用户名: 密码: 验证码:
LeGGPS2、AtCAO与AtHEMA1基因对烟草耐弱光性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弱光是目前制约设施生产的重要因素。研究表明弱光逆境不仅会引起植物叶绿素含量的变化,而且影响光合速率、光合产物的运输与分配,进而影响植物的生长发育。转基因技术具有其独特的优势,是国际上公认的改良作物农艺性状的可行技术,且在提高作物光合速率方面已取得一定进展,但弱光性状是多基因控制的数量性状,利用转化色素合成关键基因提高作物光合速率及耐弱光性的报道迄今少见。
     本研究通过分析叶绿素和类胡萝卜素的合成途径,从拟南芥中克隆叶绿素合成初期的关键基因谷氨酰-tRNA还原酶基因(AtHEMA1)、催化叶绿素b合成的关键基因叶绿素酸酯a氧化酶基因(AtCAO);并构建了含番茄牻牛儿基牻牛儿基焦磷酸合成酶基因(LeGGPS2)的双元表达载体pVCT2295,含AtCAO、AtHEMA1基因的双元表达载体pVCT2299;通过农杆菌介导法将LeGGPS2基因、AtCAO与AtHEMA1基因转入烟草。对转基因烟草植株进行弱光处理后,分析导入基因对烟草光合色素含量、光合速率、光合产物及植株生长发育的影响。
     主要结果如下:
     1.构建了含LeGGPS2基因的双元表达载体pVCT2295,并成功转化烟草
     将从番茄品种Ailsa Craig (Solanwn lycopersicon L. cv. Ailsa Craig)中克隆的LeGGPS2基因插入到载体pVCT2024中,构建了含有LeGGPS2等基因的双元载体pVCT2295,经农杆菌介导转化烟草。对Kan抗性烟草植株进行PCR鉴定、荧光检测,证明获得了整合有Pnos-nptⅡ、35S-LeGGPS2和35S-GFP外源基因的转基因烟草植株9株。
     2. LeGGPS2基因增强了弱光下烟草的光合性能,且增加了生物量积累
     弱光处理后,转基因烟草株系TG1、TG2的类胡萝卜素含量、叶绿素含量、光合速率均比野生烟草增加,达到了差异显著性水平,可见转入LeGGPS2基因可提高烟草弱光下的光合性能。另外,转基因烟草的叶面积增长量、单位叶面积重量、总干重、根冠干重比,均比野生烟草高,证明转入该基因可提高烟草的生物量积累并促进其向根部的分配。
     3.克隆了AtCAO与AtHEMA1基因
     参照GenBank中公布的拟南芥叶绿素酸酯a加氧酶(AtCAO)、谷氨酰tRNA还原酶(AtHEMAl)基因序列,设计特异PCR引物,采用PrimStar HS DNA聚合酶从拟南芥(Arabidopsis thaliana L. Ecotype Columbia) gDNA中扩增目的片段,分别TA克隆进T-载体pMD18-T和pMD19-T,构成载体pVCT1263、pVCT1298。测序结果显示与网上公布序列一致,表明成功克隆了AtCAO与AtHEMA1基因。
     4.成功获得了分别含AtCAO基因、AtHEMA1基因的植物表达载体pVCT2296和pVCT2298
     将克隆的AtCAO基因插入到载体pVCT2100中,构建含有nptⅡ AtCAO基因的表达载体pVCT2296;将克隆的AtHEMA1基因插入到载体pVCT2101中,构建含有npⅡ、AtHEMA1基因的表达载体pVCT2298;通过PCR和酶切鉴定,证明载体pVCT2296、pVCT2298构建成功。
     5.获得了含AtCAO与AtHEMAl基因的植物表达载体pVCT2299并成功转化烟草
     将克隆的AtCAO基因插入到载体pVCT2298中,构建了含有nptⅡ、AtCAO, AtHEMA1基因的表达载体pVCT2299,并经过农杆菌介导转化烟草,对Kan抗性烟草植株进行PCR鉴定,证明获得了整合有nptⅡ、AtCAO、AtHEMA1外源基因的转基因烟草植株24株。进一步对选取的转基因烟草株系TL1、TL2进行Southern杂交,证实获得了含单拷贝基因的烟草植株。
     6.转AtCAO和AtHEMA1双价基因不仅促进烟草叶绿素b合成,且促进生长发育,显示出能增强烟草的耐弱光性
     弱光下转基因烟草相比野生烟草,叶绿素总量增加不显著,但叶绿素b含量增加16%~17%,叶绿素a/b比值降低9%-12%,光合作用增强42%~65%,均达到差异显著水平,而且生长发育比野生烟草快。
Low light is an important factor of restricting the production facilities. The study shows that low light stress can cause changes in the content of chlorophyll, the intensity of photosynthesis, the transport and distribution of photosynthetic products, thus affecting the growth and development of plants. Transgenic technology has its unique advantages and is internationally recognized as viable technology for improving crop agronomic traits, and some progress has been made in improving the photosynthetic rate of plants, but the low light stress is a scalar property manipulated by many genes, so far it is reported rarely to improve plant photosynthetic rate and resistant to low light by transforming some key genes in pigment synthesis.
