用户名: 密码: 验证码:
静脉注射脐带间充质干细胞对哈萨克羔羊生长发育及血清生化指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验一通过多重酶混合消化法和胰酶消化筛选法体外分离、纯化及培养绵羊脐带间充质干细胞(UMSCs),并观察其生物学特性,以此建立绵羊脐带间充质干细胞的分离培养流程。试验采集健康的哈萨克羔羊脐带组织,剔除动静脉后剪碎,添加复合消化酶消化24h得到细胞复合体,胰酶消化法筛选除杂并观察细胞形态,绘制第1、5及10代细胞生长曲线,化学染色(茜素红染色)检测其体外诱导成骨分化能力,油红O染色法检测其体外诱导成脂能力。结果表明,获得的细胞经传代培养达10代后无明显的形态改变,增殖能力保持与1-5代一致。体外诱导成骨细胞21d,细胞培养板中呈现骨骼细胞钙化结节,经茜素红染色呈红色结节,证明其具有被诱导分化为骨细胞的能力;体外诱导成脂细胞14d,细胞培养板中呈现脂肪滴,证明其具有被诱导分化为脂肪细胞的能力。碱性磷酸酶染色阳性说明细胞高表达碱性磷酸酶,证明其处于未分化状态。
     试验二选抒出生日期接近、体重差异不显著的1月龄健康哈萨克羔羊60只,按每组30只(公羔15只,母羔15只)分为2组,各组间体重、体尺差异均不显著。随机选择1组为试验组,试验羊由颈静脉注射由健康哈萨克母羊脐带中分离培养的异源性脐带间充质干细胞,注射量为试验羊每公斤注射5×105个干细胞;对照组注射等量生理盐水。试验组和对照组羔羊日粮配方、营养水平和管理条件均相同。试验自1月龄开始注射,到7月龄结束。每次注射前空腹测体重、体高、体长、胸围、管围和腰角宽,采血后3500转离心15min收集血清并送检,检测项目为IGF-1、 TGF-β1、bFGF、BMP-7、TGF-α、GH、Glu、TP、Alb、TC、TG、AST、ALP、T-AOC、SOD和MDA。
     结果表明:结果表明:试验获得绵羊脐带间充质干细胞能在体外培养、增殖并且具有和骨髓间充质干细胞类似的分化能力特性。注射脐带间充质干细胞后,试验组在3月龄、4月龄和5月龄时平均体重显著的高于对照组(P<0.05);6月龄和7月龄时,平均体重极显著的高于对照组(P<0.01);在试验全期内,试验组与对照组体高、体长、胸围、管围和腰角宽均呈上升趋势,且试验组体高、体长、胸围、管围和腰角宽从2月龄开始略高于对照组,但差异均不显著(P>0.05)。因此可以说明:每月每公斤绵羊注射5×105个脐带源间充质干细胞能够极显著的增加哈萨克羔羊生长发育速度,有效的增加其生产性能,且雄性羔羊体增重高于雌性羔羊。注射脐带间充质干细胞后,试验组和对照组血清中IGF-1水平与同时期的平均月增重曲线有较强的吻合性,且试验组血清中IGF-1水平显著高于对照组(P<0.05)。试验组与对照组血清中GH水平差异不显著(P>0.05)。在整个试验期中试验组血清中bFGF均高于对照组,且在2、4和7月龄显著高于对照组(P<0.05)。试验组和对照组血清中BMP-7水平在平均月增重高峰期均呈下降趋势,且试验组血清中BMP-7水平显著低于对照组(P<0.05)。试验组和对照组血清中组间GH水平差异不显著(P>0.05),试验组和对照组在不同月龄间血清中GH水平组内差异也不显著(P>0.05)。在整个试验期中,注射脐带间充质干细胞的试验组血清中Glu水平略高于对照组,但差异不显著(P>0.05);但试验组能够显著增加试验组血清中TP水平(P<0.05),且在且在3月龄和7月龄时极显著(P<0.01)高于对照组;试验组血清中Alb、TC和TG水平均高于对照组,但差异均不显著(P>0.05);试验组血清中ALP水平在整个试验期均高于对照组,且在4月龄和6月龄显著显著高于对照组(P<0.05);试验组血清中ALT和T-AOC水平均高于对照组,但各个月龄期间差异不显著,试验组和对照组组间差异也不显著(P>0.05);试验组血清中SOD水平均高于对照组,说明注射干细胞对绵羊血清中SOD水平有增加的趋势,且在2月龄和4月龄时显著高于对照组(P<0.05)。试验还发现试验组绵羊血清中MDA水平低于对照组,但试验组和对照组组间差异不显著(P>0.05)。
     试验证明:每月每公斤绵羊注射5×105个脐带源间充质干细胞能够极显著的增加哈萨克羔羊生长发育速度,有效的增加其生产性能和抗逆性。同时试验结果表明:注射脐带脐带间充质干细胞后,在干细胞归巢调控中,直接或间接的影响了羔羊血清中IGF-1、TGF-β1、bFGF、BMP-7、TGF-αα和GH水平,而后通过内分泌调节作用,改变了血清中Glu、TP、Alb、TC、TG、AST、 ALP、T-AOC、SOD和MDA水平,进而增加试验羊生产性能。
The process of isloation and cultivation of the sheep's umbilical mesenchymal stem cells was established through observed biological characteristics of isolated, purificated and cultivated sheep umbilical mesenchymal stem cells (MSCs) in vitro by the method of Mix-enzyme co-digestion and Pancreatic enzyme digestion.Cells were gained from fresh sheep umbilical organization without arteriovenous which was sheared and added mix-enzyme to digesting for24h. From observing the cells morphology after screening to wipe impurity off by Trypsin digestion, cell growth curve of the first, the fifth and the tenth generations was drawed. Osteogenic differentiation capacity induced was detected by histochemical staining(Alizarin Bordeaux staining) in vitro and adipogenic differentiation capacity induced is detected by Oil Red O staining method in vitro. The result shows that there is not obvious change in morphology and proliferation capacity after10generations continuous cultured. Osteogenic cells induced in vitro for21d was proved that there has been induced osteogenic differentiation capacity by von Kossa stained calcification nodules of skeleton cells in cell culture plate, in the meanwhile, adipogenic cells induced in vitro for14d was proved induced adipogenic differentiation capacity by fat droplet in cell culture plate. It is confirmed by experiment that there are differentiation capacity of sheep umbilical mesenchymal stem cells by cultured and expanded in vitro which is similar to BMSCs.
