用户名: 密码: 验证码:
蛋白酶激活受体-2在海水吸入大鼠急性肺损伤中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     海水淹溺可引起海水吸入型急性肺损伤(SW-ALI),进一步发展可导致海水型急性呼吸窘迫综合征(SW-ARDS),病情凶险,死亡率高。由于炎症反应是ALI发病的关键环节,人们将对ALI的研究转向炎症调控机制的研究,以期控制炎症反应,减轻损伤,从而降低ALI的发病率和死亡率。蛋白酶激活受体-2(PAR2)属G蛋白偶联受体家族,激活后可参与炎症反应,但在肺部炎症反应中的致病作用还存在争议,在SW-AIL中的作用尚未提及,且PAR2激活后下游信号通路仍不清楚,有待进一步探讨。FUT-175作为一种丝氨酸蛋白酶抑制剂,可抑制PAR2的激活,减少炎症介质和细胞因子的释放,但其抗炎作用在ALI的研究中尚未提及,有待进一步研究。为此,本课题拟从细胞水平检测海水对A549细胞PAR2表达的影响,从分子水平探讨PAR2激活后的下游信号转导通路以及FUT-175和PAR2抗体对其下游信号通路的干预作用,从器官水平观察FUT-175对SW-ALI大鼠肺部炎症反应和肺微血管通透性的影响,旨在明确PAR2在SW-ALI中的作用及机制,从抗炎的角度揭示FUT-175对SW-ALI大鼠的保护作用,为临床应用FUT-175治疗SW-ALI提供更坚实的理论基础和实验依据。
     方法:
     1.将培养的A549细胞接种于6孔板中,随机分为对照组(control)、海水干预2、4、8、16h组,各组细胞干预相应的时间后进行指标观测。收集上清检测TNF-α和IL-8浓度,收集细胞用实时荧光定量PCR法和Western blot法检测PAR2 mRNA和蛋白表达水平。
     2.将培养的A549细胞接种于6孔板中,随机分为对照组(control组)、海水干预组(seawater组)、海水+PAR2抗体组(PAR2-antibody组)、海水+FUT-175组(FUT-175组)、海水+SB203580组(SB203580组)、海水+PD98059组(PD98059组)、海水+SP600125组(SP600125组)。对照组加入无血清培养液,海水组加入海水培养8h;PAR2-antibody组用PAR2单克隆抗体2mg/L预处理1h后,加入海水继续培养8h;FUT-175组用FUT-175 10μM预处理1h后,加入海水继续培养8h;SB203580组用SB203580 10μM预处理1h后,加入海水继续培养8h;PD98059组用PD98059 10μM预处理1h后,加入海水继续培养8h;SP600125组用SP600125 0μM预处理1h后,加入海水继续培养8h。control组、seawater组、PAR2-antibody组和FUT-175组收集细胞用Western印迹法和EMSA法分别检测磷酸化p38MAPK蛋白表达量、磷酸化ERK蛋白表达量、磷酸化JNK蛋白表达量和NF-κB活化水平;各组细胞收集上清检测TNF-α和IL-8浓度。
     3.采用海水吸入法复制大鼠ALI模型,吸入海水(4ml/kg)后成功建立ALI模型。将48只Wistar大鼠随机分为对照组、海水吸入2、4、8h组,取肺组织用实时荧光定量PCR法检测PAR2 mRNA表达水平,用Western blot法和免疫组化法检测PAR2蛋白表达情况。
     4.采用海水吸入法和LPS吸入法复制大鼠ALI模型,96只Wistar大鼠随机分为对照组(control)、海水组(seawater组)、LPS组(LPS组)和FUT-175治疗海水吸入组(FUT-175组)。海水组和LPS组分别吸入海水(4ml/kg)和LPS(4mg/kg)建立ALI模型。seawater组:模型复制成功后20min,经尾静脉注射生理盐水2ml/kg。FUT-175组:海水型ALI模型复制成功后20min,经尾静脉注射FUT-175 10mg/kg。4组大鼠观察8小时,分别于模型建立及干预后0.5、1、2、4、8h进行动脉血气分析,最后检测肺微血管通透性(PMVP)、肺湿/干重比(W/D)、肺组织髓过氧化物酶(MPO)、血浆IL-8和TNF-α水平,并观察病理学变化。
     结果:
     1.与正常对照组比较,海水处理后,A549细胞PAR2 mRNA在4h时显著升高(P<0.05),随着时间延长,在8h点达最高峰(为对照组的1.8倍),此后一直显著高于对照组(P<0.01)。A549细胞PAR2蛋白表达量也在4h时显著升高(P<0.05),在8h点达最高峰(为对照组的2.2倍),此后一直显著高于对照组(P<0.01)。A549细胞经海水处理后,上清液中的IL-8和TNF-α迅速升高,2 h达最高峰,显著高于对照组(P<0.01)。此后有所下降,但在所有时间点均显著高于对照组(P<0.01)。
     2.与正常对照组比较,海水处理后,A549细胞p38MAPK磷酸化水平、ERK磷酸化水平和JNK磷酸化水平显著升高(分别为对照组的3.1倍、1.8倍和3.2倍)(P<0.01-0.05),NF-κB活化水平显著升高(为对照组的6.7倍)(P<0.01),而FUT-175和PAR2抗体预处理组同海水处理组比较,A549细胞p38MAPK磷酸化水平、JNK磷酸化水平、ERK磷酸化水平和NF-κB活化水平显著降低(P<0.01-0.05)。海水处理后,A549细胞培养上清液中IL-8和TNF-α显著升高(P<0.01),而FUT-175、PAR2抗体、SB203580、PD98059和SP600125预处理组同海水处理组比较,上清液中IL-8和TNF-α则显著降低(P<0.01)。
