao and W. Cheng. SAR image edge detection using sparse representation and LS-SVM. Electronics Letters, submited.
    [128]G. Franceschetti, R. Lanari. Synthetic aperture radar processing. CRC Press,1999, p.3.
    [129]S. Zheng, J. Liu, J. W. Tian. A new efficient SVM-based edge detection method. Pattern Recognition Letter,2004,25 (10):1143-1154.
    [130]Y. Hong. Unified formulation of a class of image thresholding techniques. Pattern Recognition,1996,29 (12):2025-2032
    [131]刘帅奇,胡绍海,肖扬.基于图像稀疏表示的SAR图像边缘检测.航空学报,已投.
    [132]许悦雷,田松,李军伟等.Shearlet域边缘提取与复扩散方程结合的SAR图像降斑.西安电子科技大学学报(自然科学版),2012,39(6):166-171.
    [133]唐永鹤,胡某法,卢焕章.基于自适应滤波的单像素宽形态学边缘检测.信号处理,2011,27(8):1166-1170.
    [134]Shuaiqi Liu, Shaohai Hu, Yang Xiao. Image separation using wavelets-complex Shearlets dictionary. Journal of Systems Engineering and Electronics, accepted.
    [135]Shuaiqi Liu, Shaohai Hu, Yang Xiao, Yongli An. Circular symmetric shearlet transform and its application for image separation. ICSP 2012,2012, Beijing, China, vol.1, IEEE Press,2012, pp.757-760
    [136]Shuaiqi Liu, Shaohai Hu, Yang Xiao. Hyperanalytic shearlet transform and its application for image separation. Journal of Multimedia, submitted.
    [137]D. L. Donoho, G. Kutyniok, Geometric separation using a wavelet-shearlet dictionary. SampTA'09, Marseille, France,2009:19-23.
    [138]G. Kutyniok, W. Q. Lim. Image separation using shearlets. Approximation Theory ⅩⅢ:San Antonio 2010 in Springer Proceeding in Mathematics, San Antonio, TX,2010:163-186.
    [139]G. Kutyniok. Sparsity equivalence of anisotropic decompositions.2013, http://arxiv.Org/abs/1101.3638.
    [140]练秋生,孔令富.圆对称轮廓波变换的构造.计算机学报,2006,29(4):652-657.
    [141]练秋生,李芹,孔令富.融合圆对称轮廓波统计特征和LBP的纹理图像检索.计算机学报,2007,30(12):2198-2204.
    [142]S. Sardy, A. G. Bruce, P. Tseng. Block coordinate relaxation methods for nonparametric wavelet denoising. Journal of Computational and Graphical Statistics,2000,9 (2):361-379
    [143]Min Tao. Fast alternating direction method of multipliers for total-variation-based image restoration. Journal of Southeast University (English Edition),2011,27 (4):379-383.
    [144]J. Bioucas-Dias, M. Figueiredo. A new TwIST:Two-step iterative shrinkage/throsholding algorithms for image restoration. IEEE Transactions on Image Processing,2007, (16): 2980-2991.
    [145]陈浩,王延杰.基于小波变换的图像融合技术研究.微电子学与计算机,2010,27(5):39-41.
    [146]童明强.红外图像与可见光图像融合的研究.天津:天津理工大学.2008
    [147]Rockinger Oliver, Fechner Thomas. Pixel-level image fusion:The case of image sequences. Aerospace/Defense Sensing and Controls. International Society for Optics and Photonics, 1998, pp.378-388.
    [148]Y. H. Jia. Fusion of Landsat TM and SAR images based on principal component analysis. Remote Sensing Technology and Application,1998,13(1):46-49
    [149]楚恒,朱维乐.基于DCT变换的图像融合方法研究.光学精密工程,2006,14(2):266-273.
    [150]路雅宁,郭雷,李晖晖.基于曲波活性测度的SAR与多光谱图像融合.计算机应用研究,2012,29(11):4360-4363
    [151]Yue Lu, M. N. Do. A new contourlet transform with sharp frequency localization. Proc. of 2006 IEEE International Conference on Image Processing. Atlanta, USA, IEEE Press,2006, pp.1629-1632
    [152]屈小波,闫敬文,杨贵德.改进拉普拉斯能量和的尖锐频率局部化Contourlet域多聚焦图像融合方法.光学精密工程,2009,17(5):1203-1202
    [153]刘帅奇,胡绍海,肖扬.基于向导滤波的复轮廓波域的多聚焦图像融合方法.电子与信息学报,已投.
    [154]Shuaiqi Liu, Shaohai Hu, Wei Sun, Yang Xiao. Image fusion based on complex-shearlet domain via guided filtering. Information Fusion, submitted
    [155]G. Pajares, J. M. de la Cruz. A wavelet-based image fusion tutorial. Pattern Recognition, 2004,37(9):1855-1872.
    [156]Q. Zhang, B. Guo. Multifocus image fusion using the nonsubsanpled contourlet transforms. Signal Processing,2009,89 (7):1334-1346.
    [157]M. N. Do and M. Vetterli. The contourlet transform:an efficient directional multiresolution image representation. IEEE Trans. Image Proc,2005,14(12):2091-2106.
    [158]石智,张卓,岳彦刚.基于Shearlet变换的自适应图像融合算法.光子学报,2013,42(1):115-120.
    [159]郑红,郑晨,闰秀生.基于剪切波变换的可见光与红外图像融合算法.仪器仪表学报,2012,33(7):1613-1619.
    [160]P. Geng, Z.,Wang Z. Zhang, et al. Image fusion by pulse couple neural network with Shearlet. Optical Engineering,2012,51(6):067005-1-067005-7.
    [161]S. T. Li, X. D. Kang, J. W. Hu. Image fusion with guided filtering. IEEE transactions on image processing,2013,22(7):2864-2875.
    [162]K. He, J. Sun, and X. Tang, Guided image filtering. Proc. European Conf. Comput. Vision, Heraklion, Greece, Sep.2010, pp.1-14.
    [163]Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski. Edge-preservin decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph.,2008,27 (3):67:1-67:10.
    [164]N. Draper and H. Smith, Applied Regression Analysis. New York, USA:John Wiley,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700