用户名: 密码: 验证码:
MgCu_2型Laves相Mg(Cu_(1-X)Al_X)_2的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AB_2型Laves相因其特殊的物理及化学性能使其成为潜在的功能材料和结构材料,引起了国内外研究学者的极大兴趣。常见的三种晶体结构为:六方C14(MgZn_2结构)、立方C15(MgCu_2结构)、复六方C36(MgNi_2结构)。这三种结构的稳定性受A原子与B原子的原子尺寸比以及Laves相的价电子浓度所控制;另外,成分、温度、第三组成元素也影响晶体结构。用轻质的、抗氧化性能高的Al、Si元素替代AB_2中的B组元,可以改变其本身的价电子浓度,以致引起晶体结构的变化。也就是说,这三种晶体结构中的任一种都可以通过适当控制Al、Si的含量使之稳定化,已成为进一步改善AB_2型Laves相性能的一条有效途径。
     本文深入研究AB_2型Laves相Mg(Cu_(1-x)Al_x)_2(0≤X≤0.35)的制备工艺及成分优化,重点探讨Al替代MgCu_2中Cu对其结构稳定性及性能的影响,主要得到如下结论:
     (1)3Cu-2Mg-Al粉末球磨过程中,随球磨时间的延长,粉末的颗粒尺寸减小,显微应变和有效温度系数增加;晶粒尺寸与有效温度系数和显微应变呈逆变关系,显微应变随有效温度系数增加而增大;球磨30 h后,Mg衍射峰完全消失,球磨至60 h,Al衍射峰也完全消失,Cu衍射峰进一步宽化,此时,Cu衍射峰位置向小角度偏移,形成了Mg和Al在Cu中的过饱和固溶体;球磨90 h后,有新相Mg_(32)Al_(47)Cu_7生成。
     (2)采用机械活化+热爆法制备了低放热体系AB_2型Laves相Mg(Cu_(1-x)Al_x)_2(0≤x≤0.35)合金,并对热爆产物进行XRD、EPMA、SEM和DSC分析。结果表明:MgCu_2中的部分Cu被Al替代,晶体结构并不发生改变,主相是MgCu_2型λ_1相。随Al替代量的增加λ_1相的晶格常数逐渐增大,整个XRD衍射峰向低角偏移增大,致密度逐渐提高,晶粒尺寸减小,晶格畸变增大。随Al替代量的增加λ_1相的熔点先升后降,当化学计量比为Mg_2Cu_3Al(x=0.25)时,其熔点达最高,约为910℃,比MgCu_2的熔点(约797℃)高113℃,说明用轻质、抗氧化性能高的Al元素进行合金化,能够使C15结构的AB_2型Laves相的热稳定性提高,其中Mg_2Cu_3Al是更具开发潜力的化合物。
     (3)采用机械活化+热压法合成Laves相Mg(Cu_(1-x)Al_x)_2(X=0,0.25),研究组织和性能。结果表明:C15结构的Laves相Mg_2Cu_3Al与MgCu_2相比,具有高的致密性、硬度和杨氏模量,其断口显示两者均为脆性断裂。最后采用基于密度函数理论(DFT)的缀加平面波加局域轨道方法和广义梯度近似对立方C15结构的MgCu_2 Laves相金属间化合物的生成焓,弹性性质,进行理论计算。计算结果与实验结构相似。
There is an increasing interest in Laves phase as their excellent physical and chemical properties make them available for potential functional as well as structural applications. Laves phase are classified into the three fundamental structures C14, C15 and C36 which are typified by MgZn_2, MgCu_2 and MgNi_2,respectively. Although they are well known since long, there are still unsolved problems concerning the stability of the respective crystal structures. Some geometric and electronic factors such as the atomic size ratio of the A and B atoms and their valence electron numbers are well known to affect the occurrence of a Laves phase and there exist various simple models based on these factors that aim at a prediction of the stable Laves phase. In addition, deviations from the stoichiometric composition were reported to result in a change of the stable polytype in various systems. The B atoms in the AB_2 were substituted by Al ,Si partially, could improve Structure and stability of Laves phases.