     3.与正常对照组比较,海水吸入后,大鼠肺组织PAR2 mRNA和蛋白表达量在2h时即显著升高(P<0.05),随着时间延长,在4h点达最高峰(为对照组的2.8倍),此后均显著高于对照组(P<0.01)。同时大鼠肺组织PAR2蛋白表达量在2h时即显著升高(P<0.05),随着时间延长,在4h点达最高峰(为对照组的4.2倍),此后均显著高于对照组(P<0.01)。PAR2免疫组化显示,在正常对照组,PAR2微弱表达于肺泡、支气管上皮和肺泡巨噬细胞,海水吸入2h后,阳性反应明显增强,不仅见于肺泡和支气管上皮细胞,还见于肺微血管内皮细胞和气道平滑肌细胞。
     4.与正常对照组比较,海水和LPS吸入致伤组大鼠PaO2下降、W/D比值增大、肺微血管通透性增高、肺组织MPO活性增高、血浆IL-8和TNF-α升高、肺组织病理形态学积分增加(P<0.01);海水组PaO2明显低于LPS组,而MPO、W/D和PVMP明显高于LPS组(P<0.01)。FUT-175治疗海水吸入组上述指标均显著改善(P<0.01-0.05)。
     结论:
     1.海水处理A549细胞,可上调A549细胞PAR2的表达,导致IL-8和TNF-α释放的增加,同时可导致A549细胞结构的改变。
     2.海水激活A549细胞PAR2后,通过MAPK信号通路和NF-B信号通路,导致IL-8和TNF-α释放增加,是海水处理A549细胞导致细胞损伤的可能机制。
     3.丝氨酸蛋白酶抑制剂FUT-175和PAR2抗体可通过抑制PAR2的激活,对海水处理的A549具有保护作用。
     4.海水吸入后大鼠肺组织PAR2表达上调,在海水所致急性肺损伤中起重要作用。
     5.丝氨酸蛋白酶抑制剂FUT-175对海水吸入所致急性肺损伤大鼠具有保护作用,其机制可能是通过抑制肺组织PAR2的激活,阻断其下游的炎症反应,减轻肺损伤,降低肺血管通透性,减轻肺水肿。
Background and Objective
     Seawater inhalation can cause acute lung injury (SW-ALI) or acute respiratory distress syndrome (SW-ARDS), which was characterized by progressive dyspnea, refractory hypoxemia and high mortality. In the past few years, studies of inflammatory mediators and cytokines in molecular level demonstrated the crucial role of inflammation in the ALI. So when we study ALI, we turn attention to the regulation of inflammation. Protease-activated receptor 2 (PAR2) belongs to a family of G protein-coupled receptors. It can be activated by serine proteases and then induce inflammation. But there is still a dispute on the role of PAR2 in pulmonary inflammation, no information concerning the role of PAR2 on ALI induced by seawater, and the downstream signal transduction of PAR2 remain unclear. FUT-175 is a synthetic inhibitor of serine proteases, which can block PAR2 activation and then reduce the release of inflammatory mediators and cytokines, but it’s protective effects was not mentioned on ALI. Therefor, in this study we will detect the influence of seawater on PAR2 mRNA and protein expression of A549 cells, investigate the influence of FUT-175 and PAR2-antibody on seawater-activated PAR2 signal transduction in vitro, and observe the effects of FUT-175 on pulmonary inflammation and pulmonary microvascular permeability in the a model of seawater inhalation-induced ALI in vivo. The purposes of this study are to elucidate the role and the mechanism of PAR2 activation on pathogenesis of SW-ALI, confirm the protective effects of FUT-175 on SW-ALI.