     In this study, we cloned glutamyl-tRNA reductase gene (AtHEMAl) from the genome of Arabidopsis.thaliana, which is the early key gene for chlorophyll synthesis gene, also we cloned the chlorophyllide a oxygenase(AtCAO), which catalytic synthesis of chlorophyll b and then we constructed the expression vector pVCT2299, in which contain the AtCAO gene and AtHEMAl gene. At the same time, we constructed the expression vector contain LeGGPS2gene. All the vectors were successfully transformed into tobacco by Agrobacterium-mediated transformation. After low light treatment, we analysed the content of pigment, the intensity of photosynthesis and the growth and development of transgenic tobacco. The main results are as follows:
     (1) Constructed the expression vector pVCT2295which contains LeGGPS2gene and successfully transformed it into tobacco by Agrobaclerium-mediated leaf disc transformation.
     The LeGGPS2gene was amplfied from tomato cultivar Ailsa Craig. We constructed the binary vector pVCT2295which contain35S-LeGGPS2gene by inserting the LeGGPS2gene fragment into pVCT2024. Then the pVCT2295vector was transformed into tobacco through Agrobaclerium-mediated leaf disc transformation. PCR analysis and fluorescence detection proved that we have got nine tobaccoes which contain nptll, LeGGPS2and GFP genes.
     (2) Transgenic tobacco with LeGGPS2gene had increased the photosynthetic performance and the biomass accumulation after low light treatment
     After low light treatment, we found the transgenic tobacco have higher contents of carotenoid and chlorophyll,also increase intensity of photosynthesis comare with wild tobacco, and some transgenic lines are significant difference, which indicated that the LeGGPS2gene can improve the tobacco photosynthesis performance under low light. In addition, the transgenic tobacco leaf area, the unit weight of leaf area, total dry weight, root and shoot dry weight ratio were higher than wild tobacco, which proved the transgenic tobacco had increased the biomass accumulation and promoted its trsnsport into roots.
     (3) Cloned the AtCAO and AtHEMAl genes
     According to sequence published in the GenBank, we amplified the chlorophyllide a oxygenase (AtCAO) and glutamyl-tRNA reductase gene from Arabidopsis (Arabidopsis thaliana L. Ecotype Columbia) gDNA with specific PCR primers and PrimStar HS DNA polymerase. Then the fragments were TA cloned into vector pMD18-T, pMD19-T.respectively The sequence analysis display it is in accordance with the online sequence, so we obtained pVCT1263, pVCT1298vector successfully.
     (4) Successfully constructed the expression vector pVCT2296and pVCT2298.
     We constructed the expression vector pVCT2296which contain nptll and AtCAO genes by inserting AtCAO gene into pVCT2100and constructed the expression vector pVCT2298which contain nptll and AtHEMAl genes by inserting AtHEMAl gene into pVCT2101. The PCR identification and restriction enzyme digestion proved we obtained the correct vector pVCT2296and pVCT2298.
     (5) Constructed the expression vector pVCT2299contain AtCAO and AtHEMAl gene and successfully transformed it into tobacco by Agrobaclerium-mediated leaf disc transformation.
     We constructed the expression vector pVCT2299, in which contain nptll, AtCAO and AtHEMAl genes, by inserting AtCAO gene into pVCT2298and transformed it into tobacco using Agrobacterium-mediated method. By the rusults of PCR identification of kan resistant tobacco, we have obtained24strains transgenic tobacco plants with nptII、AtCAO and AtHEMA1exogenous genes. We have conducted Southern blot for furthern analysis the copy number of transgenic tobacco, proved transgenic tobcco TL1and TL2had single-copy.
     (6) The tansgenic tobaco with AtCAO and AtHEMAl genes not only can accelerate the amount of chlorophyll b, but also can accelerate the growth and development, which display increased resistance to low light
     Both the amount of chlorophyll b and the rate of photosynthesis remarkably increased in the transgenic plant lines TL1and TL2compared with the wild type tobacco, while the chlorophyll a/b decreased significantly(P<0.01). We also found the trsngenic tobacco had inreased23%-35%in height compared with wild tobacco, and the index was significant difference (P<0.05). The height was closely related to the time of buds appearing, so the buds of the transgenic tobacco10-20days earlier than wild tobacco, which showed its low light tolerance.
