用户名: 密码: 验证码:
高铁和重载条件下电气化铁道干扰对室外信号影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铁和重载铁路中的信号控制系统大量采用微电子技术,对电磁干扰更加敏感,而电磁环境则趋于复杂和恶劣。电磁干扰可能带来信号设备错误动作,影响行车效率,甚至威胁到运输安全。本论文以此为背景,面向强电磁干扰即牵引电流传导性干扰和大能量瞬态干扰对轨道电路和信号电缆等室外信号设备的影响机理及相应的防护技术进行研究,主要工作包括以下四个方面。
     1.在牵引供电系统模型基础上,构建了高铁和重载条件下包含桥梁、信号电缆、贯通地线等因素的综合模型,给出了牵引电流分布的节点方程组,对主要影响因素进行了计算和评估。完成了信号电缆中电流推算,并对单端和双端接地下的干扰数值进行理论计算对比,通过仿真测试验证,得出单端接地优于双端接地的结论。
     2.研究了牵引电流特征和影响轨道电路的机理,设计并实现了高铁和重载站内轨道电路抗牵引电流干扰方案;将Zoom FFT算法应用于轨道电路接收,结合信号和谐波干扰频谱特征,提出了特征分析和信号识别方法。
     3.研究了与牵引电流相关的大能量瞬态现象,即高铁站内机械绝缘烧损、重载桥梁区段信号电缆烧损问题。通过模拟运行环境设计了测试方案,取得全面的电压电流数据及相关特性,利用Cassie和Mayr理论模型进行综合特征分析,得出了上述瞬态现象发生机理是由于电弧高温引起的结论。
     4.研究了电磁干扰影响设备的综合监测问题,提出了基于ZigBee无线传感器网络的室外分布式监测方案,评估了信道电磁干扰;设计了图像拼接算法来扩大铁路视频监测系统的视野;以轨道电路故障诊断为例,设计了基于数据的混合算法以获得较好的实时性和准确性。
Microelectronic technology has been increasingly applied in signaling control system of high speed and heavy haul railways, which is essentially sensitive to electromagnetic interference (EMI) caused by electrified railway. EMI may lead to signal malfunction that will consequently disrupt railway operation even threaten the safety. Under this background, featuring the influence of strong EMI, e.g. conductive interference and transient, upon track circuit and signal cable, interference mechanism and corresponding preventive measures are discussed in this thesis. Major work focuses the following four aspects.
     At first, considering some key influential factors such as ground wire, bridge section and signal cables, a novel model was established to analyze the distribution of traction current by a group of node-voltage equations. After interference values were analyzed and calculated theoretically between single grounding and double grounding, the result that single grounding is better than the latter was verified in indoor simulation test.
     Secondly, the characteristics of traction current and its impact on track circuit were studied; then the solution of station track circuit for high speed and heavy haul railways was designed and implemented, which can meet the requirement under high traction current interference. In addition, according to distribution features of signal and harmonics, Zoom FFT algorithm was adopted in the track circuit receiver, and feature-based method was discussed to identify the polluted signal spectrum.
     Thirdly, transient phenomena related with traction current were illustrated on two cases, one is the damage of insulation joint in high speed railway station, the other is the burning of signal cable in bridge section of heavy haul railway. In accordance with the actual operation, the simulation test was devised to acquire enough and synchronized voltage and current data, which were analyzed and matched with Cassie and Mayr arc combined model. Further, the high temperature from electric arc was confirmed to be the reason of the phenomena.
     Finally, concerning synthetically monitoring interference on track-side signaling, the distributed monitoring scheme based on ZigBee wireless sensor network technology was designed; an image mosaic algorithm was implemented to enlarge the target view and range; and a data-based hybrid algorithm was developed on track circuit fault diagnosis to improve its real-time and accuracy.
引文
[1]UIC-International Union of Railways, General definitions of high speed, DIRECTIVE 96/48/EC, http://www.uic.org/IMG/article PDF/article 971.pdf,2010.1-3.