     Second experiment:Kazakhstan sixty healthy sheep were selected with conditions of be born for about one month and similar weight, then they were divided into two groups(each group thirty sheep, included fifteen male sheep and fifteen female sheep). The difference between two groups are not significant in weight and body measurement. Sheep of experimental group based on randomized approach were injected in jugular vein with isolated and cultured heterogenous umbilical mesenchymal stem cells (5×105stem cells/per kg) from healthy Kazakhstan female sheep umbilical cord.Sheep of control group were injected equivalent physiological saline solution. It was the same of sheep grain ration recipe, nutrition and management between experimental group and control group in testing duration from January to July. Everytime before injected, sheep without eating were tested some indexes such as weight, height, length, chest circumference, circumference of cannon bone and hip width. Serum was collected gather to assay IGF-1, TGF-β1, bFGF, BMP-7, TGF-a, GH, Glu, TP, Alb, TC, TG, LDH, ALP, AST, T-AOC, SOD and MDA levels.
     Results of second experiment:average weight of experimental group rather significant exceeded control group (P<0.05) in three months, four months and five months meanwhile difference was very significant (P<0.01) in sis months and seven months.In whole duration of test, there is rising trend of both experimental group and control group in height, length, chest circumference, circumference of cannon bone and hip width.These indexes of experimental group were mild higher than control group from the second month, but the difference was not significant (P>0.05). It was tested that growing and developing rate of Kazakhstan sheep were very significant increased and production performance was effective increased and stress effect was reduced by injecting5×105umbilical original mesenchymal stem cells per months per kilogram.
     Results of second experiment:average weight of experimental group rather significant exceeded control group(P<0.05) in three months, four months and five months. Difference of exceeded degree was very significant P<0.01)in six months and seven months.In whole duration of test, there is rising trend of both experimental group and control group in height, length, chest circumference, circumference of cannon bone and hip width.These indexes of experimental group were mild higher than control group from the second month, but the difference was not significant (P>0.05). It was tested that growing and developing rate of Kazakhstan sheep were very significant increased and production performance was effective increased and stress effect was reduced by injecting5×105umbilical original mesenchymal stem cells per months per kilogram.
