用户名: 密码: 验证码:
超分辨率重建与图像增强技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多媒体通信和信息处理技术的发展,人们对图像分辨率的要求越来越高。然而许多成像系统受其物理条件的限制,所得到的图像往往分辨率很低,而且会有退化变形和受噪声污染,图像的视觉效果难以满足人们的需要。如果采用改善物理硬件的方法来获取人们满意的高分辨率图像,则成本较高,而且有时难于实现。因此有必要考虑一种能够克服这些限制的新措施来提高图像空间分辨率。超分辨率重建技术就在这种背景下应运而生。该技术弥补了硬件方面的不足,从软件的角度提高图像的分辨率,增强图像的可用性。因此这种技术一经提出,便引起了许多学者的广泛重视和关注,目前在电视、遥感、医学和公安系统等领域都具有非常重要的实际应用价值。
     超分辨率重建技术是指融合多幅包含相似信息但存在不同细节的低分辨率图像得到一幅或多幅高分辨率图像,同时消除加性噪声以及由有限检测器尺寸和光学元件产生的模糊,而无须提高系统的硬件成本。近年来,该技术已成为国际上图像处理领域最活跃的研究课题之一。
     本论文系统回顾了超分辨率技术的相关理论和经典算法,针对实际应用中面临的诸多复杂问题,如模糊函数未知、存在光照影响、噪声等因素,以矢量量化、支撑向量机、流形学习等为主要数学工具,提出一系列超分辨率重建和图像增强方案。同时作为人脸识别的一个预处理环节,研究了基于独立分量分析的人脸超分辨率重建,有效提高了人脸识别率。本论文的主要成果概括如下:
     1、多帧图像的超分辨率重建。主要包括三个部分:第一部分针对不同类型的噪声,结合L_1范数和平稳小波变换,提出基于平稳小波变换的鲁棒解决方案,同时由于综合考虑了图像各个方向的边缘特性,该方案还具有一定的自适应边缘保持能力。第二部分针对低信噪比环境下的超分辨率重建问题,提出基于峭度的重建方案。该方案首先对峭度图像进行了定义,然后分析得出峭度图像的两个重要性质:(a)峭度图像对高斯噪声具有鲁棒性;(b)峭度的绝对值随着图像模糊程度的加大而变小,因而最清晰的图像的峭度的绝对值应该最大。基于这两个特性,该方案在满足高分辨率图像与低分辨率图像之间的反卷积的剩余误差有界的前提下,最大化峭度绝对值来求解未知的高分辨率图像,然后采用Lagrange乘子法则求解此约束优化问题。与传统方法相比,该方案在低噪环境下具有明显的复原效果,且计算复杂度较低。第三部分主要研究了基于分割的超分辨率重建方案。利用高阶统计将图像分割成不同的区域,根据分割的结果对平坦区域和纹理区域实施不同的规整化泛函,以改善重建结果,有效保持图像细节信息。
     2、基于学习的单帧超分辨率重建。鉴于传统方法易受光照因素影响的问题,提出两种同时实现超分辨率重建和图像增强的方案。在对流形学习、自商图像(SQI)进行了深入研究的基础上,提出一种不随光照变化的图像表示方法—对数-小波变换(Log-WT)。然后分别利用Log-WT和SQI提取光照不变量作为图像特征,并假设高分辨率图像块构成的空间和低分辨率图像块构成的空间具有相似的局部几何结构,在流形学习的框架下,借助于局部线性嵌入的思想获得高分辨率图像的初始估计,最后对其加入先验约束,从而同时实现了超分辨率重建和图像增强。该方案在提高图像空间分辨率的同时克服了光照因素的影响,特别是对阴影效应的消除具有明显效果。
     3、提出基于矢量量化的盲超分辨率重建方案。该方案假设模糊函数的类型已知,且可由某一参数来表征,利用矢量量化技术,依照最小距离准则从一组候选参数中估计真实的模糊函数的参数。利用Sobel算子形成特征矢量增强了算法对辨识不同类型图像的模糊函数的鲁棒性,并利用DCT对特征矢量降维,减小了计算量。同时将其扩展应用于超分辨率图像重建中,辨识出多幅低分辨率图像的模糊函数,然后融合具有不同模糊函数和信噪比的低分辨率图像,实现了盲超分辨率图像重建。
     4、提出基于支撑向量机的盲超分辨率重建方案。该方案从模式识别的角度出发解决模糊函数的辨识问题。首先通过边缘检测和局部方差从训练图像中提取能够表征模糊参数信息的特征向量,然后利用支撑向量机建立特征向量与对应的候选参数的映射关系,最后通过建立的模型辨识低分辨率图像的模糊函数,进行超分辨率重建。
     5、提出基于独立分量分析的人脸超分辨率重建方案。该方案利用独立分量分析(ICA)理论从高分辨率训练图像中提取出独立分量,并对ICA系数进行先验估计。给定一幅低分辨率人脸图像,结合最大后验概率(MAP)估计理论求出ICA系数,然后ICA反变换得到高分辨率图像的估计。仿真结果表明该方案有效实现了人脸超分辨率重建,保持了人脸整体结构特征,且对光照、表情、姿态等因素具有一定的鲁棒性。将重建结果应用于人脸识别,有效提高了识别率。
     综上所述,本论文针对目前超分辨率重建技术中存在的问题,以模糊辨识、增加图像动态范围、消除光照和噪声影响为核心进行了深入研究,同时将支撑向量机、流形学习、ICA等理论应用于问题的建模和求解当中,增加了技术的实用性和灵活性。论文最后总结了该研究领域亟待解决的一些问题和下一步的研究重点,同时对该领域的发展趋势进行了展望。
With the development of multimedia communication and information processing, there is a high demand for high-resolution (HR) images. However, it is hard to get the desired image because of the physical limitations of the image acquisition system. The recorded images are usually degraded, noisy and downsampled. Improving the performance of the hardware is clearly one way to increase the resolution of the acquired images. But this method may not be feasible due to the increased cost. Therefore, alternative methods should be provided in order to increase the spatial resolution. The technique of super-resolution (SR) is developed under this circumstance. The aim of the SR is to improve the resolution using software techniques which makes up the hardware deficiency. Many researchers have devoted themselves to this area and the research of SR will be of great value in a lot of applications such as TV, remote sensing, medical imaging, surveillance system and so on.