     In this paper, The majour work of this study is the Cu atoms in the MgCu_2 were substituted by Al partially. the microstructure and property of the test materials were measured. The new opinions as follows were obtained:
     (1) The mechanochemical effects of 3Cu-2Mg-Al in mechanical milling process are studied with XRD, SEM, and pulverisette5 miller. The result showed that, the crystallite size decreases, the micro strain and effective temperature factor increases, respectively, with the increasing of milling time. The effective temperature factor and micro strain increased with the decreasing of crystallite size, and micro strain increase with the increasing of effective temperature factor. After being milled for 30 hours, the diffraction peak of Mg is vanished completely. when the milling time get 60 hours, the diffraction peak of Al is vanished, also, and the diffraction peak of Cu further broaden, at the same time, its' diffraction angular shift to lower angles. The supersaturated solid solution of Mg and Al in the Cu formed, at this time. 90 hours later, the new phase of Mg_(32)Al_(47)Cu_7 can be found.
     (2) The AB_2 type Laves Mg(Cu_(1-x)Al_x)_2(0≤x≤0.35) were prepared by the method of mechanical activation combining with thermal explosion and the products of thermal explosion were analyzed by XRD,EPMA ,SEM and DSC. The result showed that, although the Cu atoms in the MgCu_2 were substituted by Al partially, the structure of the intermetallcs was not changed. And the main phase wasλ_1 phase with a MgCu_2 type structure. At the same time, by the increasing of Al content, the lattice constant and angular shift to lower angles of the total diffraction peaks increased, the compactness improved, the grain size decreases, crystal lattice aberration increased a little. By the increasing of Al content, the melting point ofλ_1 phase present increasing firstly the decreasing later, the melting point of stoichiometric Mg_2Cu_3Al(X=0.25) was about 910℃which was 113℃higher than the counterpart of MgCu_2(about 797℃). This showed that choosing Al of the light and high oxidation resistance as alloying element could make the Laves phase of C15 structure more stable, and could improve various properties of the intermetallics.
     (3) The Laves Mg(Cu_(1-x)Al_x)2(x=0, 0. 25) were prepared by the method of mechanical activation combining with hot pressing. Its microstructure and properties were investigated. The result showed that, compared with MgCu_2, compactness improved, hardness and Young's modules increases greatly of C15 Laves phase Mg_2Cu_3Al. Ab initio calculations were performed to calculate the elastic moduli of C15 Laves phase MgCu_2.The calculation was conducted using the method of augmented plane wave plus local orbitals (APW+lo) with the generalized gradient approximation (GGA). The enthalpy of formation for MgCu_2 was obtained by calculating the total energy. The results show that the calculated elastic properties are close to the experimental results.
引文
[1]Dimiduk D M.Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials[J].Mater Sci Eng,1999,A263:281-288.
    [2]熊伟,秦晓英,王利.金属间化合物Mg_2Si的研究进展[J].材料导报,2005,19(6):4-7.
    [3]张圣弼,李道子.相图[M].冶金工业出版社,1986,1.
    [4]曲选辉,何定玉,黄伯云.Laves相铬化物的研究[J].高技术通讯,1996,(12):27-301.
    [5]Bewlay B P,Lipsitt H A,Jackson M R.Solidification processing of high temperature intermetallic eutecticbased alloys[J].Mater Sci Eng,1995,A192/193:534-543.0
    [6]Liu C T,Zhu J H,Brady M P,et al.Physical metallurgy and mechanical properties of transition-metal Laves phase alloy[J].Intermetallics,2000,(8):1119-1129.
    [7]Takasugi T,Kumar K S,Liu C T.Microstructure and mechanical properties of two-phase Cr-Cr_2Nb,Cr-CrZr and Cr-Cr_2(Nb,Zr)alloy[J].Mater Sci Eng,1999,A260:108-123.
    [8]马勤,阎秉钧.金属硅化物的应用与发展[J].稀有金属材料与工程,1999,28(1):10-13.
    [9]林栋梁.高温有序金属间化合物研究的新进展[J].上海交通大学学报,1998,32(2):95-108.
    [10]叶恒强,郭建亭.高性能金属间化合物结构材料的关键基础性问题[J].中国科学基金,2000,2:117-121.
    [11]朱雪斌,马勤,季根顺,等.有序金属间化合物Ni_3Si研究新进展[J].材料导报,2002,(1):24.
    [12]严新炎,孙国雄,张树格.SHS铸造法制备Ni_2Si金属间化合物的研究[J].铸造,1994,(8):1-4.
    [13]鲁世强,黄伯云,贺跃辉,等.Laves相合金的物理冶金特性[J].材料导报,2003,17(1):11-13.