    [2]International Heavy Haul Association, http://www.ihha.net/
    [3]中国政府网.http://www.gov.cn/jrzg/2013-01/17/content 2314253.htm
    [4]中国城市轨道交通协会网.http://www.gdjtxh.cn/index.php
    [5]陈穷.电磁兼容性工程设计手册.第1版.北京.国防工业出版社.1993.11-13
    [6]CENELEC. EN50121-4-2006. Railway applications — Electromagnetic compatibility-Part 4: Emission and immunity of the signalling and telecommunications apparatus.3-10
    [7]中华人民共和国铁道部.TB/T 3073-2003铁道信号电气设备电磁兼容性试验及其限值.北京.中国铁道出版社.2003.2-9
    [8]中国政府网.http://www.gov.cn/gzdt/2011-12/29/content2032986.htm.“7·23”甬温线特别重大铁路交通事故调查报告.1-5
    [9]北京交通大学.侯月线重载运输站内轨道电路抗大牵引电流干扰技术研究报告.北京.2012.2-3
    [10]耿志修.大秦铁路重载运输技术.第1版.北京.中国铁道出版社.2009.217-238
    [11]中华人民共和国铁道部.铁运(2006)26号“铁路信号设备雷电及电磁兼容综合防护实施指导意见”.2006.5-17
    [12]中华人民共和国铁道部.TB 3074-2003.铁道信号设备雷电电磁脉冲防护技术条件.北京.中国铁道出版社.2003.5-16
    [13]中华人民共和国铁道部.科技运[2008]36号“客运专线铁路信号产品暂行技术条件-扼流变压器”.北京.中国铁道出版社.2002.2-5
    [14]北京交通大学等.大秦线信号系统抗干扰测试研究报告.北京.2006.2
    [15]杨世武.铁路信号电磁兼容技术.第1版.北京.中国铁道出版社.2010.95,235-239.
    [16]张曙光.CTCS-3级列控系统总体技术方案(V1.0).第1版.北京.中国铁道出版社.2008.1-5
    [17]吴运熙,毕红军,孙亮勤.铁路信号抗电力牵引电流的干扰.第1版.北京.中国铁道出版社.1992.1-2,112-125
    [18]毕红军.电气化铁道牵引回流分布的理论分析.北方交通大学学报.1994.18(2).251-257
    [19]张婧晶,张家新.客运专线综合接地系统的仿真与研究.电气化铁道.2007.(6).24-27
    [20]吴命利,黄足平,辛成山.降低电气化铁道钢轨电位技术措施的研究.中国电气化铁路两万公里学术会议论文集.北京.电气化铁道.2005.30-38.
    [21]张民,何正友,方雷等.自耦变压器供电方式下降低高速铁路钢轨电位的方法及其仿真分析.电网技术.2011.35(3).80-84
    [22]何俊文.交流牵引供电系统仿真通用数学模型及应用.电网技术.2010.34(7).25-28
    [23]喻奇.客运专线牵引供电系统电气模型的研究[学位论文].成都.西南交通大学.2009.7,44-49
    [24]Mariscotti A., Pozzobon P., Vanti M. Distribution of the Traction Return Current in AT Electric Railway Systems. IEEE TRANSACTIONS ON POWER DELIVERY.2005.20 (3). 2119-2128
    [25]Mariscotti A., Pozzobon P., Vanti M.. Simplified Modeling of 2x25-kV AT Railway System for the Solution of Low Frequency and Large-Scale Problems. IEEE TRANSACTIONS ON POWER DELIVERY.2007.22(1).296-301
    [26]Charalambous C.A., Cotton I.; Aylott P.. A Simulation Tool to Predict the Impact of Soil Topologies on Coupling Between a Light Rail System and Buried Third-Party Infrastructure. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.2008.57 (3).1404-1416
    [27]阿·米·布列也夫著.孙铭甫译.轨道电路的分析与综合.第1版.北京.中国铁道出版社.1981.9-11,373-388
    [28]罗海涛.移频自动闭塞.第1版.北京.中国铁道出版社.1992.163-164
    [29]费锡康.无绝缘轨道电路原理及分析.第1版.北京.中国铁道出版社.1993.221-227
    [30]杨世武,费锡康,吴运熙等.25Hz轨道电路抗电气化脉冲干扰的研究.铁道学报.1999.21(2).58-62.