     Super-resolution reconstruction refers to obtain a high resolution image or image sequence by fusing multiple similar but different low-resolution (LR) images and remove the additive noise and optical blur simultaneously. Recently, it has been one of the most active research areas in the world.
     This dissertation reviews the SR related theory and classical algorithms systematically. Due to the various problems in real applications such as blur estimation, noise, different light conditions and so on, this dissertation presents several super-resolution reconstruction and image enhancement schemes based on vector quantization (VQ), support vector machines (SVM) and manifold learning. In addition, as a preprocessing technique of face recognition, an independent component analysis (ICA) based facial image SR reconstruction approach is proposed and the recognition rate is improved efficiently by this method. Generally, this dissertation consists of the following parts:
     1. Multi-frame super-resolution reconstruction. Three schemes are presented in this part. Firstly, by combining the L\ norm minimization and stationary wavelet transform (SWT), a robust SWT based SR scheme is proposed to deal with different noise models. This method is also effective to preserve the edges of the image due to the high-frequency information in different directions extracted from the image. Secondly, a kurtosis-based scheme is proposed to address SR image reconstruction in low SNR environments. After the definition of the kurtosis image, its two important properties are analyzed: (a) kurtosis image is free from Gaussian noise; (b) the absolute value of kurtosis image becomes smaller as the image gets smoother. Therefore, the estimated HR image should have the largest absolute local kurtosis. Based on these two characteristics, the HR image is estimated by solving an absolute local kurtosis maximization problem with the constraints that residue of the observed data and the solution are bounded. Lagrange multiplier is applied to solve the combinatorial optimization problem. The proposed method is better than the conventional algorithms in terms of visual inspection under severe noise background and has low computational complexity. Thirdly, a segmentation-based scheme is proposed. In this scheme, the image is divided into various regions by making use of high order statistics. Different regularization terms are applied to homogenous regions and non-homogenous regions according to the segmentation label. Detail information of the reconstructed SR image is well preserved.
     2. Learning based single-frame super-resolution reconstruction. Two schemes for simultaneous super resolution and image enhancement are presented to solve the illumination problems in SR technique. Based on the manifold learning and self quotient image (SQI), a logarithmic-wavelet transform (Log-WT) is defined for the elimination of lighting effect in the image. After that, illumination-free features are extracted by exploiting Log-WT or SQI. Under the framework of manifold learning and local linear embedding, an initial estimation of high resolution image is obtained based on the assumption that small patches in low resolution space and patches in high resolution space share the similar local manifold structure. Finally the desired HR image is reconstructed by applying the reconstruction constraints in pixel domain. The proposed method simultaneously achieves single-image super-resolution and image enhancement especially shadow removing.
     3. A blind SR scheme based on vector quantization is proposed. Assume that the blur type is known and blur function is parameterized by one parameter. Based on the VQ technique, the best estimation is found within a set of candidates according to the minimum distortion. Feature extraction by Sobel operator improves the robustness of the method to different types of images. DCT is utilized to reduce the dimension of the vector which leads the low computational complexity. Meanwhile, extension of this method to blind super-resolution image reconstruction is achieved. After blur identification, a super-resolution image is reconstructed from several low-resolution images obtained by different foci.
     4. A support vector machines based scheme of blind SR image reconstruction is proposed. In this scheme, blur identification problem is solved from the viewpoint of pattern recognition. Edge detection and local variance are used to extract feature vectors which contain the information of blur parameter from training images. Then SVM is used to classify these feature vectors. Finally, the acquired mapping between the vectors and corresponding blur parameters provide the identification of the blur and further estimate the HR image.