    [14]鲁世强,黄伯云,贺跃辉,等.Laves相合金的力学性能[J].材料工程,2003,(5):43-47.
    [15]张羊换,王国清,董小平,等.AB_2型Laves相贮氢合金的研究进展[J].金属功能材料,2005,12(4):25-30.
    [16]地里夏提·买买提,亚生江.C15 Laves RFe_2化合物氢诱导非晶化转变的热分析[J].新疆大学学报,2005,1(4):453-456.
    [17]聂小武,鲁世强,王克鲁,等.Laves相金属间铬化物的制备研究进展[J].铸造技术,2006,27(7):756-759.
    [18]何玉定.合金元素对Laves相TiCr_2力学性能的影响[J].中国有色金属学报,1998,8(4):569-572.
    [19]肖平安,曲选辉,雷长明,等.含TiCr_2 Laves相过共析钛铬合金的制备[J].中国有色金属学报,2002,(4):236-239.
    [20]何玉定,曲选辉,黄伯云.机械活化热压合成Laves相TiCr_2及其力学性能的研究[J].稀有金属,2003,(3):303-306.
    [21]马勤,杨延清,康沫狂.二硅化钼用途广泛的金属间化合物[J].材料开发与应用,1997,12(6):27-32.
    [22]U.Kettner,H.Rehfeld.A comparison of the plastic behaviour of Fe_3Al and Fe_3Si in the temperature range of 300-973 K[J].Intermetallics,1999,7:405-414.
    [23]郭建亭.有序金属间化合物镍铝合金[M].北京:科学出版社,2003,12.
    [24]K.H.马图哈主编,丁道云等译.材料科学与技术丛书(第8卷)非铁合金的结构和性能[M].北京:科学出版社,2002,569-668.
    [25]L.Paccard,D.Paccard,J.M.Moreau,et al.A fremy crystal structures,magnetic and electrical properties of new compounds in the Y-Rh-Si system[J].Journal of the Less Common Metals,1985,110(1-2):315-319.
    [26]L.Paccard,D.Paccard.Structure of YRh_2Si:An ordered CeNi_3 type[J].Journal of the Less Common Metals,1985,109(2):229-232.
    [27]Davldson,Chan K S,Anton D L.Metall Mater Trans,1996,27A(10):3007.
    [28]Karin Soderber,Magnus Bostom,Yoshiki Kubota,et al.Crystal structures and phase stability in pseudobinary CaAl_(1-x)Zn_x[J].Journal of Solid State Chemistry,2006,179:2690-2697.
    [29]孙坚,姚强.ZrCr_2 Laves相弹性性质和堆垛层错能的第一性原理计算[J].中国有色金属学报,2006,16(7):1166-1170.
    [30]Stein F,Palm M and Sauthoff G.Structue and stability of Laves phases.Part Ⅰ.Critical assessment of factors controlling Laves phase stability[J].Intermetallics,2004,12(7-9):713-720.
    [31]Stein F,Palm M and Sauthoff G.Structue and stability of Laves phases.Part Ⅱ.Structure type variations in binary and ternary systems[J].Intermetallics,2005,13(10):1056-1074.
    [32]高温合金编写组编.高温合金手册[M].冶金工业出版社,1982.
    [33]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2003,106-109.
    [34]李志林,曲选辉,黄伯云.新型高温结构材料-金属间化合物的研究动态[J].材料导报,1995,(3):16-20.
    [35]曹阳,李国俊.金属间化合物高温结构材料的研究动向[J].材料导报,1995,4:14-28.
    [36]K.Aoki,O.Izumi.Improvement in room temperature ductility of the L1/2 type intermetallic compound Ni_3Al by Boron addition[J].Journal of the Japan Institute of Metals,1979,43(12):1190-1198.
    [37]Darolia R,Lahnnan D,Field R.The effect of iron,gallium and molybdenum on the room temperature tensile ductility of NiAl[J].Scr.Metall Mater.,1992,26:1007-1012.
    [38]Anton D L,Shah D M.Mater Res soc Symp Proc,1990,194:45.
    [39]韩树民,赵敏寿,吴来磊,等.添加元素对AB_2型Laves相合金电化学性能的影响[J].高等学校化学学报,2003,24(12):2256-2259.