引文
[1]战吉成,黄卫东,王利军.植物弱光逆境生理研究综述.植物学通报,2003,20(1):43-50.
    [2]陈青君,张福墁,王永健,等.黄瓜对低温弱光反应的生理特征研究.中国农业科学,2003,36(1):77-81.
    [3]高绍森,朱延姝,冯辉,等.连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究.辽宁农业科学,2005,(3):31-32.
    [4]王丽娟,张平,顾青海,等.减光条件下番茄生态生理变化研究.天津农业科学,2002,8(1):18-22.
    [5]吴雪霞,查丁石.遮荫对茄子幼苗生长和光合特性的影响.华北农学报,2002,25(3):102-107.
    [6]黄伟,任华中,张福墁,等.低温弱光对番茄苗期生长和光合作用的影响.中国蔬菜,2002,(4):15-17.
    [7]杨兴有,崔树毅,刘国顺,等.弱光环境对烟草生长、生理特性和品质的影响.应用生态学报,2008,16(3):635-639.
    [8]Flore J A, Kesner C. Orchard design for stone fruit based on light interception. Compact Fruit Tree,1982,25:159-165.
    [9]Koblet W. Stress and stress recovery by grapevine. Botanica Helvetica,1996,106(1):73-84.
    [10]Kinet J. M.Effects of light condition on the development of the florescence in tomato. Scientia Hortic.1997, (6):15-26.
    [11]Cockshull K E, Graves C J, Cave C R. Shading on yield of glasshouse tomato. Hort Sci,1992, (67):11-24.
    [12]Ishida K. Influence of respiration rate and metabolic substanceson nodal position of first flower bud of eggplant seedlings.Journal of the Japanese Society for Horticultural Science,1989,58(3): 657-666.
    [13]Jackson D I. Environmental and hormonal effects on development of early bunch stem necrosis. Am J Enol Vitic,1991,42:290-293.
    [14]Jackson J E, Palmer J W. Effects of shade on the growth and cropping of apple trees. Hort Sci, 1977,52:253-266.
    [15]Gizawy A M, Gomaa H M. Effect of different shading levels on tomato plants 1:Growth, flowering and chemical composition. Actahort,1992,323:341-347.
    [16]Rrause G H, Weis E. Chlorophyll fluorescence and photosynthesis:The basics. Annu. Rev plant physiol, plant Mol. Biol.1991,43:313-349.
    [17]Menzel C I, Simpson D R. Effect of continuous shading on growth, flowering and nutrient uptake of passion fruit. Scientia Horticulturate,1988,35:77-88.
    [18]杨盛昌,中须贺常雄,林鹏.光强对秋茄幼苗的生长和光合特性的影响.厦门大学学报(自然科学版),2003,42(2):1-6.
    [19]鲁福成,王明启,张仲国,等.弱光对番茄苗期生长发育影响的研究.天津农学报,2001,8(3):24-27.
    [20]别之龙,刘佩瑛.弱光对辣椒落花和光合作用的影响.核农学报,1998,12(5):314-316.
    [21]Hartt C E. The effect of temperature upon translocation of C4 in sugarcane. Plant Physiol,1965, 40:74-81.
    [22]马国成,张福墁.日光温室不同光温环境对黄瓜光合产物运输及分配的影响.北京农业大学学报,1995,21(1):34-38.
    [23]Grappadelli L.C, Lakso A.N, Plore J.A, et al. Season patterns of carbohydrate portion in gin Exposed and shaded apple branches.Amer.Soe, Hort.Sci.1994,119(3):596-603.
    [24]Ody Y. Effects of light intensity, CO2 concentration and leaf temperature on gas exchange of Strawberry Plants:feasibility studies on CO2 enrichment in Japanese conditions. Aeta Horticultrate,1997,439:563-573.
    [25]Tognetti R Ecophysiological response of Fagussylvatica L. seedings to changing light conditions. Interactions between Photosynthetic acclimation and photo inhibition during stimulated canopy gap formation. Physiologia Plantarum,1997,1010):115-123.
    [26]Dymova O V, Golovko T K. Light adaption of photosynthetic apparatus in Ajugareptans L.-a shade tolerant plant as an example. Russian Journal of Plant physiol,1998,45(4):440-446.
    [27]采利尼克尔(苏)著,木本植物耐阴性的生物学原理,王世绩译.北京:科学出版社,22-25.
    [28]Fay P A, Rnapp A K. Responses to short-term reductions in light in soybean leaves:Effects of leaf position and drought stress. Plant Sci,1998,159:805-811.
    [29]Zhao D, Oosterhuis D. Influence of shade on mineral nutrient status of field-grown cotton. Plant Nutrient,1998,21:1681-1692.
    [30]眭晓蕾,蒋健箴,王志源,等.弱光对甜椒不同品种光合特性的影响.园艺学报,1999,26(5):314-318.