     5. An independent component analysis based face SR scheme is proposed. In this scheme, the independent components (ICs) are obtained by offline training high resolution face images. The prior of ICA coefficients are estimated by performing PCA on training images. Given a LR image, the high resolution image is reconstructed by the linear combination of the ICs where the weight coefficients are obtained by the method of maximum a posteriori (MAP). Experimental results demonstrate that the proposed method is robust to various pose, expressions and lighting conditions. The hallucination results preserve both the global structure and the high spatial-frequency information better such as sharp edges and high contrast. The HR results are then applied to face recognition which improves the recognition rate.
     In summary, blur identification and image dynamic improvement as well as light conditions and noise removal are investigated in this dissertation. Meanwhile, the new mathematical tools including SVM, manifold learning, and ICA are used in the modeling and solution of the proposed schemes which makes the schemes more useful and flexible. Finally, the problems to be solved related to this research area and future research topics are summarized, furthermore, the prospect of the developing tendency is analyzed as well.
引文
[1] 阮秋琦.数字图像处理[M].北京:电子工业出版社,2001.
    
    [2] T. Komatsu, K. Aizawa, T. Igarashi, T. Saito. Signal-processing based method for acquiring very high resolution image with multiple cameras and its theoretical analysis [J]. Proc. Inst. Elec. Eng., 1993, 140(1): 19-25.
    [3] J. L. Harris. Diffraction and resolving power [J]. Journal of the Optical Society of America, 1964, 54(7): 931-936.
    [4] J. W. Goodman. Introduction to Fourier optics [M]. McGraw-Hill, New York, 1968.
    [5] H. A. Brown. Effect of truncation on image enhancement by prolate spheroidal function [J]. Journal of the Optical Society of America, 1969, 59: 228-229.
    [6] A. K. Jain. Fundamentals of digital image processing [M]. Englewood Cliffs: Prentice-Hall, 1989.
    [7] S. Wadaks, T. Sato. Super-Resolution in incoherent imaging system [J]. Journal of the Optical Society of America, 1975, 65(3): 354-355.
    [8] R. Y. Tsai, T. S. Huang. Multipleframe image restoration and registration [C]. Advances in Computer Vision and Image Processing. Greenwich, CT: JAI Press Inc., 1984:317-339.
    [9] A. M. Tekalp, M. K. Ozkan, M. I. Sezan. High-resolution image reconstruction for low-resolution image sequences and space-varying image restoration [C]. IEEE International Conference on Acousics, Speech and Signal Processing. San Francisco, CA, 1992, 3: 169-172.
    [10] A. Murat Tekalp, Digital video processing [M]. University of Rochester, Prentice Hall, Inc, 1996.
    [11] E. Kaltenbacher, R. C. Hardie. High-resolution infrared image reconstruction using multiple low resolution aliased frames [C]. IEEE National Aerospace and Electronics Conference, 1996, 2: 702-709.
    [12] N. K. Bose, H. C. Kim, H. M. Valenzuela. Recursive total least squares algorithm for image reconstruction from noisy, undersampled frames [J]. Multidimensional Systems and Signal Processing, 1993, 4(3): 253-268.
    [13] H. Ur, D. Gross. Improved resolution from sub-pixel shifted pictures [J]. CVGIP:Graphical Models and Image Processing,1992,54:181-186.
    [14]M.S.Alam,J.G.Bognar,R.C.Hardie,B.J.Yasuda.Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames[J].IEEE Trans.Instrum.Meas.,2000,49:915-923.
    [15]N.R.Shah,A.Zakhor.Resolution enhancement of color video sequences[J].IEEE Trans.Image Processing,1999,8:879-885.
    [16]N.Nguyen,P.Milanfar.An efficient wavelet-based algorithm for image superresolution[C].IEEE International Conference on Image Processing,2000,2:351-354.
    [17]M.Irani,S.Peleg.Improving resolution by image registration[J].CVGIP:Graphical Models and Image Processing,1991,53:231-239.
    [18]S.Mann,R.W.Picard.Virtual bellows:constructing high quality stills from video[C].IEEE International Conference on Image Processing,1994,1:13-16.
    [19]M.Irani,S.Peleg.Motion analysis for image enhancement resolution,occlusion,and transparency[J].J.Visual Commun.Image Represent.,1993,4:324-335.
    [20]D.C.Youla,H.Webb.Image restoration by the method of convex projections:part Ⅰ,theory[J].IEEE Transactions on Medical Imaging,1982,2:81-94.
    [21]H.Stark,P.Oskoui.High resolution image recovery from image-plane arrays,using convex projections[J].J.Opt.Soc.Am.A,1989,6:1715-1726.
    [22]A.M.Tekalp,M.K.Ozkan,M.I.Sezan.High-resolution image reconstruction from lower-resolution image sequences and space varying image restoration [C].IEEE International Conference on Acousics,Speech and Signal Processing,1992,3:169-172.
    [23]A.J.Patti,M.I.Sezan,A.M.Tekalp.Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J].IEEE Transactions on Image Processing,1997,6(8):1064-1076.