    [40]王美涵,张连中,孙立贤,等.四元Mg_(0.9)Ti_(0.1)Ni_(0.9)X_(0.1)(X=Mn,Zn,Co,Fe)系列合金的制备及性能研究[J].高等学校化学学报,2005,26(9):1673-1676.
    [41]王美涵,张连中,孙立贤,等.Mg_(1.75)Al_(0.25)Ni_(1-x)Cr_x(0≤X≤0.2)合金的制备及性能[J].高等学校化学学报,2005,26(10):1877-1880.
    [42]Zuttel A,Meli ESchlapbach L[J].J Alloys Compl,1994,206:31.
    [43]Vucht H N,Kuijpers F A and Bruning H C A M,Philips Res Rep,1970,25:133.
    [44]郑青榕,顾安忠[J].新能源,2000,22(12):120.
    [45]鲍德佑[J].太阳能学报,1995,16(1):114.
    [46]Bogdanovic B,Hartwig T H,Splieth off B[J].Int Hydrogen Energy,1993,18(7):575.
    [47]Mofftt M B,Clark A E,Wun-Fogle M,et al.Acoust Soc Ann.1999,89:1448.
    [48]张德尧.硅化物高温结构材料的主要进展[J].稀有金属快报,2001,3:17-18.
    [49]Olzi E,Matacotta F C,Setina P.J Less-Common Met,1989,139:123.
    [50]Halstead A,Rawlings R D.J Mater Sci,1985,20:1248.
    [51]肖璇,鲁世强,胡平,等.Laves相金属间化合物Cr_2Nb的增韧方法[J].宇航材料工艺,2007,2:1-5.
    [52]郑海忠,鲁世强,肖璇,等.Laves相NbCr_2室温脆性的研究进展[J].稀有金属材料与工程,2007,36(1):178-183.
    [53]Kumar K S,Hazzledine P M.Polytypic transformations in Laves phase[J].Intermetallics,2004,(12)763-770.
    [54]Davidson D L,Chan K S.The effect of microstructure on the fracture resistance of Nb-Cr-Ti in situ composifes[J].Scripta Matedalia,1997,38(7):1155-1161.
    [55]BradyM P,Sachenko P.Effect of Fe on the oxidation/internal nitridation behavior and tensile properties of Cr and oxide dispersion ductilized Cr[J].Scrip ta Matedalia,2005,52(9):809.
    [56]BradyM P,Tortorelli P F,Payzant E A,et al.Oxidation behavior of Cr_2N,CrNbN,and CrTaN phase mixtures formed on nitrided Cr and laves-reinforced Cr alloys[J].Oxidation of Metals,2004,61(5/6):379.
    [57]BradyM P,Tortorelli P F,Walker L R.Water vapor and oxygen/sulfurimpurity effects on oxidation and nitridation in single and two phase Cr_2Nb alloys[J].Oxidation of Metals,2002,58(3/4):297.
    [58]Ohta T N,Kaneno Y,Inoue H,et al.Microstructures and mechanical properties of NbCr_2 and ZrCr_2laves phase alloys prepared by powdermetallurgy[J].Journal of Materials Science,2003,38(4):657.
    [59]Takeyama M,Liu C T.Mater Sci Eng,1991,A132:61.
    [60]Benjamin J S.Dispersion strengthened superalloys by mechanical alloying[J].Metallurgical Transaction,1970,(1):2943-2951.
    [61]艾桃桃,王芬,陈平.金属间化合物的制备方法及应用[J].稀有金属快报,2006,25(1):5-12.
    [62]杨君友,张同俊,李星国,等.机械合金化研究的新进展[J].功能材料,1995,2(5):477-480.
    [63]Merzhanov A G,Shkiro V M,Borovinskaya I P.Method of producting refractory Ca,B,Si,Ni of groups Ⅳ,Ⅴ and Ⅵ of periodic systems[P].US Pat,1973,3726643.
    [64]王夏冰.磨球直径和添加剂对行星球磨行为的影响[J].机床与液压,2002,(6):276-277.
    [65]陈世柱,黎文献,尹志民.行星式高能球磨机工作原理研究[J].矿冶工程,1997,17(4):62-65.
    [66]杨君友,张同俊,崔菎,等.球磨过程中的碰撞行为分析[J].金属学报,1997,33(4):381-385.
    [67]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报,1997,12(2):129-133.
    [68]Ormeci A,Chu F,Wills J M,et al.Total-energy study of electronic structure and mechanical behavior of C15 Laves phase compounds:NbCr_2 and HfV_2[J].Physical Review B,1996,54:12753-12762.