     Methods
     1. A549 cells were randomly divided into 5 groups: control group, 2 h group, 4 h group, 8 h group and 16 h group, which were treated with seawater for 2 h, 4 h, 8 h and 16 h respectively. After seawater treated, cells were collected for Real-time quantitative polymerase chain reaction (PCR) and Western blot analysis to determine the expression of PAR2 mRNA and protein. Supernatant were collected for IL-8 and TNF-αdetection.
     2. A549 cells were randomly divided into 7 groups: control group, seawater group, PAR2-antibody group, FUT-175 group, SB203580 group, PD98059 group and SP600125 group. Control group remained untreated as blank control; seawater group was incubated with seawater; PAR2-antibody group was treated with 2mg/L PAR2-antibody for 1 h before incubated with seawater; FUT-175 group was treated with 10μM FUT-175 for 1 h before incubated with seawater; SB203580 group was treated with 10μM SB203580 for 1 h before incubated with seawater; PD98059 group was treated with 10μM PD98059 for 1 h before incubated with seawater; SP600125 group was treated with 10μM SP600125 for 1 h before incubated with seawater. After 8 h, cells of control group, seawater group, PAR2-antibody group and FUT-175 group were collected for Western blot analysis and electrophoretic mobility shift assays to determine the expression of phosphorylated p38MAPK, phosphorylated ERK, phosphorylated JNK protein and NF-κB binding activity. Supernatant of all groups were collected for IL-8 and TNF-αdetection.
     3. ALI was induced by inhaling seawater (4ml/kg). Forty-eight Wistar rats were randomly divided into four groups: control group, 2 h group, 4 h group and 8 h group, which were 2 h, 4 h and 8 h after seawater inhalation respectively. Lung tissues were collected for real-time quantitative PCR, western blot analysis and immunohistochemistry to determine the expression of PAR2 mRNA and protein in lung tissue of rats.