    [24]郝鹏威.数字图像空间分辨率改善的方法研究[D].北京:中国科学院遥感应用研究所博士论文,1997.
    [25]R.R.Schultz,R.L.Stevenson.A bayesian approach to image expansion for improved definition[J].IEEE Transactions on Image Processing,1994,3(2): 233-242.
    [26]R.R.Schulz,R.L.Stevenson.Extraction of high-resolution frames from video sequences[J].IEEE Transactions on Image Processing,1996,5:996-1011.
    [27]R.C.Hardie,K.J.Barnard,E.E.Armstrong.Joint MAP registration and high-resolution image estimation using a sequence of undersarnpled images [J].IEEE Transactions on Image Processing,1997,6:1621-1633.
    [28]刘良云,李英才,相里斌.超分辨率图像重构技术的仿真实验研究[J].中国图像图形学报,2001,7(6):629-635.
    [29]M.Elad,A.Feuer.Restoration of a single superresolution image from several blurred,noisy and undersampled measured images[J].IEEE Transactions on Image Processing,1997,6(12):16.46-1658.
    [30]M.Elad,A.Feuer.Superresolution restoration of an image sequence:adaptive filtering approach[J].IEEE Transactions on Image Processing,1999,8:387-395.
    [31]S.C.Park,M.K.Park,M.G.Kang.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
    [32]C.A.Segall,R.Molina,A.K.Katsaggelos.Hi,t-Resolution images from low-resolution compressed video[J].IEEE Signal Processing Magazine,2003,20(3):37-48.
    [33]D.Rajah,S.Chaudhuri,M.V.Joshi.Multi-objective super resolution:concepts and examples[J].IEEE Signal Processing Magazine,2003,20(3):49-61.
    [34]M.K.Ng,N.K.Bose.Mathematical analysis of super-resolution methodology[J].IEEE Signal Processing Magazine,2003,20(3):62-74.
    [35]D.Capel,A.Zisserman.Computer vision applied to super resolution[J].IEEE Signal Processing Magazine,2003,20(3):75-86.
    [36]S.Farsiu,D.Robinson,M.Elad,P.Milanfar.Fast and robust multi-frame super-resolution[J].IEEE Transactions on Image Processing,2004,13(10):1327-1344.
    [37]Noha El-Yamany,Panos Papamichalis,William Schucany.A robust image super-resolution scheme based on redescending M-estimators and information-theoretic divergence[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,2007,1:741-744.
    [38]H.He,P.K.Lisimachos.A regularization framework for joint blur estimation and super-resolution of video sequences[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,2005,3:329-332.
    [39]Boorym Choi,Jong Beom Ra.Region-based super-resolution using multiple blurred and noisy undersampled images[C].IEEE International Conference on Acoustics,Speech and Signal Processing,2006,2:609-612.
    [40]D.Chen,R.R.Schultz.Extraction of high-resolution video stills from MPEG sequences[C].IEEE International Conference on Image Processing,1998,2:465-469.
    [41]Y.Altunbasak,A.J.Patti,R.M.Mersereau.Super-resolution still and video reconstruction from MPEG-coded video[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(4):217-226.
    [42]C.A.Segall,A.K.Katsaggelos,R.Molina,J.Mateos.Bayesian resolution enhancement of compressed video[J].IEEE Transactions on Image Processing,2004,13(7):898-911.
    [43]徐青,张艳.遥感影像融合与分辨率增强技术[M],北京:科学出版社,2007.
    [44]王勇,郑辉,胡德文.视频的超分辨率增强技术综述[J],计算机应用研究,2005,1:4-7.
    [45]韩玉兵,束锋,孙锦涛,吴乐南.基于MG-CG算法的图像超分辨率重建[J],电子学报,2007,35(7):1394-1397.
    [46]S.Baker,T.Kanade.Hallucinating faces[R].CMU-RI-TR-99-32,Robotics Institute,Carnegie Mellon University,Tech.Rep 1999.
    [47]S.Baker,T.Kanade.Hallucinating faces[C].IEEE Int.Conf.on Automatic Face and Gesture Recognition,2000:83-88.
    [48]S.Baker,T.Kanade.Limits on super-resolution and how to break them[C].IEEE Conf.on Computer Vision and Pattern Recognition,2000,2:372-379.
    [49]S.Baker,T.Kanade.Super-Resolution:Limits and Beyond[M].Super-Resolution Imaging,S.Chaudhuri,ed.,Kluwer Academic Press,2001.
    [50]S.Baker,T.Kanade.Super-Resolution:Reconstruction or Recognition?[C].IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,Baltimore,Maryland,June,2001.
    [51]S.Baker,T.Kanade.Limits on Super-Resolution and how to break them[J]. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183.
    [52] W.T. Freeman, T. R. Jones, E. C. Pasztor. Example-based super-resolution [J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
    [53] Christopher M. Bishop, Andrew Blake, Bhaskara Marthi. Super-resolution enhancement of video [C]. International Conference on Artificial Intelligence and Statistics, 2003.