    [31]张淑云.设施内外早露蟠桃光合特性的比较研究.河北农业大学报,2002,25(3):41-44.
    [32]艾希珍,郭延奎.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构.中国农业科学,2004,37(2):268-273.
    [33]许大全.光合作用效率.植物生理学通讯,1988,5:1-7.
    [34]Ehleringer J, Bjorkman O. Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol, 1977,59-86
    [35]许大全,徐宝基,沈允钢,等.C3植物光合效率的日变化.植物生理学报,1990,16:1-5.
    [36]艾希珍,张振贤,何启伟,等.日光温室黄瓜不同叶位叶片光合作用研究.中国农业科学,2002,35(12):1519-1524.
    [37]艾希珍,张振贤,何启伟,等.日光温室主要生态因子变化规律及其对黄瓜光合作用的影响.应用与环境生物学报,2002,8(1):41-46.
    [38]张振贤,艾希珍,邹琦,等.生姜光合效率日变化.园艺学报,2000,27(2):107-111.
    [39]王秀芹,战吉成,黄卫东.植物对弱光逆境的响应.园艺学进展,2002,832-838.
    [40]甄伟,张福墁.弱光对黄瓜功能叶片光合特性及超微结构的影响.园艺学报,2000,(4):290-292.
    [41]黄卫东,吴兰坤,战吉成.中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节.中国农业科学,2004,37(12):1981-1985.
    [43]范燕萍,余让才,郭志华.遮阳对匙叶天南星生长及光合特性的影响.园艺学报.1998,25(3):270-274.
    [44]Anderson J, Wentworth M, Walters P G, et al. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem Ⅱ effects on photosynthesis, grana stacking and fitness. Plant J,2003,35(3):350-361.
    [45]许春辉.光逆境对叶绿体叶绿素蛋白质复合物的影响.植物学通报,1991,11(4):8-11.
    [46]Leong T Y. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. Ⅰ. Study on the distribution of chlorophyll-protein complexes. Photosyn Res,1984,5:105-115.
    [47]张其德.光强度对小麦幼苗光合特性的影响.植物学报.1988,30(5):508-514.
    [48]战吉宬,王利军.黄卫东,弱光环境对葡萄叶片生长及其在强光下光合特性的影响.中国农业大学学报,2002,7(3):75-78.
    [49]Anderson J M. Light energy dependent processes other than CO2 assimilation.The Biochemistry of Plants.1982,8:475-500.
    [50]Malkin S. Estimation of the light distribution between Photosystem Ⅰ and Ⅱ in intact wheat leaves by fluorescence and Photo acoustic measurements. Photosynthesis Research,1986, (17): 257-267.
    [51]匡廷云.叶绿体膜的结构与功能,叶绿体膜的结构、组成与PSⅡ功能的关系.植物生理学报,1979,5(2):99-107.
    [52]Malkin S. Estimation of the light distribution between photosystem Ⅰ and Ⅱ in intact wheat leaves by fluorescence and photoacoustia measurements.Photosynthesis research,1986,17: 257-267.
    [53]梅镇安.离体叶绿体中不同叶绿素a/b比值与光合磷酸化活性的关系.植物生理学报,1965,2(3):179-184.
    [54]周佩珍.叶绿体中不同叶绿素a/b比例对还原2,6-二氯酚靛酚能力的影响.植物生理学报, 1964,1(2):154-159.
    [55]睦晓蕾,毛胜利,王立浩,等.辣椒幼苗叶片解剖特征及光合特性对弱光的响应.园艺学报,2009,36(2):195-208.
    [56]睦晓蕾,张振贤,张宝玺,等.不同品种辣椒幼苗光合和呼吸对弱光的响应.中国生态农业学报,2007,15(2):88-91.
    [57]睦晓蕾,张宝玺,张振贤,等.不同品种辣椒幼苗光合特性及弱光耐受性的差异.园艺学报,2005,32(2):222-227.
    [58]睦晓蕾,张振贤,张宝玺,等.不同基因型辣椒光合及生长特性对弱光的响应.应用生态学报,2006,17(10):1877-1882.
    [59]Lakshmi P M, Vanangamudi M, Thanda P V. Effect of low light on yield and Physiological attributes of rice. International rice research notes,2004,29(2):153-162.
    [60]Armstrong G A, Runge S, Frick G, et al. Identification of NADPH:protochlorphyllide oxidoreductases A and B:a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsisthaliana. Plant Physiol,1995,108(4):1505-1517.
    [61]Beni IM, Schui Z R, Apel K. Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol, Biol,1991,16(4):615-625.
    [62]Oosawa N, Masuda A T, Awal K, et al. Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett, 2000,474(2-3):133-136.