     4. ALI was induced by inhaling seawater (4ml/kg) and LPS (4mg/kg). Ninety-six Wistar rats were randomly divided into four groups: control group, seawater group, LPS group and FUT-175 group. In seawater group, 2ml normal saline (NS) was administered through jugular vein at 20min after seawater inhalation; in FUT-175 group, instead of 2ml of NS, 10mg/kg body weight of FUT-175 in 2ml of NS was administered through jugular vein at 20min after seawater inhalation. During experiment, arterial blood was collected for blood gas analysis at 0.5 h, 1 h, 2 h, 4 h and 8 h time point after model established. After 8h of experiment, serum was collected for IL-8 and TNF-αdetection. Pulmonary microvascular permeability (PMVP), wet/dry ratio (W/D) of lung tissue and myeloperoxidase activity (MPO) of lung tissue were detected by biochemical methods. The histopathologic changes of lung tissue were observed under optical microscope.
     Results
     1. The expression of mRNA for PAR2 on A549 cells increased after seawater treated, increasing significantly after 4 h(P<0.05), peaking at 8h(1.8-fold) post-seawater treated and lasted for 16 h(P<0.01).And the expression of protein for PAR2 on A549 cells increased too after seawater treated, increasing significantly after 4 h(P<0.05), peaking at 8h(2.2-fold) post-seawater treated and lasted for 16 h(P<0.01).The level of IL-8 and TNF-αin supernatant increased significantly after seawater treated, peaking at 2 h post-seawater treated and then followed a little decrease which still higher than those of control group significantly(P<0.01).
     2. The level of p-p38 MAPK, p-ERK, p-JNK and NF-κB binding activity on A549 cells all increased significantly after seawater treated(3.1-fold, 1.8-fold, 3.2-fold and 6.7-fold respectively)(P<0.01-0.05). The level of p-p38 MAPK, p-ERK, p-JNK and NF-κB binding activity on A549 cells all decreased significantly pre-treated with FUT-175 and PAR2-antibody compared with seawater group(P<0.01-0.05). The level of IL-8 and TNF-αin supernatant increased significantly after seawater treated(P<0.01), and decreased significantly pre-treated with FUT-175, PAR2-antibody, SB203580, PD98059 and SP600125(P<0.01).
     3. The expression of PAR2 mRNA on lung tissue of rats increased after seawater inhalation, increasing significantly after 2 h(P < 0.05), peaking at 4h (2.8-fold) post-seawater inhalation and lasted for 8 h(P<0.01). The expression of PAR2 protein on lung tissue of rats increased too after seawater inhalation, increasing significantly after 2 h(P<0.05), peaking at 4h (4.2-fold) post-seawater inhalation and lasted for 8 h(P<0.01). PAR2 immunoexpression located in alveoli, bronchial epithelium and pulmonary macrophage cells of rats in control group showed mild immunostaining. At 2h after seawater inhalation, stronger positive staining was not only observed in the alveolar and bronchial epithelium cells, but also observed in the pulmonary microvascular endothelium and airways smooth muscle.
     4. The level of IL-8 and TNF-αin plasma, MPO activity, PMVP, W/D and pathomorphological score of lung tissue increased significantly after seawater and LPS inhalation, which is followed by a significant reduction in arterial PaO2 (P<0.01). PaO2 in seawater group was significant lower than that of LPS group, while MPO, W/D and PVMP were significant higher than those of LPS group(P<0.01). The above parameters of seawater group all ameliorated after FUT-175 administering(P<0.01-0.05).
     Conclusion
     1. Seawater up-regulate the expression of PAR2 on A549 cells, induce IL-8 and TNF-αrelease, and change the structure of A549 Cells.
     2. Seawater activate PAR2 of A549 cells, induce IL-8 and TNF-αrelease through MAPK pathway and NF-κB pathway.
     3. Serine proteases FUT-175 and PAR2-antibody have protective effects on A549 cells through blocking PAR2 activation, reducing IL-8 and TNF-αrelease.
     4. Seawater inhalation up-regulate the expression of PAR2 on lung tissue of rats, which has crucial role in the seawater inhalation-induced ALI.