    [54] Jian Sun, Nan-Ning Zheng, Hai Tao, Heung-Yeung Shum. Image hallucination with primal sketch priors [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 2: 729-736.
    [55] H. Chang, D. Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004,1: 275-282.
    [56] K. Su, Q. Tian, Q. Xue, N. Sebe, J. Ma. Neighborhood issue in single-frame image super-resolution [C]. IEEE International Conference on Multimedia and Expo, 2005: 1-4.
    [57] Yu-Wing Tai, Wai-Shun Tong, Chi-Keung Tang. Perceptually-inspired and edge-directed color image super-resolution [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 2: 1948-1955.
    [58] M. V. Joshi, S. Chaudhuri, R. Panuganti. A learning-based method for image super-resolution from zoomed observations [J]. IEEE Transactions on Systems, Man and Cybernetics, 2005, 35(3): 527-537.
    [59] Ce Liu, Harry Hum, Changshui Zhang. A two-step approach to hallucinating faces: global parametric model and local non-parametric model [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 1: 192-198.
    [60] Dahua Lin, Wei Liu, Xiaoou Tang. Layered local prediction network with dynamic learning for face super-resolution [C]. IEEE International Conference on Image Processing, 2005, 1: 885-888.
    [61] M. D. Gupta, S. Rajaram, N. Petrovic, T. S. Huang. Restoration and recognition in a loop [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 638-644.
    [62] Kui Jia, Shaogang Gong. Multi-resolution patch tensor for facial expression hallucination [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 1: 395-402.
    [63] Shiqi Peng, Gang Pan, Zhaohui Wu. Learning-based super-resolution of 3D face model [C]. IEEE International Conference on Image Processing, 2005, 2: 382-385.
    [64] Xiaogang Wang, Xiaoou Tang. Hallucinating face by eigentransformation [J]. IEEE Trans. on Systems, Man and Cybernetics, 2005, 35(3): 425-434.
    [65] Zhaozhong Wang, Feihu Qi. On ambiguities in super-resolution modeling [C]. IEEE signal processing letters, 2004,11(8): 678-681.
    
    [66] 邹谋炎.反卷积和信号复原[M].北京:国防工业出版社,2001.
    
    [67] S. P. Kim, N. K. Bose, H. M. Valenzuela. Recursive reconstruction of high resolution image from noisy under sampled multi frames [J]. IEEE Transactions on Acoustics. Speech, Signal Processing. 1990, 38: 1013-1027.
    [68] S. P. Kim. W. Y. Su. Recursive high-resolution reconstruction of blurred multiframe images [J]. IEEE Transactions on Image Processing, 1993, 2: 534-539.
    [69] N. K. Bose. H. C. Kim. H. M. Valenzuela. Recursive implementation of total least squares algorithm for image reconstruction from noisy, undersampled multiframes [C]. IEEE International Conference on Acousics, Speech and Signal Processing, 1993, 5:269-272.
    [70] S. H. Rhee, M. G. Kang. Discrete cosine transform based regularized high-solution image reconstruction algorithm [J]. Optical Engineering, 1999, 38(8): 1348-1356.
    [71] B. C. Tom, A. K. Katsaggelos, N. P. Galatsanos. Reconstruction of a high resolution image from registration and restoration of low resolution images [C]. IEEE International Conference on Image Processing, 1994: 553-557.
    [72] D. H. Frakes, L. P.Dasi, K. Pekkan. A new method for registration-based medical image interpolation [J]. IEEE Transactions on Medical Imaging, 2008, 27(3): 370-377.
    [73] D. Keren, S. Peleg, R. Brada. Image sequence enhancement using sub-pixel displacements [C]. IEEE Conference on Computer Vision and Patern Recognition, 1988: 742-746.
    [74] B. D. Lucas, T. Kanade. An iterative image registration technique with an application to stereo vision [C]. DARPA image understanding workshop, 1981:121-130.
    [75]N.R.Shah,A.Zakhor.Resolution enhancement of color video sequences[J].IEEE Transactions on Image Processing,1999,8(6):879-885.
    [76]Zhongding Jiang,Tien-Tsin Wong,Hujun Bao.Practical super-resolution from dynamic video sequences[C].Computer Vision and Pattern Recognition,2003,2:549-554.
    [77]R.C.Hardie,K.J.Barnard,E.E.Armstrong.Joint MAP registration and high-resolution image estimation using asequence of undersampled images [J].IEEE Transactions on Image Processing,1997,6(12):1621-1633.
    [78]张新明,沈兰荪.多尺度边缘保持正则化的超分辨率复原[J].软件学报,2003,14(6):1075-1081.
    [79]M.Cannon.Blind deeonvolution of spatially invariant image blurs with phase[J].IEEE Transactions on Acousics,Speech,Signal Process,1976,24(1):58-63.
    [80]R.L.Lagendijk,A.M.Tekalp,J.Biemond.Maximum likehood image and blur identification:a unifying approach[J].Optical Engineering,1990,29(5):422-435.