    [63]Cornah J E, Terry M J, Smith A G. Green or red:What stops the traffic in the tetrapyrrole pathway. Trend Plant Sci,2003,8(5):224-230.
    [64]Meskaukiene R, Nater M, Goslings D, et al. A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc.Natl.Acad. Sci. USA,2001,98:12826-12831.
    [65]Krishnasamy S, Wang W Y. Purification of the second Enzyme of chlorophyll biosynthesis from Chlamydomonasrein hardtii. Plant Physiol,1990,93:58-62.
    [66]王慧哲,庞金安,李淑菊,等.弱光对春季温室黄瓜生长发育的影响.华北农学报,2005,20(1):55-58.
    [67]Kolyo D, Mira B, Detelin S, et al. Relationship between the degree of carotenoid depletion and function of the photosynthetic apparatus. Photochemistry and Photobiology,2009,96:49-56.
    [68]Genty B, Briantais J M, Baker N R.. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll florescence. Biochimical BiophysicaActa,1989,990(1):87-92.
    [69]Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Plant physiology and biochemistry,1994,100: 49-70.
    [70]曾纪晴,刘鸿先,王以柔,等.黄瓜幼苗子叶低温下的光抑制及其恢复.植物生理学报,1997,23(1):15-20.
    [71]巫继拓,沈允钢.菠菜叶绿体的光抑制部位.植物生理学报,1990,16(1):31-36.
    [72]Pessarakli M. Handbook of photosynthesis. Second Edition.London:CRC Press,2005.
    [73]Syvertsen J P, Smith M L. Light acclimation in citrus leaves I Change in physical characteristics, chlorophyll, and nitrogen Content.Amer Soc Hor Sci,1984,109(6):812-817.
    [74]Seemann J R. Light adaptation/acclimation of photosynthesis and the regulation of Ribulose 1, 5-bisphosphate carboxylase activity in sun and shade plants. Plant Physiol,1989,91:379-386.
    [75]Brugenmann W. Dauborn B. Long term chilling of young tomato Plants under low light.III Leaf development as affected by Photosynthesis Parameters. Plant Cell Physiol.1993.34(8): 1251-1257.
    [76]Lan V, Woodrow I.E, Mott K. A. Light-dependent changes in ribulose bisphosphate earboxlase activase activity in leaves. Plant Physiol.1992,99:304-306.
    [77]Huang W.D, Wu L.K, Zhan J C. Effect of weak light on the Peroxidation of membrane lipid of Cherry leaves. Acta Batanica Sinica,2002,44(8):920-924.
    [78]朱祝军.不同光强和不同形态氮素对烟草叶片中抗坏血酸过氧化物酶活性和百草枯抗性的影响.植物生理学通讯,1997,33(5):330-332.
    [79]杨延杰,李天来,林多.弱光逆境对主要果菜生长发育影响的研究进展.辽宁农业科学,2004,(6):26-29.
    [80]种培芳.弱光胁迫对甜瓜光合特性及生长发育的影响:[硕士学位论文].甘肃:甘肃农业大学,2005.
    [81]马德华,庞金安,霍振荣,等.弱光对黄瓜幼苗光合及膜质过氧化作用的影响.河南农业大学,1997,32(1):68-72.
    [82]Dudley S A, Schmitt J. Genetic differentiation in morphological responses to simulated foliage shade between population of impatiens-capensis from open and woodland sites. Functional Ecology,1995,9(4):655-666.
    [83]Lin X, Feng X H, Watson J C. Differential accumulation of transcripts encoding protein kinase homologs in greening peas seeding. Proc Natl AcadSci,1991,88:6951-6955.
    [84]王静,王艇.高等植物光敏色素的分子结构、生理功能和表达特征.植物学通报,2007,24(5):649-658.
    [85]Anderson I M, Photo regulation of the composition, function and structure of thylakoid membranes. Plant Physioland Plant MolBiol,1986,37:93-136.
    [86]黄海,汤玉玮.小麦叶绿体中细胞分裂素的结合蛋白.科学通报,1987,6:458-460.
    [87]沈允钢,等.动态光合作用.科学出版社,1998,113.
    [88]张华敏,刘愚,沈允钢.小麦叶绿体中细胞分裂素结合蛋白的特性.植物生理学报,1996,22:27-32.
    [89]Khudairi A K, Arboleda O P. Phytochrome-mediated carotenoid biosynthesis and its influence by plant hormones. Plant Physiol,1971,24:8-22.
    [90]Thomas R L, Jen J J. Phytochrome-mediated carotenoid biosynthesis in ripening tomatoes. PlantPhysiol,1975,56:452-453.
    [91]Alba R, Kelmenson P M, et al. The phytochrome gene family in tomato and the rapid differential evolution of mis family in angiosperms.Mol Biol Evol,2000,17:362-373.