     5. Serine proteases FUT-175 have protective effects on the seawater inhalation-induced ALI in rats through blocking PAR2 activation and downstream inflammatory reaction, ameliorating lung injury, pulmonary microvascular permeability and pulmonary edema.
引文
1. Xinmin D; Yunyou D; Chaosheng P, et al. Dexamethasone treatment attenuates early seawater instillation-induced acute lung injury in rabbits [J]. Pharmacol Res, 2006, 53(4):372-379.
    2. World Health Organization. The World Health Report[C]. 2002: Reducing risks, promoting healthy life, Geneva, WHO, 2002.
    3.古妙宁,肖金仿,黄毅然,等.海水直接肺损伤的犬模型研究[J].第一军医大学学报, 2003, 23(3):201-205.
    4. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome [J]. J Pthol, 2004, 202(2): 145-156.
    5. Hirota Y, Osuga Y, Hirata T, et al. Activation of protease-activated receptor 2 stimulates proliferation and interleukin (IL)-6 and IL-8 secretion of endometriotic stromal cells [J]. Human Reproduction, 2005, 20(12):3547-3553.
    6. Hollenberg MD, Compton SJ. International Union of Pharmacology. XXVIII. Proteinase-activated receptors [J]. Pharmacol Rev, 2002, 54(2): 203-217.
    7. Nystedt S, Emilsson K, Larsson AK, et al. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2 [J]. Eur J Biochem, 1995; 232(1): 84-89.
    8. Yagi Y; Otani H; Ando S, et al. Involvement of Rho signaling in PAR2-mediated regulation of neutrophil adhesion to lung epithelial cells [J]. Euro J Pharma, 2006, 536 (1-2): 19 - 27.
    9. Ossovskaya VS, Bunnet NW. Protease-activated receptors: contribution to physiology and disease [J]. Physiol Rev, 2004, 84(2): 579-621.
    10. Costa R, Marotta DM, Manjavachi MN, et al. Evidence for the role of neurogenic inflammation components in trypsin-elicited scratching behaviour in mice [J]. Br J Pharmacol, 2008, 154 (5): 1094-1103.
    11. Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma [J]. J Allergy Clin Immunol, 2006, 117(6):1277-1284.
    12. Uehara A, Muramoto K, Takada H, et al. Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through proteinase-activated receptor 2 [J]. J Immunology, 2003, 170(11): 5690-5696.
    13. Matsushima R, Takahashi A, Nakaya Y, et al. Human airway trypsin-like protease stimulates human bronchial fibroblast proliferation in a protease-activated receptor-2-dependent pathway [J]. Am J Physiol Lung Cell Mol Physiol 2006, 290(2):L385-395.
    14. Jiang X, Zhu S, Panetti TS, Bromberg ME. Formation of tissue factor-factor VIIa-factor Xa complex induces activation of the mTOR pathway which regulates migration of human breast cancer cells [J]. Thromb Haemost, 2008; 100(1): 127-133.
    15. Borensztajn K, Stiekema J, Nijmeijer S, et al. Factor Xa stimulates proinflammatory and profibrotic responses in fibroblasts via protease-activated receptor-2 activation [J]. Am J Pathol, 2008, 172(2):309-320.
    16. Asokananthan N, Graham PT, Stewart DJ, et al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1 [J]. J Immunol, 2002, 169(8):4572-4578.
    17. Stefansson K, Brattsand M, Roosterman D, et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases [J]. J Invest Dermatol, 2008, 128(1): 18-25.
    18. Tsuda T, Ishikawa C, Konishi H, et al. Effect of 14-membered-ring macrolides on production of interleukin-8 mediated by protease-activated receptor 2 in human keratinocytes [J]. Antimicrob Agents Chemother, 2008, 52(4):1538-1541.
    19. Kajikawa H, Yoshida N, Katada K, et al. Helicobacter pylori activates gastric epithelial cells to produce interleukin-8 via protease-activated receptor 2 [J]. Digestion, 2007,
    76(3-4):248-255.