    [81]R.L.Lagendijk,J.Biemond,D.E.Boekee.Identification and restoration of noisy blurred images using the expectation-maximization algorithm[J].IEEE transactions on Acoust.,Speech,Signal Process.,1990,38(7):1180-1197.
    [82]S.J.Reeves,R.M.Mersereau.Blur identification by the method of generalized cross-validation[C].IEEE Transactions on Image Processing,1992,1(3):301-311.
    [83]Wirawan,P.Duhamel,H.Maitre.Multi-channel high resolution blind image restoration[C].IEEE International Conference on Acousics,Speech and Signal Processing,1989:3229-3232.
    [84]B.K.Gunturk,A.U.Batur,Y.Altunbasak,M.H.Hayes,R.M.Mersereau.Eigenface-based super-resolution for face recognition[C].IEEE International Conference on Image Processing,2002o,2:845-848.
    [85]B.K.Gunturk,A.U.Batur,Y.Altunbasak,M.H.Hayes,R.M.Mersereau.Eigenface-domain super-resolution for face recognition[J].IEEE Transactions on Image Processing,2003,12(5):597-606.
    [86]佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机 辅助设计与图形学学报,2006,18(5):735-741.
    [87]A.J.Patti,Y.Altunbasak.Atifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants[J].IEEE Transactions on Image Processing,2001,6:1446-1451.
    [88]M.K.Ng,N.K.Bose.Analysis of displacement errors in high-resolution image reconstruction with multisensors[J].IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,2002,49(6):806-813.
    [89]Z.Wang,A.C.Bovik,H.R.Sheikh,E.P.Simoncelli.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
    [90]M.K.Kundu,S.K.Pal.Automatic selection of object enhancement operator with quantitative justification based on fuzzy set theoretic measures[J].Pattern recognition letters,1990,11(12):811-829.
    [91]钱曾波,刘静宇,肖国超.航天摄影测量[M],北京:解放军出版社,1992.
    [92]于秀兰.空间多传感器遥感图像融合分类技术的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1999.
    [93]耿则勋.基于小波变换的遥感影像保持量测精度的压缩技术研究[D].郑州:解放军测绘学院博士学位论文,1996.
    [94]熊兴华.遗传算法及其在影像处理与分析中的应用[D].郑州:解放军信息工程大学博士学位论文,2003.
    [95]A.N.Tikhonov,V.Y.Arsenin.Solution of ill-posed problems[M].New York:Winston-Wiley,1977.
    [96]S.Geman,D.E.McClure.Bayes image analysis:An application to single photon emission tomography[C].In Proc.Stat.Comput.Sect.,Washington.DC.Amer.Stat.Assoc.,1985,12-18.
    [97]彭玉华.小波变换与工程应用[M],北京:科学出版社,1999
    [98]汪西莉,刘芳,焦李成.结合边缘信息的多尺度MRF图像分割[J].中国图像图形学报,2004,9(6):660-665.
    [99]尚燕,练秋生,刘春亮.基于Radon变换和SWT的旋转不变纹理分类[J].微计算机信息,2007,23(15):295-297.
    [100]N.Nguyen,P.Milanfar,G.Golub.Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement[J].IEEE Transactions on Image Processing,2001,10: 1299-1308.
    [101]N. K. Bose, S. Lertrattanapanich, J. Koo. Advances in superresolution using L-curve [C]. IEEE International Conference on Symp. Circuits and Systems, 2001,2:433-436.
    [102] J. R. Bergen, P. Anandan, K. J. Hanna, R. Hingorani. Hierarchical model-based motion estimation [C]. European Conference on Computer Vision, 1992: 237-252.
    [103]Aapo Hyvarinen, Juha Karhunen, Erkki Oja. Independent component analysis [M]. John Wiley & Sons, Inc., 2001.
    [104] Guy Gilboa, Nir Sochen, Yehoshua Y. Zeevi. Texture preserving variational denoising using an adaptive fidelity term [C]. Proc. VLSM 2003, Nice, France, 2003: 137-144.
    [105]M. Xia, B. Liu. Super-resolution curve and image registration [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, 3: 509-512.
    [106]Yu He, Kim-Hui Yap, Li Chen, Lap-Pui Chau. A nonlinear least square technique for simultaneous image registration and super-resolution [C]. IEEE Transactions on Image Processing, 2007, 16(11): 2830-2841.
    [107] R. R. Schultz, R. L. Stevenson. Bayesian estimation of subpixel-resolution motion fields and high-resolution video stills [C]. IEEE International Conference on Image Processing, 1997, 3: 62-65.
    [108]M. Kunter, Jangheon Kim, T. Sikora. Super-resolution mosaicing using embedded hybrid recursive flow-based segmentation[C]. IEEE International Conference on Information, Communications and Signal Processing, 2005: 1297-1301.
    [109] Q. Wang, X. Tang, H. Shum. Patch based blind image super resolution [C]. IEEE International Conference on Computer Vision, 2005, 1: 709-716.