    [92]Neuhaus G, Bowler C, Kern R, et al. Calcium/calmodulin-dependent and independent phytochrome signal transduction pathways.Cell,1993,73:937-952.
    [93]许大全.光合作用效率.上海:上海科学技术出版社.2002,32-34.
    [94]孙晓琦.黄瓜Rubisco活化酶基因(RCA)正义表达载体的构建及其遗传转化的研究:[硕士学位论文].山东:山东农业大学,2008.
    [95]Kubien D S, Sage R F. The temperature response of photosynthesis intobacco with reduced amounts of Rubisco. Plant Cell Environ,2008,31:407-418.
    [96]Kumar A, Li C, PortisA R. Arabidopsis thaliana expressing athermostable chimeric Rubiscoactivase exhibits enhanced growth andigher rates of photosynthesis at moderately high temperatures. Photosynth Res,2009,100:143-153.
    [97]姜振升,孙晓琦,艾希珍,等.黄瓜幼苗Rubisco与Rubisco活化酶对低温弱光的响应.应用生态学报,2010,21(8):2045-2050.
    [98]Moore P. Evolution of photosynthetic pathways in flowering plants. Nature,1982,295(5893): 647-648.
    [99]Ku M B, Kano M Y, Matsuoka M. Evolution andexpression of C4 photosynthesis genes. Plant Physiol,1996,111(5):949-957.
    [100]Bar-Even A, Noor E, Lewis N E, et. al. Design and analysis of synthetic carbon fixation. Pathways. ProcNatl Acad Sci USA,2010,107(19):8889-8894.
    [101]Berg I A, Kockelkorn D, Ramos-Vera W H, et al. Autotrophic carbon fixation in archaea. Nat Rev Microbiol,2010,8(2):447-460.
    [102]Ku MSB, Sakae A, Mika N, et al. High level expression of maize phosphoenol pyruvate carboxylase in transgenic rice plants. Nat Biotechnoly,1999,17(1):76-80.
    [103]Tanaka R, Koshino Y, Sawa S, et al. Overexpression of chlorophyllideaoxygenase enlarges the antenna size of photosystem Ⅱ in Arabidopsis thaliana. Plant J,2001,26:365-373.
    [104]Gopal K, Pattanayak, Ajaya K, et al. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochemical and Biophysical Research Communications.2005,326:466-471.
    [105]Foyer D P, Kunert K J. Protection against oxygen radicals:animportant defense mechanism studied in transgenic plants, Plant Cell Environ,1994,17:507-523.
    [106]Kazuo T, Kyoko K, Yasuo N, et al. A recessive arabidopsis mutant that grows photo auto trophically under saltstress shows enhanced active oxygen detoxification. The Plant Cell, 1999,11:1195-1206.
    [107]Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development. Exp Bot,2002,53(377):2107-2113.
    [108]Wettstein D V, Gough S, Kannangara C G. Chlorophyll biosynthesis. Plant Cell,1995,7: 1039-1057
    [109]Hirschberg J. Production of high-value compounds:carotenoids and vitamin E. Plant biotechnology,1999,10:186-191.
    [110]Koornneef M, Leon-Kloosterziel K M, Schwartz S H, et al.The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiology and Biochemistry.1998,36:83-89.
    [111]Andrew L P. Gibberellins in Arabidopsis.Plant Physiology and Biochemistry.1998,36:115-124.
    [112]Runtz M, Romer S, Suire C. Identification of a cDNA for the pastid-located geranylgeranyl pyrophosphate synthase from Capsicum:correlative increase in enzyme activity and transcript level during fruit ripening. Plant Journal,1992,2(1):25-34.
    [113]Okada K, Saito T, Nakagawa T, Kawamukai M, et al. Five geranylgeranyldiphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiology,2000,122(4):1045-1056.
    [114]Ament K, Van Schie C C, Bouwmeester H J, et al.Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta, 2006,224(5):1197-1208.
    [115]李翠萍,夏蓓蓓,翟军鹏,等.番茄GGPS2基因的克隆与表达载体的构建.西南大学学报(自然科学版),2010,32(10):65-68.
    [116]陈吉裕,蒲志群,李翠萍,等.大肠杆菌共表达LeGGPS2, LePSYl和CrtI基因合成番茄红素.生物工程学报,2012,28(7):823-833.
    [117]Ji J, Wang G, Wang J H. Functional analysis of multiple carotenogenic genes from Lycium barbarian and Gentiana lutea L. for their effects on β-carotene production in transgenic tobacco. Biotechnol Lett,2009,31:305-312.
    [118]Anderson J, Wentworth M, Walters P G, et al.Absence of the Lhcbl and Lhcb2 proteins of the light-harvesting complex of photosystem II effects on photosynthesis, ranastacking and fitness. Plant J,2003,35(3):350-361.