    [31]李智宇,郑昇,徐宗奇等.高速条件下ZPW-2000A无绝缘轨道电路耦合干扰分析及对策.中国铁道科学.2010.31(3).98-106
    [32]J. Li, S. Yang, G. Ren. Research on Anti-Interference of Heavy Traction Current for the Signaling System of Da-Qin Railway Line, Proceedings of 9th International heavy Haul Conference, Shanghai, China.2009.21-24
    [33]Dolara A.. EMC disturbances on track circuits in the 2×25kV high speed AC railways systems. IEEE Trondheim. PowerTech. Trondheim, Norway.2011.1-9.
    [34]Holmstrom F. R.. Rail Transit EMI-EMC. IEEE Electromagnetic Compatibility Magazine. 2012.2012,7(1).79-82
    [35]Claxton J.. Signalling and Telecomms Compatibility Issues. DeltaRail内部资料.323-329.
    [36]Place C.. Signalling and Telecommunication Compatibility Issues. Bombardier Transportation,UK.内部资料.305-318.
    [37]Mariscotti A., Ruscelli M., Vanti M., "Modeling of Audio frequency Track Circuits for validation, tuning and conducted interference prediction", IEEE Trans. on Intelligent Transportation Systems,2010.11(1).52-60.
    [38]RSSB (Rail Safety and Standards Board Limited). GKGN0622:Guidance on Immunisation of Signalling and Telecommunications. Systems against Electrical Interference from 50 Hz Single Phase A.C. Electrification.2012.68-75
    [39]张德权.关于沪宁高铁绝缘节烧熔问题的分析研究.上海铁道科技.2011.28(2).43-44.
    [40]吴积饮,钱清泉.弓网系统电弧侵蚀接触线时的热分析.铁道学报.2008.30(3).31-34
    [41]高宗宝,吴广宁.高速电气化铁路中的弓网电弧现象研究综述.高压电器.2009.45(3).104-108
    [42]http://en.wikipedia.Org/wiki/File:Arcing_pickup_shoe.jpg
    [43]中华人民共和国铁道部.运基通信[2008]630号--铁路综合视频监控系统技术规范.第1版.北京.2008.7-8
    [44]中华人民共和国铁道部.运基信号[2006]317号--铁路信号微机监测系统技术条件.第1版.北京.2006.1-4
    [45]Ross S.. Les systemes de Telesurveillance et de Supervision. Maintenance des Infrastructures, SNCF.2008.3-12.
    [46]Dayma J.-M.. Maintenance de la signalisation dlectrique et mdcanique. SNCF Infrastructure. 2008.19-22.
    [47]Chen, J. Roberts C., Weston, P.. Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems. Control Engineering Practice.2008(16).585-596
    [48]K.J.Satsios, D.P. Labridis, P.S.Dokopoulos. The Influence of Nonhomogeneous Earth on the Inductive Interference Caused to Telecommunication Cables by Nearby AC Electric Traction Lines[J]. IEEE Transactions on Power Delivery.2000.15(3):1016-1021
    [49]孙建明,鲁铁成.铁路10kV单芯电力电缆对信号电缆的影响.电网技术.2007.3(6):93-94
    [50]常媛媛.高速铁路牵引供电系统对信号电缆电磁影响若干问题的研究[学位论文].北京.中国铁道科学研究院.2011
    [51]J.R.Carson. Wave propagation in overhead wires with ground return. Bell System Technical Journal.1926.5:539-554
    [52]R.J.Hill, D.C.Carpenter. Determination of rail internal impedance for electric railway traction system simulation. IEE Proceedings B:Electric Power Applications.1991.138(6):311-321
    [53]R.J.Hill, D.C.Carpenter, Rail track distributed transmission line impedance and admittance: theoretical modeling and experimental results. IEEE Transactions on Vehicular Technology.1993.42(2):225-241
    [54]R.J.Hill, S.Brillante, C.R.desoua, PJ.Leonard. Electrical material data for railway track transmission line parameter studies. IEE Proceedings:Electric Power Applications.1999.146(1): 60-68
    [55]R.J.Hill, S.Brillante, PJ.Leonard. Railway track transmission line parameters from finite element field modeling:Series impedance. IEE Proceedings:Electric Power Applications.1999. 146(6):647-660
    [56]董文俊.高速高铁综合接地系统研究[学位论文].成都.西南交通大学.2009
    [57]铁道部工程设计中心.铁路综合接地和信号设备防雷系统工程设计指南.第1版.北京.中国铁道出版社.2009.