     There was a strong anastomosis between serous IGF-1level and curve of average month growth rate of both experimenttal group and control group in corresponding period with positive correlation in the two groups after injected umbilical mesenchymal stem cells. Serous IGF-1level of experimental group was showed significant higher than control group (P<0.05).Serous GH level and IGF-1level had negative correlation in experimental group compare to control group in corresponding period, but difference of serous GH levels in two groups was not significant (P>0.05).In whole testing period, serous bFGF levels in experimental group were all higher than control group, especially in difference was significantin two months, four months and seven months (P<0.05). There is positive correlation between serous BFGF of experimental group and average increasing weight per month. It is showed declining trend of serous bFGF in every growing and developing fastigium, yet it is rising trend in growing and developing lag phase. There is declining trend of serous BMP-7level in experimental group and control group in fastigium of average increasing weight per month, and significant difference of serous BMP-7level in experimental group was lower than control group (P<0.05). The difference of serous GH level between the two groups was not significant (P>0.05) and so was within each group in different months (P>0.05).It is tested that the serous IGF-1、TGF-β1、bFGF、 BMP-7、TGF-α and GH levels in sheep were direct or indirect effected by nest regulation of stem cells after injected umbilical mesenchymal stem cells.
     In whole duration of test, serous Glu level in experimental group which had been injected umbilical mesenchymal stem cells was higher than control group, but difference is not significant (P>0.05).Amount of serous TP had increased significantly (P<0.05) in experimental group, and the increasing level was very significant (P<0.01) higher than control group in three months and seven months. Serous Alb、TC and TG level of experimental group were higher than control group, but difference was not significant (P>0.05). Serous ALP level of experimental group is higher than control group in the whole testing time, difference was very significant (P>0.05) in four months and six months. Serous ALT and T-AOC levels in experimental group were all higher than control group, but difference was not significant between two groups, either was difference within each group in every months term (P>0.05).The higher level of serous SOD in experimental group indicated that serous SOD level had been brought rising trend by injecting stem cells. Trend of quantity was significant in two months and four months (P<0.05).There is a lower quantity of serous MDA in experimental group, but the difference was not significant between two groups (P>0.05)
     Experiment results indicated:synthesize and metabolic energy of experimental sheep has been increased by growth factor which is from secretion itself and paracrine of stem cells nest regulation after transplanting umbilical mesenchymal stem cells.So was growth, development and immunity of tested sheep.
引文
[1]蔡子微.干细胞与生物自保护[J].牡丹江医学院学报,2002,23(6):5-8.
    [2]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells [J]. Exp Biol Med (Maywoo d),2001,226(6):507-20.
    [3]屈长青.猪脂肪间充质干细胞的分离培养及体外诱导分化研究[D].西北农林科技大学博士论文,2006.
    [4]Sohn E. Therapy by the pound. Human fat is a source of coveted stem cells[J]. US News World Rep,2001,130(16):54.
    [5]Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A,2000,97(25):13625-13630.
    [6]Deutsch G, Jung J, Zheng M, et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm[J]. Development,2001,128(6):871-881.
    [7]Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty:feasibility and potential clinical advantages [J]. Thorac Cardiovasc Surg,2000,120(5):999-1005.
    [8]涂江义,综述,肖洪文.骨髓间充质干细胞的研究进展[J].泸州医学院学报.2009,32(4):435-438.
    [9]周金玉.大鼠脐带间质干细胞的培养与鉴定[D].广州医学院硕士论文.2011.
    [10]Kita K, Gauglitz G G, Phan T T, Herndon D N, Jeschke M G. Isolation and characteri-zation of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane[J]. Stem Cells.2009,Dev,19:491-502.
    [11]Williams JT, Southerland SS, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes[J]. Am Surg, 1999,65(1):22-26.
    [12]Asakura A, Rudnicki MA. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation[J]. Exp Hematol,2002,30(11):1339-45.
    [13]Wada MR, Inagawa-Ogashiwa M, Shimizu S, et al. Generation of different fates from multipotent muscle stem cells[J].2002,129(12):2987-95.
    [14]史春梦,程天民.大鼠真皮多能间充质干细胞的分离培养[J].第三军医大学学报,2001,,23(9):1068-1070.
    [15]杨立业,刘相名,惠国桢,等.皮肤间充质干细胞的体外培养和分化[J].生物医学工程学杂志,2005,22(3):514-517.