    [110]W. Liu, D. Lin, X. Tang. Neighbor combination and transformation for hallucinating faces [C]. IEEE International Conference on Multimedia and Expo, 2005: 145-148.
    [111]T. Hastie, W. Stuetzle. Principal curves [J]. Journal of the American Statistical Association, 1989, 84: 502-516.
    [112]R. O. Duda, P. E. Hart, D. G. Stork. Pattern classification [M]. 2nd edition. John Wiley and Sons. Inc., New York, 2001.
    [113]E.Chavez,G.Navarro,R.Baeza-Yates,J.Marroquin.Searching in metric spaces[M].ACM Computing Surveys,2001.
    [114]D.Lee,Seung H.Cognition.The manifold ways of perception[J].Science,2000,290(5500):2268-2269.
    [115]J.B.Tenenbaum,V.D.Silvam,J.C.Langford.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2319-2323.
    [116]S.T.Roweis,L.K.Saul.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2323-2326.
    [117]M.Balasubramanian,E.L.Schwartz,J.B.Tenenbaum.The Isomap algorithm and topological stability[J].Science,2002,295(5552):7a.
    [118]T.Hastie,W.Stuetzle.Principal curves[J].Journal of the American Statistical Asssociation,1988,84(406):502-516.
    [119]张军平.流形学习及应用[D].北京:中国科学院自动化研究所博士学位论文,2003.
    [120]M.Belkin,P.Niyogi.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computations,2003,15(6):1373-1396.
    [121]Z.Zhang,H.Zha.Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J].SIAM Journal of Scientific Computing,2004,26(1):313-338.
    [122]Y.Chang,C.Hu,R.Feris.Manifold based analysis of facial expression[J].Image Vision Computing,2006,24(6):605-614.
    [123]R.J.Gu,W.B.Xu.Face Recognition Based on Supervised Kernel Isomap [C].International Conference on Computational Intelligence and Security,2006,1:674-677.
    [124]H.Chang,D.Y.Yeung.Locally linear metric adaptation with application to semi-supervised clustering and image retrieval[J].Pattern Recognition.2006,39(7):1253-1264.
    [125]R.Souvenir,R.Pless.Manifold clustering[C].International Conference on Computer Vision,2005,1:648-653.
    [126]H.F.Chen,G.F.Jiang,K.Yoshihira.Robust nonlinear dimensionality reduction for manifold learning[C].International Conference on Pattern Recognition,2006,2:447-450.
    [127]许馨,吴福朝,胡占义,罗阿理.一种基于非线性降维求正常星系红移 的新方法[J],光谱学与光谱分析,2006,26(1):182-186.
    [128]Chan Tak Ming,Junping Zhang.An.improved super-resolution with manifold learning and histogram matching[C].IAPR International Conference on Biometric,LNCS3832,Springer-Verlag Berlin Heidelberg,2006:756-762.
    [129]Edwin H.Land.The retinex theory of color vision[J].Scientific American,1977,237:108-128
    [130]Haitao Wang,S.Z.Li,Yangsheng Wang,Jianjun Zhang.Self quotient image for face recognition[C].International Conference on Image Processing,2004,2:1397-1400.
    [131]David G.Lowe.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
    [132]李学明.基于Retinex理论的图像增强算法[J].计算机应用研究,2005,2:235-237.
    [133]T.G.Stockham,T.M.Cannon,R.B.Ingebretsen.Blind deconvolution through digital signal processing[C].Proceedings of the IEEE,1975,63(4):678-692.
    [134]M.Cannon.Blind deconvolution of specially invariant image blurs with phase[J].IEEE Transactions on Acoustics,speech and signal processing,1976,24(1):58-63.
    [135]Isabelle Begin,Frank P.Ferric.Blind super-resolution using a learning-based approach[C].International Conference on Pattern Recognition,2004,2(19):85-89.
    [136]K.Panchapakesan,D.G.Sheppard,M.W.Marcellin.Blur identification from vector quantizer eneoder distortion[J].IEEE Transactions on Image Processing,2001,10(3):465-470.
    [137]R.Nakagaki,A.K.Katsaggelos.A VQ-based blind image restoration algorithm[J].IEEE Transactions on Image Processing,2003,12(9):1044-1053.
    [138]张洪刚,陈光,郭军.图像处理与识别[M],北京:北京邮电大学出版社,2006.
    [139]Y.Linde,A.Buzo,R.M.Gray.An algorithm for vector quantizer design[J].IEEE Transactions on Communications,1980,28(1):84-95.
    [140]H.C.Andrews,B.R.Hunt.Digital Image Restoration[M].Englewood Cliffs,NJ:Prentice-Hall,1977.
    [141]冈萨雷斯.数字图像处理[M],北京:电子工业出版社,2005.
    [142]刘良云,李英才,相里斌.超分辨率图像重构技术的仿真实验研究[J].中国图像图形学报,2001,7(6):629-635.
    [143]邹异松.电真空成像器件及理论分析[M].北京:国防工业出版社,1989.