    [119]Demmig B, Winter K, Kruger A, et al.Photo inhibition and zeaxanthin formation in intact leaves. Plant Physiol,1987,84:218-224.
    [120]Demmig-Adams B. Carotenoids and photoprotection in plants:A role for the xanthophyl zeaxanthin. Biochim Biophys Acta,1989,1020:1-24.
    [121]Demmig-Adams B, Wimer K, Czyger et al.Photo inhibition and zeaxanthin formation in intact leaves. Plant Physiol,1998,84:218-224.
    [122]Gilmore A M, Yamamoto H Y. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res,1993,35:67-78.
    [123]Niyogi K K, Grossman A R, Bjorkman O. Arabidopsis mutants define a central role for the xanthophylls cycle in the regulation of photosynthetic energy conversion. Plant Cell,1998,10: 1121-1134.
    [124Wang W T, Zhang C G, Wu W, et al. Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiological,2005, 1372-1382.
    [125]Niyogi K K, Bjoklnan O, Grossman A R. The roles of specific xanthophylls in photo protection.Proc Natl Acad Sci USA,1997,94:14162-14167.
    [126]Pogson B J, Niyogi K K, Bjorkman O, et al.Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA,1998,95:13324-13329.
    [127]Stay J E, Montilet J L, Sauvaire Y, et al. The protective function of the xanthophylls cycle in photosynthesis. FEBS lett,1994,353:147-150.
    [128]Grnszecki W I, Strzalka K. Does the xanthophylls cycle take part in the regulation of fluidity of the thylakoid membranes. Biochem Biophysiol Acta,1991,1060:310-314.
    [129]Grusecki W I, Krupa Z. LHCII, the major light-harvesting compoment-protein complex is a zeaxanthin epoxidase. Biochem Biophysiol Acta,1993,1144:145-152.
    [130]Beyer E C, Paul D L, Good enough D A. Connexin family of gap junction proteim. Membrane Biology,1990,116:187-194.
    [131]Deflora S, Bagnasco M, Vainio H. Modulation of genotoxic and related effects by carotenoids and vitamin A in experimental models:mechanistic issues. Mutagenesis,1999,14:153-158.
    [132]Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol,2003,44(5):463472.
    [133]Zhang H, Li J. Yoo J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and Chllsubunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol. Biol,2006,62:325-337.
    [134]Chen M W, Jahn D, Neill G P et al. purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii in deltaaminolevulinic acid formation during chlorophyll biosynthesis. Biol Chem,1990,265:4058-4063.
    [135]Jahn D. Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reduetase during tRNA-dependent synthesis of 5-aminolevulinicacid in Chlamydomonas. FEBS Lett, 1992,314:77-80.
    [136]Beal E S. Green genes gleaned. Trend Plant Sci,2005,10(7):309-312.
    [137]Sangwan I, Obrian M R. Expression of a soybean gene encoding the tetrapyrrole-synthesis enzyme glutamyl-tRNA reductase in symbiotic root nodules. Plant Physiol,1999,119(2): 593-598.
    [138]Kaczor C M, Smith M W, Sangwan I, et al. Plant [delta]-aminolevulinic acid dehydratase (Expression in soybean root nodules and evidence for a bacterial lineage of the Alad gene). Plant Physiol,1994,104(4):1411-1417.
    [139]Witty M, Wallace C, Albrechth L, et al. Structure and expression of chloroplast-localized porphobllinogen deaminase from pea (Pisum sativum L)isolated by redundant polymerase chain reaction. Plant Physio 1,1993,103(1):139-147.
    [140]Kruse E, Mock H P, Grimn B. Coproporphyringen Ⅲ oxidase from barley and tobacco sequence analysis and initial expression studies. Planta,1995,196(4):796-803.
    [141]Lermontova I, Kruse E, Mock H P, et al. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc.Natl.Acad.Sci.USA, 1997,94(16):8895-8900.
    [142]Papenbrock J, Grafe S, Kruse, et al. Mg-chelatase of tobacco:identification of a Chi D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co expression of recombinant CHL D, CHL H and CHL I. Plant J,1997,12(5):981-990.
    [143]Wuz M, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide in chlorophyll biosynthesis. Plant Physiol,2007,145(1):29-40.
    [144]Sawers R J,Viney J, Fanner P R, et al. Themaize oil yellowl(Oyl)gene encodes the I subunit of magnesium chelatase. Plant Mol.Biol,2006,60(1):95-106.
    [145]Riidiger W. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Research, 2002,74:187-193.
    [146]Klein R R, Gamble P E, Mullet J E. Light-dependent accumulation of radio labeled Plastid-encoded chlorophyll a apoproteins requires chlorophyll a. Plant Physiol,1988,88: 1246-1256.