    [16]Gronthos S, Zannettino AC, Graves SE, et al. Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bonecells[J]. J Bone Miner Res,1999,14(1):47-56.
    [17]Sottile V. Halleux C, Bassilana F, et al. Stem cell characteristics of human trabecular bone-derived cells[J]. Bone,2002,30(5):699-704.
    [18]呼莹,王秋英,马丽.胰腺源间充质干细胞的分离与鉴定[J].中国医学科学院学报,2002,,24(1):45-49.
    [19]郭虹,刘杰文,杨少光.具有间充质干细胞特征的CD105+细胞在胎儿多种组织中器官的分布[J].细胞生物学杂志,2004,.26:404-408.
    [20]郑春梅,孙昭,曹莹.胎儿肺脏来源间充质干细胞的鉴定与损伤修复的实验研究[J].中国生物工程杂志,2004,24(3):48-53.
    [21]Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies[J]. Bone, 1992,13(1):69-80.
    [22]Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J]. J Cell Biochem,1997.64(2):278-94.
    [23]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem ells[J]. Science,1999,284(5411):143-147.
    [24]Tagami M,Ichinose S,Yamagala K,et al.Genetic and ultrastructral demonstration of strong reversibility in human mesenchymal stem cell[J].Cell Tissue Res,2003,312(1):31-40
    [25]叶静等.骨髓间充质干细胞的研究现状[J].广州医学院学报,2006,34(1):6971.
    [26]Noth U,Osyczka AM,TuIi R, et al,Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells[J].J Orthop Res,2002,20(5):1060-1069.
    [27]Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood[J]. Blood,2004,103(5):1669-1675.
    [28]郭茂娟,范英吕,徐秀梅等.5-氮胞首诱导骨髓间充质干细胞向心肌细胞的分化[J].中国织织工程研究与临床康复,2007,11(46):9238-9241.
    [29]高飞,衰正伟.骨髓间充质干细胞的体外培养、诱导分化及在神经系统疾病中的应用[J].国外医学儿科分册,2005,32(3):191-193.
    [30]Wall ME, Bernacki SH, Loboa EG.Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells [J].Tissue Eng,2007,13(6):1291-1298.
    [31]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem ells[J]. Science,1999,284(5411):143-7.
    [32]Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using a recomb-inant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model [J]. Calcif Tissue Int,1998,63(4):357-360.
    [33]Marshak DR, Gardner RL, Gottlieb D. Stem cell Biology[M],2001.349-373.
    [34]Ogawa R, Mizuno H, Hyakusoku H, et al. Chondrogenic and osteogenic different- tiation of adipose-derived stem cells isolated from GFP transgenic mice[J]. Nippon Med Sch,2004,71 (4):240-245.
    [35]Suzawa M, Takada I, Yanagisawa J, et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade[J]. Nat Cell Biol, 2003,5(3):224-230.
    [36]Von Heimburg D, Zachariah S, Low A, et al. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells[J]. Plast Reconstr Surg,2001,108(2):411-20;discussion 421-425.
    [37]Nakamura N, Fujimoto T. Adipose differentiation-related protein has two independent domains for targeting to lipid droplets[J]. Biochem Biophys Res Commun, 2003,306(2):333-338.
    [38]Gussoni E, Bennett RR, Muskiewicz KR, et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation [J]. Clin Invest, 2002,110(6):807-814.
    [39]Wakitani S, Saito T. Caplan AI. Myogenic cells derived from rat bone marrow mesen-chymal stem cells exposed to 5-azacytidine[J].Muscle Nerve,1995,18(12): 1417-1426.
    [39]黄圣运,王佐林.肌源性干细胞及其诱导成骨的研究进展[J].口腔颌面外科杂志,2010,08(28):175-179.
    [40]Koc, O. N., J. Day, et al.Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH) [J].Bone Marrow Transplant,2002,30(4):215-222.
    [41]Tse, W. T., J. D. Pendleton, et al.Suppression of allogeneic T-cell proliferation by hu-man marrow stromal cells:implications in transplantation [J].Transplantation, 2003,75(3):389-397.
    [42]Zhang, W, W. Ge. et al.Effects of mesenchymal stem cells on differentiation, matu- ration, and function of human monocyte-derived dendritic cells[J]. Stem Cells,2004,Dev 13(3):263-271.
