用户名: 密码: 验证码:
ZnO/Cu复合材料的制备工艺与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前颗粒增强铜基复合材料的研究中增强相主要集中在两类:硬质合金(钢颗粒、钨颗粒等)和金属陶瓷(Al2O3、SiC、TiN、AlN、TiB2、ZrO2、WC等),其中Al2O3和SiC研究的较多。ZnO是一种宽带隙Ⅱ-Ⅵ族化合物半导体材料,具有优良的光学和电学性质,并且价格便宜、无毒。现在已经有其增强银的复合材料的报道,但国内外对ZnO增强铜基的复合材料的研究较少,本研究对ZnO/Cu复合材料的制备工艺与性能进行了初步探索。考察它们对铜的增强效果,以期获得具有良好的导电性与强度统一的新型的铜基复合材料。
     本文采用粉末冶金法制备了含不同质量ZnO的铜基复合材料,在复合材料的制备与工艺优化过程中,采用四因素三水平正交回归实验设计;对并制得的含不同质量ZnO的ZnO/Cu复合材料进行了显微组织观察与分析、相结构鉴定以及基本的物理和力学性能检测,包括对密度、硬度和电导率、压缩、弯曲和磨损以及腐蚀等进行了考察。结果表明:
     1. X射线衍射分析表明,本实验所制备的ZnO/Cu复合材料中没有其它物相生成。
     2.通过扫描电镜对试样进行形貌观察和微区成分分析,结果表明在ZnO/Cu复合材料中, Cu和ZnO两相存在明显的界面,产生相互扩散,两相结合良好,且Cu的扩散能力大于ZnO。
     3.与相同工艺制备的紫铜相比,复合材料的硬度有了很大程度的提高,而电导率降低不明显。随着ZnO质量分数的增加,材料的密度和电导率都呈下降趋势,而硬度先增大后减小。当ZnO质量百分含量为10%时,复合材料具有最好的综合性能,密度达98%以上、硬度、电导率分别HV98和41.5MS/m。
     4. ZnO/Cu复合材料的耐磨性优于同条件下制备的纯铜样品。在ZnO含量较少时ZnO/Cu复合材料的磨损机制为粘着磨损;随ZnO含量的增多,复合材料的磨损机制转变为粘着磨损和疲劳剥层磨损相结合,随ZnO含量的增多还会出现了磨料磨损。
Current researches on the reinforcements used in particulate-reinforced composites mainly focus on two categories, hard alloys and cermets. The former includes particulates of steel and tungsten etc, while the latter incudes Al2O3, SiC, TiN, AlN, TiB2, ZrO2 and WC etc. Among them, ZnO is a kind ofⅡ-Ⅵcompound semiconductor with a broadband gap. It possesses excellent optical and electrical properties in addition to its low cost and innocuity. ZnO reinforced silver-matrix composites have been reported by previous researchers. While studies on the ZnO reinforced Cu-matrix composites have not been found at literatures as yet. The present study took a preliminary exploration on the fabrication and properties of a ZnO / Cu composite with the aim to find a novel Cu-matrix composite with a combination of high electrical conductivity and high strength.
     In the present study, a powder metallurgy technique is used to fabricate the composite with various mass fraction of ZnO. Four factors and three levels orthogonal experiment is adopted in the optimization of fabrication technics. The microstructures, phase structures as well as the physical and mechanical properties of the resultant composite have been investigated, including the researches on density, hardness, electrical conductivity, and the properties of compression, bending, wear and corrosion. It is found as follows:
     1. X-ray diffraction analysis indicates that there is no other phases in the resultant composite in addition to Cu and ZnO.
     2. Observation of SEM and micro-area chemical analysis show a distict interface between Cu and ZnO. There exists diffusion between the two phases, and the diffusivity of Cu is greater than that of ZnO.
     3. Compared with the pure Cu fabricated by using the same method, the hardness of the composite has been marked elevated, while decrease of the electrical conductivity is indistinguishable. With increasing the mass fraction of ZnO, the density and electrical conductivity of the composites decrease, while the hardness shows a nonmonotonous change, i.e. hardness firtly increases until reaches a maximum then decreases monotonously. The composite with a 10% mass fraction of ZnO possesses the best general properties, density is higher than 98%, and the hardness and electrical conductivity are HV98 and 41.5MS/m, respectively.
     4. The wear resistance of the composite is superior to that of the pure Cu fabricated by using the same method. When the content of ZnO is relatively low, an adhesive wear plays a dominant role. With increasing the content of ZnO, the wear mechanism changes into the combination of adhesive wear and fatigue wear. On continued increasing the content of ZnO, an abrasive wear will also appear.