    [58]高国强,董安平,张雪原.高速铁路综合地线的接地效果.西南交通大学学报.2011.46(2):103-108
    [59]董安平,张雪原.直供方式下综合地线对牵引回流的影响.西南交通大学学报.2010.45(2):88-94
    [60]曹建猷.电气化铁道供电系统.第2版.北京.中国铁道出版社,1983
    [61]李群湛,贺建闽.牵引供电系统分析.第2版.成都.西南交大出版社.2007
    [62]吴命利.牵引供电系统电气参数与数学模型研究[学位论文].北京.北京交通大学.2006
    [63]王风华.三相-两相牵引变电所和网络的系统变换.铁道学报.1981.3(2):52-60
    [64]李自良,陈薇.自耦变压器的等值电路.武汉水利电力学院学报.1981.4:119-127
    [65]李自良.变压器等效电路的类型和阻抗参数的分析与变换.变压器.1997.34(3):25-28
    [66]杨世武,费锡康,吴运熙等.站内音频轨道电路阻抗匹配电路.中国.ZL200710098775.7.2009
    [67]吴德范,辛成山.电气化铁道自耦变压器供电系统计算方法.中国铁道科学.1980.2:111-127
    [68]辛成山.AT供电系统等值电路推导方法[J].电气化铁道.1999.1:17-20
    [69]辛成山,吴德范.自耦变压器(AT)供电系统电算程序研究.铁道机车车辆.1981.1:19-29
    [70]喻奇,高仕斌,桑丙玉.计入保护线影响的AT牵引网等值电路的推导.电气化铁道.2009.2:14-18
    [71]何正友,方雷,郭东,杨健维.基于AT等值电路的牵引网潮流计算方法.西南交通大学学报.2008.43(1):1-6
    [72]J.C.Brown, J.Allan, B.Mellitt. Calculation and measurement of rail impedances applicable to remote short circuit fault currents. IEE Proceedings B:Electric Power Applications.1992.139(4): 295-302
    [73]中国铁道科学研究院.郑西高铁动态检测报告.北京.中国铁道科学研究院.2010.159-160
    [74]刘明和.如何有效防止电化区段信号电缆的烧损.北京.铁道通信信号.2011.47(8):29-30
    [75]国家标准局.GB6830-86电信线路遭受强电线路危险影响的容许值.北京:中国标准出版社,1987.
    [76]常媛媛,张晨等.电气化铁路电力电缆故障电流对信号电缆的电磁危险影响.中国铁道科学,2010,31(4):85-91
    [77]中华人民共和国铁道部.铁路信号维护规则技术标准2.第1版.北京.中国铁道出版社.2006.419-475
    [78]SHEN B G. Influencing Factors of the Induced Voltage in Signal Cable of Electrified Railway. Asia-Pacific Power and Energy Engineering Conference (APPEEC),2009.3687-3690
    [79]TB 2019-1988.交流电气化铁路对通信电缆线路危险影响的计算条件和方法.铁道行业标准.发布日期:1988-06-30.
    [80]高攸刚.感性耦合与阻性耦合..北京:人民邮电出版社.1979.50-105.
    [81]黄家平,王明浩,等.屏蔽绞线的干扰耦合特性研究.电子测量技术.2009,32(11):1-3.
    [82]李勃,黄大庆.一种基于预测法的电磁兼容设计方法研究..仪器仪表学报..2006,27(6):2499-2500.
    [83]赵乾,钱建平,等.双绞线电磁干扰防护研究.电子测量与仪表学报.2010,24(6):2499-2500.