    [43]Sotiropoulou, P. A., S. A. Perez, et al.Interactions between human mesenchymal stem cells and natural killer cells[J]. Stem Cells,2006,24(1):74-85.
    [44]Niemeyer, P., A. Seckinger, et al.Allogenic transplantation of human mesenchymal stem cells for tissue engineering purposes:an in vitro study[J].2004,33(12):1346-1353.
    [45]Wexler S A, Donaldson C, Denning-Kendall P, et al. Adult bone marrow is a rich sour-ce of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not[J]. Br J Haematol,2003,121(2):368-374.
    [46]Lee MW, Choi J, Yang MS, et al. Mesenchymal stem cells from cryopreserved human umbilical cord blood[J]. Biochem Biophys Res Commun,2004,320 (1):273-278.
    [47]李晓春,陈鹏.间充质干细胞的基础和临床应用研究进展[J].中国老年学杂志.2007,12(10):22-24.
    [48]王晔玲.老龄兔骨髓间充质干细胞体外分离、培养及移植治疗心肌梗死的研究[D].吉林大学博士论文.2007.
    [49]Conconi MT, Burra P, Di Liddo R et al. CD105+ cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential[J].Int J Mol Med,2006;18:1089-1096.
    [50]Cao, F. J.; Feng, S. Q. Human umbilical cord mesenchymal stem cells and the treat-ment of spinal cord injury [J].Chin Med J (Engl),2009,122(2):225-231.
    [51]Wu KH, Zhou B, Lu SH et al. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells[J]. Cell Biochem,2007,100:608-616.
    [52]Schmidt D, Mol A, Neuenschwander S et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells[J]. Eur J Cardiothorac Surg,2005;27:795-800.
    [53]Rachakatla RS, Marini F, Weiss ML et al. Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors [J]. Cancer Gene Ther,2007;11:130-136.
    [54]唐秋灵,林广裕,林丽敏,黄天华,谢庆东,马廉.人脐带间充质干细胞移植于不育小鼠睾丸的研究[J].实用儿科临床杂志,2009,24(23):1796-1805.
    [55]Lund, RD; Wang, S; Lu, B; Girman, S; Holmes, T; Sauve, Y; Messina, D J et.al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells,2007,25(3):602-611.
    [56]Liu, M; Han, Z C; Mesenchymal stem cells:biology and clinical potential in type 1 diabetes therapy[J]. Cell Mol Med,2008,12(4):1155-1168.
    [57]Suva D, Garavaglia G, Menetrey J et al. Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells[J]. Cell Physiol,2004, 198:110-118.
    [58]Hamada H, Kobune M, Nakamura K et al. Mesenchymal stem cells (MSC) as herape-utic cytoreagents for gene therapy[J]. Cancer Sci.2005;96:149-156.
    [58]陈建梅,姚荣伟,李勇,张馥敏.骨髓间充质干细胞的分离、培养及生物学特性[J].江苏医药,2010,10(15):121-125
    [59]王芳.奶山羊骨髓间充质干细胞的分离培养及向雄性生殖细胞诱导分化[D].西北农林科技大学硕士论文,2011.
    [60]马廉,崔冰琳,冯学永,等.人脐带间充质干细胞的生物学特性及向神经样细胞分化的研究[J].中华儿科杂志,2006,44(7):513-517.
    [61]Bruder SP, Jaisawal N, Haynesworth SE. GrowthKinetics, self-renewal, and the osteogential of purified human mesenchymal stem cells during extensive subculativ-tion and following cryopreservation[J]. Cell Biochem,1997,64(2):278-294.
    [62]胡火珍.干细胞胞生物学[M].四川大学出版社:2005:5,2-3.
    [63]贾帅兵.新疆暖季天然草场放牧羔羊生长发育的研究[D].新疆农业大学硕士论文,2009.
    [64]Kinnaird T, Stabile E, Burnett M S, et a.l M arrow derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arter iogenesis through paracrine mechanisms[J]. Circ Res,2004,94:678-685.
    [65]Lee RH, Kmi B, Choi I, et a.l Cha racte rization and expression analys is of mesench-ymal stemcells from hum an bone marrow and adipose tissue. Cell Physiol Biochem, 2004,14:311-324.
    [66]杨媛媛,周诺.骨髓间充质干细胞作为组织工程种子细胞的研究进展[J].广西医学,2010,32(5):586-589.
    [67]邢海权,闫梦菲.胰岛素样生长因子IGF-1的研究进展[J].畜禽业,2011,08(15):124-126.