引文
[1]闻获江.复合材料原理[M].武汉:武汉工业大学出版社,1998.1
    [2]张淑英,孟繁琴,陈玉勇,等.颗粒增强金属基复合材料的研究进展[J].材料导报,1996,10(2):66~71
    [3]植树益次,牧广.高性能复合材料最新技术[M].贾丽霞,白淳岳(译).中国建筑工业出版社,1989. 1~2,151~153
    [4]龙小兵,龚晓叁,何建军,等.金属基纳米复合材料研究进展[J].湖南有色金属,2002,18(5):26~29
    [5]吴申庆.金属基复合材料制备技术的应用及其发展[J].机械工人(热加工),2000,(11):29~30
    [6]阚瑞清,高英讳,阚玉杰.新型铜基合金电触头的研制[ J].机床电器,2001,(6):4~64
    [7]王宝珠,王胜恩,白惠珍,等.新型银金属氧化物复合材料成分设计与制粉[J].河北工业大学学报,2001,30 (3):77~81
    [8]李英民,薛纪文,王俊勃,等.AgSnO2电触头材料的研究进展[J].电工材料,2003,2:20~27
    [9] Behrens V,Honig T,Kraus A. Silver/ metal oxide contact materials as a substitute for silver/ cadmium oxide on the background of upcoming legal restrictions in Europe[A].Proceedings 21st International Conference on Electrical Contacts [C].Fehraltorf Switzerland:SEV Schweiz Elekt rotechnischer Verein, 2002,457~461
    [10]郑翼,高晶,李松林,等.新型银氧化锡电接触材料[J].稀有金属材料与程,2005,34(3) :483~485
    [11]谢健全,彭昶,黄和平.Ag2ZnO复合材料制备工艺对其组织和性能的影响[J].粉末冶金工业, 1996,6(5) :34~38
    [12] Kang Y C,Park S B.Preparation of zinc oxide-dispersed silver particles by spray pyrolysis of colloidal solution[J]. Materials Letters,1999,40: 129~133
    [13] ZHOU Ji-kou,MA Fu-kang,SAN Xiu-xia,et al. Processing properties and microstructure of Ag2ZnO contact composites [J]. Trans Nonferrous Met Soc China,1998,8(3): 188~192
    [14]张万胜.电复合节银与行业发展[J].电工材料,1995,3:8~11
    [15]史久熙.电复合材料的技术发展和节银回顾[J].粉末冶金工业,1999,9(3):37~40
    [16] Gavriliu S,Cristescu E,Soptea E,et al. Evolution of the researches concerning the optimization of thesilver-matrix sintered contact materials [J]. I. C. P. E,1997,45(12): 1~6.
    [17]刘平,田保红,赵冬梅.铜合金功能材料[M].北京:科学出版社,2004.4
    [18] Correia J B,Davies H A,Sellars C M.Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys[J]. Acta materialia,1997,45(1): 177~190
    [19] Morris M A,Morris D G. Microstructures and mechanical properties of rapidlysolidified Cu-Cr alloy[J]. Acta Metallurgica,1987,35(10): 2511~2522
    [20]曾汉民.高技术新材料要览[M].北京:中国科学出版社,1993.110
    [21] Allain J Y,Monerie M,Poignant H.Blue upconversion fluorozirconate fibre laser[J]. Electron Letts, 1990, 26(3): 166~168
    [22]邓景全,吴玉程,陈勇.高强度高导电(合金)基复合材料强化与物性研究进展[J].材料导报,2005,19(10) :80~83
    [23]梁淑华,范志康,时惠英,等.超细A12O3颗'粒增强铜基复合材料的显微结构[J].铸造,1998,47(1):8~10
    [24]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982. 1,119~149,167~237,261~265,304~341,401~432
    [25]王俊,孙宝德,周尧和,等.颗粒增强金属基复合材料的发展概况[J].铸造技术,1998,20(3) :37~41
    [26] Ibrahirn I A,Mohamed F A,Lavernia E J.Particulate reinforced metal matrix composites-a review[J]. J.Mater.Sci.,1991,26(2):1137~1156
    [27]孙国雄,廖恒成,潘冶.颗粒增强金属基复合材料的制备技术和界面反应与控制[J].特种铸造及有色合金,1998,19(4):12~17
    [28]高桥辉男,桥本雍彦,香山滉一郎.Cu-Al合金の内部酸化组织に及ぽすAl浓度および内部酸化处理温度の影响[J].日本金属学会志,1989,53(8) :814~820
    [29]山田铣一,小松登.Ag,Pd,AsおよびIn固溶Cu-1%Al合金の内部酸化にょゐ分散强化固溶强化の復合[J].日本金属学会志,1973,37(3) :338~342
    [30]郑雁军,姚家鑫,李国俊.高强高导电铜合金的研究现状及展望[J].材料导报,1997,11(6):52~55
    [31] Morris M A,Morris D G.Microstructural refinement and associated strength ofcopper alloys obtained by mechanical alloying[J]. Mater. Sci.& Eng.,1989,Alll:115~127
    [32]高桥辉男,桥本雍彦.メカニカルフロィソグを应用して作製したTiCおよびZrC分散强化銅の機械的特性[J].粉体および粉末冶金,1989,36(6):688~692