    20. Matsuda N, Nishihira J, Takahashi Y, et al. Role of macrophage migration inhibitory factor in acute lung injury in mice with acute pancreatitis complicated by endotoxemia [J]. Am J Respir Cell Mol Biol, 2006, 35(2): 198-205.
    21. Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease [J]. Br J Pharmacol, 2008, 153 Suppl 1: S230-240.
    22. Demerjian M, Hachem JP, Tschachler E, et al. Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase-14 and the protease-activated receptor type 2 [J]. Am J Pathol, 2008, 172(1): 86-97.
    23. Su X, Camerer E, Hamilton JR, et al. Protease-activated receptor-2 activation induces acute lung inflammation by neuropeptide-dependent mechanisms [J]. J Immunol, 2005, 175(4): 2598-2605.
    24. Kazerani HR, Plevin R, Kawagoe J, et al. Lack of effect of proteinase-activated receptor-2 (PAR-2) deletion on the pathophysiological changes produced by lipopolysaccharide in the mouse: comparison with dexamethasone [J]. J Pharm Pharmacol, 2004, 56:1015–1020.
    25. Morello S, Vellecco V, Roviezzo F, et al. A protective role for proteinase activated receptor 2 in airways of lipopolysaccharide-treated rats [J]. Biochem Pharmacol, 2005, 71(1-2): 223-230.
    26. De campo BA, Henry PJ. Stimulation of protease-activated receptor-2 inhibits airway eosinophilia, hyperresponsiveness and bronchoconstriction in a murine model of allergic inflammation [J]. Br J Pharmacol, 2005, 144(8):1100-1108.
    27. Moraes TJ, Martin R, Plumb JD, et al. Role of PAR2 in murine pulmonary pseudomonal infection [J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(2):L368-377.
    28. Ostrowska E, Reiser G. Protease-activated receptor (PAR)-induced interleukin-8 production in airway epithelial cells requires activation of MAP kinases p44/42 and JNK [J]. Biochem Biophys Res Commun, 2008, 366(4):1030-1035.
    29. Kunzelmann K, Sun J, Markovich D, et al. Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2) [J]. FASEB J, 2005, 19(8):969–970.
    30. Rallabhandi P, Nhu QM, Toshchakov VY, et al. Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity[J]. J Biol Chem, 2008, 283(36):24314-24325.
    31. Yoshida N, Katada K, Handa O, et al. Interleukin-8 production via protease-activated receptor 2 in human esophageal epithelial cells[J]. Int J Mol Med, 2007, 19(2): 335-340.
    32. Fujiwara M, Jin E, Ghazizadeh M, et al. Differential expression of protease-activated receptors 1, 2, and 4 on human endothelial cells from different vascular sites [J]. Pathobiology, 2004, 71(1):52-58.
    33. Jesmin S, Gando S, Zaedi S, et al. Differential expression, time course and distribution of four PARs in rats with endotoxin-induced acute lung injury [J]. Inflammation, 2007, 30(1-2): 14-27.
    34. Moriyuki K, Nagataki M, Sekiguchi F, et al. Signal transduction for formation/release of interleukin-8 caused by a PAR2-activating peptide in human lung epithelial cells [J]. Regul Pept, 2008, 145(1-3): 42-48.
    35. Macfarlane SR, Seatter MJ, Kanke T, et al. Proteinase-activated receptors [J]. Pharmacol Rev, 2001, 53(2):245-282.
    36. Ritchie E, Saka M, Mackenzie C, et al. Cytokine upregulation of proteinase- activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells [J]. Br J Pharmacol, 2007, 150(8):1044-1054.
    37. Freund-Michel V, Frossard N. Inflammatory conditions increase expression of protease-activated receptor-2 by human airway smooth muscle cells in culture [J]. Fundam Clin Pharmacol, 2006, 20(4):351-357.