    [147]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant Phenotype in a series of chlorophyll-defieient wheat mutants.depends on light intensity and the severity of the block in Chlorophyll synthesis. Plant Physiol,1996,112:821-832.
    [148]Oster U, Tanka R, Tanka A, et al. Clone and function expression of the gene encoding the key enzyme for chlorophyllb biosynthesis(CAO)from Arabidopsis thaliana. Plant J,2000,21(3): 305-310.
    [149]Lee S, Kim J H, Yoo E S, et al. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol.Biol,2005,57(6):805-818.
    [150]Xu H, Vavolin D, Vermaas W. Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proc. Nati. Acad. Sci. USA,2001,98: 14168-14173.
    [151]Hoober J, Eggink I.A potential role of chlorophylls b and c in assembly of light harvesting complexes. FEBS Lett,2001,489:1-3.
    [152]Masuda T, Fusada N, Oosaw A N, et al. Functional analysis of isoforms of NADPH: protochlorophyllide oxido reductase(POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol,2003,44(10):963-974.
    [153]Reinbothe C, Barisch S, Eggink II, et al. Aral efor chlorophyllide a oxygenase in the regulated import and stabilization of light harvesting chlorophyll a/b proteins. Proc. Natl. Acad. Sci. USA,2006,103(12):4777-4782.
    [154]Ulrich E, Bernhard G, Stefan H. Recent advances in chlrophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology,2004,56:1-14.
    [155]吴自明,张欣,万建民.叶绿素生物合成的分子调控.植物生理学通报,2008,44(6):1064-1070.
    [156]Schlappi M, Hohn Y. Competence of immature maize embryos for Agrobacterium tumefaciens transformation. Plant Cell,1992,4:7-16
    [157]Sangwan R S, Bourgeois Y, Dubois F, et al. In vitro regeneration of Arabidopsis thaliana from cultured zygotic embryos and analysis of regenerates. Journal of Plant Physiology,1992,140: 588-595.
    [158]Delbreil B, Guerche P, Jullien M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-time embryogenic callus and regeneration of transgenic plants. Plant Cell Rep,1993,12:129-132.
    [159]Meyer W, Mitchell T G. Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences:strain variation in Cryptococcus neoformans. Electrophoresis,1995,16:1648-1656.
    [160]Mayerhofer R, Koncz-Kalman Z, Nawrath C, et al. T-DNA integration:a mode of illegitimate recombination in plants. Embo J,1991,10(3):697-704.
    [161]Gheysen G, Villarroel R, Van Montage M. Illegitimate recombination in plants:a model for T-DNA integration. Genes Dev,1991,5:287-297
    [162]De Buck S, Jacobs A, Van Montagu M, et al.The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J,1999,20(3):295-304
    [163]Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and developement. Exp Bot,2002,531(377):2107-2113.
    [164]Oster U, RudigerW. The G4 gene of Arabidopsis thaliana encode a chlorophyll synthase of etiolated plants. Bot Acta,1997,110:420-423.
    [165]Fray R G, Wallace A, Fraser P D, et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolisms from the gibberellin pathway. Plant J,1995,8:693-701.
    [166]Goslings D, Meskauskiene R, Kim C, et al. Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMAI), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark-and light-grown Arabidopsis plants. Plant J.2004,40(6):957-967.
    [167]Kasuga M, Miura S, Shinozaki K et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A Promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer.2004, Plant Cell Physiology,2004,45(3):346-350.
    [168]Bailey S, Walters R G, Jansson S, et al. Acclimation of Arabidopsis thaliana to the light environment:the existence of separate low light and high light responses, planta.2001,213(5): 794-801.
    [169]Polle J E, Benemann J R, Tanaka A, et al. Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii dependence on carbon source, planta.2000,211(3):335-344.
    [170]Tanaka R, Yeshida K, Nakayashiki T, et al. Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiology, 1996,110:1223-1230.
    [171]Gopal K, Pattanayak, Ajaya K, et al. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochemical and Biophysical Research Communications,2005,326:466-471.
    [172]Hotta Y, Tanaka T, Takaoka H, et al. New physiological effects of 5-aminolevulinic acid in plants:The increase of photosynthesis, chlorophyll content, and plant growth. Bioscience, Biotechnology, and Biochemistry,1997,61:2025-2028.
    [173]孙永平,汪良驹.ALA处理对遮荫下西瓜幼苗叶绿素荧光参数的影响.园艺学报,2007,34(4):901-908.
    [174]汪良驹,姜卫兵,黄保健.5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应.园艺学报,2004,31(3):321-326.
    [175]Meskauskiene R, Apel K, Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis,with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett.2002,532(1-2):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700