    [33]师岗利政,汤浅荣二,松本修.メカニカルフロィソグにょゐ粒子分散Cu-Ti-B合金粉末の製造[J].粉体および粉末冶金,1992,39(3):202~205
    [34]师岗利政,汤浅荣二,松本修.メカニカルフロィソグしたCu-Ti-B合金粉末の燒線にともなぅ组织と機械的强度の变化[J].粉体および粉末冶金,1993,40(1):100~104
    [35]汤浅荣二,师岗利政,角田诚,等.メカニカルフロィソグにょゐCu-Ti-B合金の真空ホツトブしスとその機械的性質[J].粉体および粉末冶金,1995,42(2):171~174
    [36]董仕节,史耀武.铜基复合材料的研究进展[J].国外金属热处理,1999,20(6):9~11
    [37]杨滨,王锋,段先进,等.熔铸一原位反应喷射成形7075/TiC复合材料的拉伸性能[J].金属学报, 2001,37 (3):311~314
    [38] Srivatsan T S,Lavernia E J.Review use of spray techniques to synthesize particulate-reinforced metal matrix composites [J]. Mater. Sci.,1992,27(22):5965~5981
    [39] Mathur P,Apelian D,Lawley A.Analysis of the spray deposition precess [J]. Acta Metall Mater,1989,37(2):429~443
    [40] Harizanov O A,Stefchev P L,lossifova A.Metal coated alumina powder for metalloceramics[J]. Materials Letters,1998,33(6): 297~299
    [41] K Gopa Kumar,C Pavithran,P K Rohatgi. Preparation of copper-coated titania particles for composites [J]. Mater.Sci.,1980,15 (6): 1588~1592
    [42]王文芳,许少凡,风仪,等.石墨表面镀铜对石墨一铜复合材料强度影响的研究[J].热加工工艺, 1999,28(6):28~29
    [43]韩宝军,徐洲.铸造法制备MgO增强铜基复合材料的研究[J].特种铸造及有色合金,2005,25(12): 753~755
    [44]吴玉程,王涂根. AlN和Al2O3纳米颗粒增强铜基复合材料[J].合肥工业大学学报,2005,28(9):1031~1034
    [45] López M,Jiménez J A,Corredor D. Precipitation strengthened high strength-conductivity copper alloys containing ZrC ceramics[J]. Applied Science and Manufacturing,2007,38 (2): 272~279
    [46] Kim J H,Yun J H.,Park Y H,et al. Manufacturing of Cu-TiB2 composites by turbulent in situ mixing process[J]. Materials Science and Engineering,2007,449~451: 1018~1021
    [47] Chitoshi Masuda.Fatigue properties of Cu–Cr in situ composite[J]. International Journal of Fatigue,2006,28(10):1426~1434
    [48]湛永钟.非连续增强铜基复合材料的研究现状[J].材料开发与应用,2005,20(4):41~45
    [49]刘德宝.非连续增强铜基复合材料的研究[D].天津:河北工业大学,2005
    [50] Ryu M K.Post-growth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique [J]. J Appl Phys,2002,92(1): 154~158
    [51]夏承东,田保红,刘平,等.冷变形对简化工艺制备Cu-Al2O3复合材料组织和性能的影响[J].铸造技术,2007,28(3):312~315
    [52]何少华,文竹青,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社,2002. 62~67
    [53]吴贵生.试验设计与数据处理[M].北京:冶金工业出版社,1997
    [54]黄培云.粉末冶金原理[M].第二版.北京:冶金工业出版社,1997. 272~279
    [55]王涂根,吴玉程,王文芳,等.纳米AlN颗粒增强铜基复合材料的组织与性能研究[J].粉末冶金工业,2005,15(4):21~24
    [56] T W克莱因.金属基复合材料导论[M].北京:冶金工业出版社,1996. 274
    [57]李树玮,小池一步.ZnO材料的生长及表征[J].液晶与显示,2004,19(3):178~181
    [58]刘德宝,崔春翔.TiN颗粒增强铜基复合材料的制备及性能研究[J].稀有金属,2004,28(5):856~861
    [59]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2000. 442~443
    [60]崔约贤,王长利.金属断口分析[M].哈尔滨工业大学出版社,1998. 4:37~45
    [61]邓景泉,吴玉程,王文芳,等.高强高导纳米复合材料CuCrZr/AlN的组织与性能[J].中国有色金属学报,2007,17 (3):428~433
    [62]吴倩,陶亦亦,戈晓岚.粉末冶金法制备多孔Ni2Ti合金的烧结过程研究[J].现代制造工程,2007,11:65~67
    [63]陈成艺,阮建明,谢健全,等.Cu-ZnO_(10)复合材料的制备及物理性能[J].中国有色金属学报, 2006,16 (2):304~309
    [64]马强,柴跃生.颗粒增强铝基复合材料干滑动摩擦性能研究进展[J].山西机械,2003,119 (2):8~10
    [65]韩宝军,徐洲.铸造法制MgO增强铜基复合材料的研究[J].复合材料特种铸造及有色合金,2005,25(12):753~755
    [66]王疆,郦剑,凌国平,等.纳米Cu-Al2O3复合材料的烧结法制备研究[J].材料科学与工程学报,2004,22(6):893~895
    [67]高晶.纳米氧化锆增强铜基复合材料研究[D].天津:天津大学,2005
    [68]刘双进.非连续Cf/Cu复合材料的制备、组织及性能的研究[D].天津:河北工业大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700