    [84]王永利,张洁.电缆屏蔽金属网屏蔽效能的工程计算..电子测量与仪表学报.2008年增刊:26-30
    [85]曲正伟,张钟华,等.双螺线电阻静电屏蔽方法研究..仪器仪表学报.2010,31(2):476-480.
    [86]Ogunsola A.. EMC and Functional Safety requirements-Railway signalling applications.IET Seminar. EMC in Railways, London, UK,2009.1-8
    [87]Petkova, Maya. Compatibility between Rolling Stock and Train Detection Systems. IET Seminar. EMC in Railways. Birmingham, UK.2006.71-82
    [88]北京全路通信信号研究设计院.大秦线ZPW-2000A轨道电路系统抗干扰研究报告.2006.17-26.
    [89]北京交通大学.朔黄线万吨列车试验信号系统抗干扰测试研究报告.2008.5-18
    [90]RSSB (Rail Safety and Standards Board Limited). GKGN0622:Guidance on Immunisation of Signalling and Telecommunications. Systems against Electrical Interference from 50 Hz Single Phase A.C. Electrification.2012.68-69,100
    [91]RSSB (Rail Safety and Standards Board Limited). Class373:Support Reed track circuits infrastructure modifications for increased immunity. Reference C2.2009.6
    [92]李瀚荪.电路分析(中).高等教育出版社.第1版.北京.1987.488-490
    [93]中华人民共和国铁道部TB/T 3206-2008. ZPW-2000轨道电路技术条件.北京.中国铁道出版社.2008.
    [94]RSSB (Rail Safety and Standards Board Limited). Harmonics-Engineering recommendation G5_4.2001.11
    [95]Michael H. T. Electronic circuits:fundamentals and applications. Newnes.2006.77-78
    [96]Railtrack PLC. Track Circuit Requirements of A.C. Traction.1996.
    [97]Violette, J. L. N. Electromagnetic Compatibility Handbook. New York:Van Nostrand Reinhold Company Inc.1987.336-343
    [98]Colonel William T. M. Transformer and Inductor Design Handbook. CRC Press.2011.10-36
    [99]秦曾煌.电工学.第1版.北京:高等教育出版社.1993.279-297
    [100]Proakis J., Editor. Digital Signal Processing, principles, algorithms and applications.3rd edition. Prentice Hall.1996.5-20.
    [101]石先明.站内一体化轨道电路工程应用的探讨.中国铁路,2008.552(6).9-13.
    [102]郭凤仪.陈忠华.电接触理论及其应用技术.第1版.中国电力出版社.2008.1-5
    [103]刘教民.低压电器开关电弧运动机理及仿真.第1版.科学出版社.2013.14-19
    [104]Surajit Midya, Dierk Bormann, Thorsten Schutte, et al. Pantograph Arcing in Electrified Railways-Mechanism and Influence of Various Parameters-Part I:With DC Traction Power Supply [J]. IEEE TRANSACTIONS ON POWER DELIVERY,2009,24(4):1940-1950.
    [105]Surajit Midya, Dierk Bormann, Thorsten Schutte, et al. Pantograph Arcing in Electrified Railways-Mechanism and Influence of Various Parameters-Part II:With AC Traction Power Supply [J]. IEEE TRANSACTIONS ON POWER DELIVERY,2009,24(4):1931-1939.
    [106]王万岗,吴广宁,高国强等.高速铁路弓网电弧试验系统.铁道学报,2012,4.
    [107]BSI. Railway application-fixed installations Part 1:Protective provisions relating to electrical safety and earthing. BS EN 50122-1. UK:1998.3-9
    [108]Holm R. Electric Contacts:Theory and Applications. Berlin:Springer-Verlag.1967.6-28
    [109]郭进.铁路信号基础[M].北京:中国铁道出版社,2010.
    [110]Schavemaker P H, van der Sluis L. An improved Mayr-type arc model based on current-zero measurements [circuit breakers]. IEEE Trans on Power Delivery.2000.15(2).580-584.
    [111]王其平.电器电弧理论.第1版.北京.机械工业出版社.1989.