    [144]Y.H.Liu,Y.T.Chen.Face recognition using total margin-based adaptive fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2007,18(1):178-192.
    [145]Yongqiao Wang,Shouyang Wang,K.K.Lai.A new fuzzy support vector machine to evaluate credit risk[J].IEEE Transactions on Fuzzy Systems,2005,13(6):820-831.
    [146]Chia-Feng Juang,Shih-Hsuan Chiu,Shen-Jie Shiu.Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation[J].IEEE Transactions on Systems,Man and Cybernetics,Part A,2007,37(6):1077-1087.
    [147]B.Waske,J.A.Benediktsson.Fusion of support vector machines for classification of multisensor data[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):3858-3866.
    [148]S.Zafeiriou,A.Tefas,I.Pitas.Minimum class variance support vector machines[J].IEEE Transactions on Image Processing,2007,16(10):2551-2564.
    [149]E.Osuna,R.Freund,F.Girosi.Training support vector machines:An application to face detection[C].IEEE Computer Society Conference on CVPR,1997:130-136.
    [150]Dalong Li,R.M.Mersereau,S.Simske.Blind image deconvolution using support vector regression[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,2005,2:113-116.
    [151]C.W.Hsu,C.J.Lin.A comparison of methods for multi-class support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
    [152]M.Gevrekci,B.K.Gunturk.Image acquisition modeling for superresolution reconstruction[C].IEEE International Conference on Image Processing,2005,2:1058-1061.
    [153]Eun Sil Lee,Moon Gi Kang.Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration [J]. IEEE Transactions on Image Processing, 2003, 12(7): 826-837.
    [154] Sung Won Park, Marios Sawides. Breaking the limitation of manifold analysis for super-resolution of facial images [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, 1: 573-576.
    [155]P. Comon. Independent component analysis, a new concept? [J]. Signal Processing, 1994, 36(3): 287-314.
    [156]刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576.
    [157] A. J. Bell, T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995, 7(6): 1129-1159.
    [158] J. F. Cardoso, A. Souloumiac. Blind beamforming for non-Gaussian signals [J]. IEE Proc.-F, 1993, 140(6): 362-370.
    [159]S. Amari, A. Cichocki, H. H. Yang. A new learning algorithm for blind signal separation [J]. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1996, 8: 657-663.
    [160] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
    [161] A. Hyvarinen, E. Oja. A fast fixed-point algorithm for independent component analysis [J]. Neural Computation, 1997, 9(7): 1483-1492.
    [162]Juwei Lu, K. N. Plataniotis, A. N. Venetsanopoulos. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition [J]. Pattern Recognition Letter, 2005, 26(2): 181-191.
    [163]Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(2): 259-268.
    1. Nguyen, N., Milanfar, P., Golub, G. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Transactions on Image Processing, 10(9) (2001) 1299-1308.
    2. Nakagaki R, Katsaggelos A K. A VQ-based blind image restoration algorithm. IEEE Trans. Image Processing, 12(9) (2003) 1044 -1053.
    3. Gevrekci, M., Gunturk, B.K. Image Acquisition Modeling for Super-Resolution Reconstruction. IEEE International Conference on Image Processing(ICIP), 2 (2005) 1058 -1061.
    4. Robertson, M. A. High-Quality Reconstruction of Digital Images and Video from Imperfect Observations. Ph.D thesis (2001).
    5. Vapnik, V. The nature of statistical learning theory. Springer-Verlag, New York, (1995)
    6. Dalong Li, Mersereau, R.M., Simske, S. Blind Image Deconvolution Using Support Vector Regression. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2 (2005) 113-116.
    7. Park, S.C., Park, M.K., Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Processing Magazine, 20 (2003) 21-36.
    8. Chih-Chung Chang, Chih-Jen Lin, LIBSVM: a Library for Support Vector Machines, 2001. Available: http://www.csie.ntu.edu.tw/~cjlin/ libsvm.
    9. Mann S., Mann R. Quantigraphic imaging: estimating the camera response and exposures from differently exposed images. IEEE International Conference on Computer Vision and Pattern Recognition, 1 (2001) 842-849.
    1. S. Baker, T. Kanade. Limits on super-resolution and how to break them, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 1167-1183,2002.
    2. W.T. Freeman, T.R. Jones, and E.C. Pasztor. Example-based super-resolution, IEEE Computer Graphics and Applications, vol. 22, no. 2, pp. 56 - 65, 2002.
    3. Q. Wang, X. Tang, and H. Shutn. Patch Based Blind Image Super Resolution, IEEE International Conference on Computer Vision, vol. 1, pp. 709 - 716,2005.
    4. H. Chang, D.Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding, CVPR, vol.1,pp.275-282, 2004.
    5. W. Liu, D. Lin, and X. Tang. Neighbor Combination and Transformation for Hallucinating Faces, ICME, pp. 145-148, 2005.
    6. D. Brainard and B. Wandell, Analysis of the Retinex theory of color vision, Journal of the Optical Society of America, 3, pp. 1651-1661, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700