    [69]Chu F,Lu Y C,Kotula P G,et al.Phase stability and defect structure of the C15 phase in the Hf-V-Nb system[J].Philosophical Magazine A,1998,77(4):941-956.
    [70]W.Chen,J.Sun.The electronic structure and mechanical properties of MgCu_2 Laves phase compound[J].Physica B,2006,382:279-284.
    [71]贾建刚.基于Fe_3(Si_x,Al_(1-x))型有序合金的元素混合粉末球磨机械化学研究.硕士论文.2006.5.
    [72]马景灵.Ni/Si元素粉末球磨过程中的摩擦化学研究.硕士论文.2005.5.
    [73]周琦,马勤,郭铁明,等.MoSi_2机械球磨过程中的物相转变[J].有色金属,2005,57(3):5-9.
    [74]王翠霞.二硅化钼球磨过程的机械化学研究.硕士论文.2002,2.
    [75]朱明,胡曙光.硅酸盐矿相粉磨机械力化学效应影响因素[J].武汉理工大学学报,2006,28(11):63-66.
    [76]荣华伟,方莹.机械力化学研究进展[J].广东化工,2006,33(10):33-36.
    [77]陆原根.粉体技术导论[M].上海:同济大学出版社,1998,147-157.
    [78]胡曙光,朱明.粉磨机械作用对B-C2S物理化学性质的影响[J].硅酸盐学报,2006,34(5):560-565.
    [79]Liao Jiefan,Senna M.Enhanced dehydration and amorphization of Mg(OH)_2 in the oresence of ultra fine sio_2 under mechno-chemical conditions[J].Thermochimica Acta,1992,210:89-102.
    [80]Materials Science International Team MSIT.Light Metal SyStems[M],Part 2.BerLin:Springer Berlin Heidelberg,2005,47-51.
    [81]Zuo Y,Chang Y A.Calculation of Phase Diagram and Solidification Paths of Al-rich Al-Mg-Cu Ternary Alloys[J].Light Met,1993,935-942.
    [82]Zuo Y,Chang Y A.Calculation of Phase Diagram and Solidification Paths of Ternary Alloys:Al-Mg-Cu[J].Mater.Sci.Forum,1996,215-216.
    [83]Bokhonov B B,Konstanchuk I G,Boldyre V V.Sequence of phase formation during mechanical alling in the Mo-Si system[J].Journal of Alloying and Compounds,1995,218:190-196.
    [84]吴其胜.无机材料机械力化学研究进展[J].材料科学与工程,2001,19(1):137-142.
    [85]王燕民,潘志东.陶瓷及其复合材料合成的机械力化学效应[J].硅酸盐学报,2005,33(4):506-515.
    [86]Michio Inagaki,Hiroshi Furuhashi.Integrated intensity changes of X-ray diffraction lines for crystalline powders by grinding and compression.Relations between effective Debye parameter and lattice strain[J].Journal of Material Science,1973,8:312-316.
    [87]邓景泉,吴玉程,王德宝.机械合金化Cu-Zr粉末的制备及特性研究[J].金属功能材料,2007,14(1):27-29.
    [88]唐传安,吴运新,王瑞锋.机械球磨与热处理法制各FeAI(B2)金属间化合物粉末[J].清华大学学 报,2006,46(8):1365-1368.
    [89]王晓军,王晓力,陈学定,等.球末法制备Mg-Cu非晶合金粉末[J].粉末冶金技术,2005,23(1):36-39.
    [90]齐民.机械合金化过程中的固态相变[J].功能材料,1995,26(5):472-476.
    [91]马勤,杨延清,康沫狂.二硅化钼基复合材料的现状与前景[J].复合材料学报,1998,15(3):1-6.
    [92]周琦,藏树俊,马勤.新型AL/Mg_2Si复合材料的制备与性能[J].有色金属,2007,59(2):6-9.
    [93]By T.Matsunaga,E.Kodera,Y.Komura.A new ordered structure of the C15-type Laves phase,Mg_(28.4)Cu_(57.9)Si_(13.7)[J].Acta Cryst,1984,C40:1668-1670.
    [94]By Gunnar Bergman,Johe L.T.Waugh.The crystal structure of the intermetallic compound Mg_6Si_7Cu_(16)[J].Acta Cryst,1956,(9):214-217.