    [68]姜丽红.胰岛素样生长因子和胰岛素样生长因子结合蛋白在人类胎儿生长中的作用[J].国外医学·内分泌学分册,2002,22(1):48-51.
    [69]Andreassen TT, Jorgensen PH, Flyvbjerg A,et al.Growth hormone stimulates bone for-mation and strength of cortical bone in aged rats[J].Bone Miner Res,1995,10:1057-1067.
    [70]OxlundH,Ejersted C,AndreassenT,et al.Growth hormone in-creases the collagen depo-sition rate of cancellous bone in old rats[J].Bone(suppl 3),1996,19:157s.
    [71]Park H, Li Zhao xia, Ouyang Xue xian, et al. A distinctlineage of CD4 T cells regula-tes tissue inflammation byproducing interleukin 17[J].Nat Immunol,2005,6(11):1133-1141.
    [72]White TP,Esser KA.Satellite cell and growth factor involrement in skeletal muscle growth[J]. Med Sci Sports Exerc,1989,21:158-159.
    [73]马焰.碱性成纤维生长因子和神经生长因子对骨骼肌成肌细胞增殖作用的研究[J].解放军医学杂志,1996,24(3):211-214.
    [74]王强,张斌,胡维昱,张顺,胡骁.TGF-α和TGF-β1在胰腺癌组织中的表达及临床意义[J].中国现代普通外科进展,2005,5,13(5):360-362.
    [75]Widemann B, Schmidaier G, Brenner N, et al. Quantification, localization, and expression of IGF-1 and TGF-betal during growth factor-stimulated fracture healing. Calcif Tissue Int,2004,74(4):388-397.
    [76]YuY, Yang JL, Chapman-Sheath PJ. BMPS and their signal transducing mediators, Smadsm in rat fracture healing[J]. Biomed Mater Res,2002,560(3):392-397.
    [77]卢卫忠,唐康来,朱庆等.不同剂量转化生长因子-p对兔尺骨骨折愈合作用的研究[J].第三军医大学学报,2003,25(11):980-983.
    [78]Murphy LO, Cluck MW, Lavas S, et al. Pancreatic cancer cells require an EGF receptor mediated autocrine pathway for proliferation in serum free conditions[J]. Br J Cancer.2001,87(7):926-935.
    [79]Haaijman A, D'Souza RN, Bronckers AL, et al. OP-1 (BMP-7) affects mRNA expression of type Ⅰ, Ⅱ, Ⅹ collagen, and matrix Gla protein in ossifying long bones in vitro [J]. Bone Miner Res,1997;12(11):1815-1823.
    [80]艾晓杰,吴晓林,朱勇旗,等.初胎奶牛围产期某些血液生化成分的特点[J].中国奶牛,2004,12(1):23-25.
    [81]陈冬梅.山药对肉仔鸡生产性能、免疫功能及血清生化指标的影响研究[D].石河子大学硕士学位论文,2006.
    [82]邓宇.不同属种肉类对大鼠血清生化指标与抗氧化能力的影响[J].畜牧与兽医,2011,43(1):9-11.
    [83]朱年华,肖永祚.生长猪血液生化指标与生产性能及肉质的关系[J].江西畜牧兽医杂志,1997,10(1):13-17.
    [84]Yablanski T. Correlation between the activity of the plasma enzymes GOT, GPT, AKP and some performance qualities in pigs [J]. Col Sci Works,1986,30:599-616.
    [85]Holdom M D, Lechenne B, Hay R J, et al. Production and Charac-terization of Recombinant Aspergillus fumigatus Cu, Zn Superoxide Dismutase and Its Recogni-tion by Immune Human Sera[J]. Journal of Clinical icrobiology,2000,38(2):558-562.
    [86]邓宇,高峰,周光宏.不同属种肉类对大鼠血清生化指标与抗氧化能力的影响[J].畜牧与兽医,2011,01(10):9-12.
    [87]张常明,高萍,李莉,朱晓彤,束刚,李丽华,周斌.江青艳小肽复合制剂对断奶仔猪生产性能及血液相关指标的影响[J].华南农业大学学报,2007,07(15):72-75.
    [88]宁红梅.人骨髓间充质干细胞生物学特性的研究及体外对异基因T淋巴细胞表型的影响[D].中国人民解放军军事科学院硕士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700