    [112]北京交通大学.既有线重载铁路运输研究—重载桥隧特殊区段信号电缆防护大牵引电流技术研究(合同编号2011X016-C)报告.北京.2012.31-35
    [113]Jagger D., Harrison A., Jagger, R.. The Effect of the Addition of Poly Fibres on Some Properties of High Strength Heat-cured Acrylic Resin Denture Base Material. J. of Oral Rehabilitation.2003.30(2).231
    [114]Sansonnens L, Haidar J, Lowke J. Prediction of Properties of Free Burning Arcs including Effects of Ambipolar Diffusion. Physics D:Applied Physics.2000.33(3).148-157.
    [115]编辑委员会.当代中国铁路信号.北京.中国铁道出版社.2002.353-362
    [116]张春民,李引珍.基于贝叶斯网络的驼峰超速连挂事故分析.铁道学报.2011.33(10).7-10
    [117]Hill J., Szewczyk R.,. System Architecture Directions for Networked Sensors. SIGPLAN Not, 2000.35(11).93-104
    [118]Texas Instruments. CC2530 Datasheet. http://www.ti.com.2010.
    [119]王小强,欧阳骏,黄宁淋.ZigBee无线传感器网络设计与实现.第1版.北京.化学工业出版社.2013.3-11
    [120]邹小春,李茂华,须民健等.公路电缆防盗报警技术研究与开发,2010.3(3).131-134
    [121]Szeliski R. Video mosaic for Virtual Environments. IEEE Computer Graphics and Applications.1996.16(2).22-30
    [122]Peleg S, Rousso B. Mosaicing on adaptive manifolds. IEEE Transactions on PAMI.2000. 22(10).735-739
    [123]M. Brown, DG Lowe. Recognising Panoramas. Proceedings of IEEE International Conference on Computer Vision.2003.1218-1225.
    [124]钟力,胡晓峰.重叠图像拼接算法.中国图像图形学报.1998.3(5).367-370
    [125]潘华伟,邹北骥,李莉等.基于图像的工程图视图分离.计算机工程.2007.33(18).276-278
    [126]李庆忠,耿晓玲,王冰.大视场视频全景图快速生成方法.计算机工程.2009.35(22).170-172.
    [127]Herbert Bay, Andreas Ess, Tinne Tuytelaars, et aL. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding,2008,110(3):346-359.
    [128]David G. Lowe. Object Recognition from Local Scale-Invariant Features. Proc. of the International Conference on Computer Vision,1999(9).
    [129]Christopher Evans. Notes on the OpenSURF Library.2009.
    [130]Chen Fuxing, Wang Runsheng. Fast RANSAC with Preview Model Parameters Evaluation. Journal of Software.2005.16(8).1431-1437
    [131]王金泉,李钦富.基于单应性矩阵的SAR图像配准技术研究.中国电子科学研究院学报.2008.6(3):658-660.
    [132]Harris C., Stephens M. A Combined Corner and Edge Detector. Proceedings of the 4th Alvey Vision Conference. Manchester. UK.1998.147-151.
    [133]申琳,杨进华,赵群等.基于图像匹配的长焦透视镜焦距测量研究.电子测量与仪器学报.2010.24(11):1043-1047
    [134]傅卫平,秦川,刘佳等.基于SIFT算法的图像目标匹配与定位.仪器仪表学报.2011.32(1).164-168
    [135]梁栋,颜普,朱明等.一种基于NSCT(?)ISIFT的遥感图像配准算法.仪器仪表学报.2011.32(5):1084-1088
    [136]马超.无绝缘移频自动闭塞故障诊断专家系统的研究[学位论文].北京.北京交通大学.2010.
    [137]袁曾任.人工神经网络及其应用.第1版.北京.清华大学出版社.1999.21-45.
    [138]雷秀娟,史忠科,孙瑰琪.基于遗传算法的粒子群优化算法的比较分析.计算机工程与应用.2008.44(14).65-66.
    [139]刘金洋.粒子群优化算法的研究与改进[学位论文].哈尔滨.哈尔滨工业大学.2006.3-12
    [140]李文海ZPW-2000A移频自动闭塞系统原理、维护和故障处理.第1版.北京.中国铁道出版社.2010.12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700