    [95]By Gunnar Bergman,Johe L.T.Waugh.The crystal structure of the intermetallic compound Mg_6Si_7Cu_(16)[J].Acta Cryst,1953,(6):93-94.
    [96]张坤,戴圣龙,杨守杰,等.Al-Cu-Mg-Ag系新型耐热铝合金研究进展[J].航空材料学报,2006,26(3):251-257.
    [97]张琳,闵光辉,冯刚,等.微合金化对Al-Cu-Mg合金时效行为的影响[J].特种铸造及有色合金,2005,25(12):756-758.
    [98]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2003,1-109.
    [99]W.J.Feng,T.D.Xia,T.Z.Liu,et al.Synthesis and properties of Mg_(1-X)Cu_XB_2 bulk obtained by self-propagating high-temperature synthesis(SHS)method at low temperature[J].Physica,2005,C425:144-148.
    [100]纪秀林,王树奇.热爆反应制备颗粒增强镁基复合材料[J].机械工程材料,2006,30(5):41-43.
    [101]陈发清,韩杰才,赫晓东,等.弱放热反应TiSi_2燃烧合成的研究[J].粉末冶金术,1998,9(4):249.
    [102]黄培云.粉末冶金原理[M].第二版.北京:冶金工业出版社,1997,114-116.
    [103]Young R A.The Rietveld Method[M].U K:Oxford University Press,1993.
    [104]Buhler T.A Thermodynamic assessment of the Al-Cu-Mg ternary system[J].J.Phase Equilib,1998,19:317-333.
    [105]Predel B,Ruge H.Investigation of enthalpies of formation in the Mg-Cu-Zn,Mg-Cu-Al and Mg-Cu-Sn systems as a contribution to the clarification of the bonding relationships in Laves phases(in German)[J].Mater.Sci.Eng,1972,9:141-150.
    [106]胡平,鲁世强,肖璇,等.机械合金化+热压制备Cr-NbCr_2复合材料及其组织性能研究[J].热加工工艺,2007,36(4):4-6.
    [107]Thoma D J,Chu F,Peralta P,et al.Elastic and mechanical properties of Nb(Cr,V)_2 C15 Laves phases[J].Mater Sci Eng A,1997,239-240:215-259.
    [108]Takasugi T,Hanada S,Yoshida M.High temperature mechanical properties of C15 Laves phase Cr_2Nb intermetallics[J].Mater Sci Eng A,1995,192-193:805-810.
    [109]SUN Xue-song,SUN Feng,SUN Jian.Defect structure and its softening effect in ZrCr_2 Laves-phase compound[J].The Chinese Journal of Nonferrous Metals,2005,15(4):626-630.
    [110]Takasugi T,Yoshida M,Hanada S.Deformability improvement in C15 NbCr_2 intermetallics by addition of ternary elements[J],Acta Materialia,1996,44(2):669-674.
    [111]Chu F,Pope D P.Deformation twinning in intermetallic compounds the dilemma of shears vs.shuffles[J].Mater Sci Eng A,1993,170(1):39-47.
    [112]Zhu J H,Pike L M,Liu C T,et al.Point defects in binary Laves phase alloys[J].Acta Materialia,1999,47(7):2003-2018.
    [113]Hong S,Fu C L,Yoo M H.Elastic properties and stacking fault energies of Cr_2Ta[J].Intermetallics,1999,7(10):1169-1172.
    [114]Chu F,Ormeci A H,Mitchell T E,et al.Stacking fault energy of the NbCr_2 laves phase[J].Philosophical Magazine Letters,1995,72(3):147-153.
    [115]Krcmar M,Fu C LFirst-principles study of point defect structures in C15 ZrCo_2 and ZrCr_2 and B2ZrCo[J].Physical Review B,2003,68:134110.
    [116]G.Liang,Z.Tang,H.Fang,etal.Synthesis and X-ray diffraction pattern for MgCu_2[J].Journal of Alloys and Compounds,2006,422:73-77.
    [117]Y.Ohba,N.Sakuma.High temperature-room temperature deformation behavior of MgCu_2 laves phase intermetallic compound[J].Acta Metallurgica,1989,37(9):2377-2384.
    [118]H.Takamura,H.Kakuta,Y.Goto,et al.High-pressure synthesis and energetics of MgCu with a CsCl-type structure[J].Journal of Alloys and Compounds,2005,404-406:372-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700