    38. Gruber BL, Marchese MJ, Santiago-Schwarz F, et al. Protease-activated receptor-2 (PAR-2) expression in human fibroblasts is upregulated by growth factors and extracellular matrix [J]. J Inves Dermatol, 2004, 123(5):832-839.
    39. Imaizumi T, Albertine KH, Jicha DL, et al. Human endothelial cells synthesize ENA-78: relationship to IL-8 and to signaling of PMN adhesion [J]. Am J Respir Cell Mol Biol, 1997, 17 (2): 181-192.
    40. Goris RJ. MODS/SIRS: result of an overwhelming inflammatory response [J]? World J Surg, 1996, 20 (4): 418-421.
    41. Beutler B. TLR4 as the mammalian endotoxin sensor [J]. Curr Yop Microbiol Immunol, 2002, 270(2): 109-120.
    42. Schmidlin F , Amadesi S , Vidil R , et al. Expression and function of proteinase- activated receptor 2 in human bronchial smooth muscle [J] . Am J Respir Crit Care Med, 2001, 164(7): 1276 - 1281.
    43. Ostrowska E;Sokolova E;Reiser G. PAR-2 activation and LPS synergistically enhance inflammatory signaling in airway epithelial cells by raising PAR expression level and interleukin-8 release [J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(5): L1208-1218.
    44. Kyosseva SV. Mitogen-activated protein kianse signaling [J]. Int Rev Nerrobiol, 2004, 59(2):201-220.
    45. Guha M, Mackman N. LPS induction of gene expression in human monocytes [J]. Cell Signal, 2001, 13 (2): 85-94.
    46. Moine P, Mc Intyre R, Schwartz MD, et al. NF-kappa B regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome [J]. Shock, 2000, 13(2):85-91.
    47. Kim MS, Jo H,Um JY, et al. Agonists of proteinase-activated receptor 2 induce TNF-alpha secretion from astrocytoma cells [J]. Cell Biochem Funct, 2002, 20(4):339-345.
    48. Malek S, Huxford T, Ghosh G. Ikappa Balpha functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-kappaB [J]. J Biol Chem, 1998, 273 (39):25427-25435.
    49. Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B [J]. Annu Rev Cell Biol, 1994, 10(4):405-455.
    50. Amalich F, Garcia-Palomero E, Lopez J, et al. Predictive value of nuclear factor [kappa] B activity and plama cytokine levels in patients with sepsis [J]. Infect immune, 2000, 68(4):1942-1945.
    51. Ritchie MH, Fillmore RA, Lausch RN, et al. A role for NF-kappa B binding motifs in the differential induction of chemokine gene expression in human comeal epithelialcells [J]. Invest ophthalmol Vis Sci, 2004, 45(7):2299-2305.
    52. Liu G, Park YJ, Tsuruta Y, et al. p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. J Immunol, 2009, 182(8): 5063-5071.
    53. Standiford TJ, Kunkel SL, Greenberger MJ, et al. Expression and regulation of chemokines in bacterial pneumonia [J]. J Leukoc Biol, 1996, 59 (1): 24-28.
    54. Henry PJ. The protease-activated receptor2 (PAR2)-prostaglandin E2-prostanoid EP receptor axis: a potential bronchoprotective unit in the respiratory tract [J]? Eur J Pharmacol, 2006, 533(1-3): 156-170.
    55. Lee KE, Kim JW, Jeong KY, et al. Regulation of German cockroach extract-induced IL-8 expression in human airway epithelial cells [J]. Clin Exp Allergy, 2007, 37(9):1364-1373.
    56. Waugh WH. Potential use of warm butyl alcohol vapor as adjunct agent in the emergency treatment of sea water wet near-drowning [J]. Am J Emerg Med, 1993, 11(1):20-27.
    57. Choi WI, Quinn DA, Park KM, et al. Systemic microvascular leak in an in vivo rat model of ventilator-induced lung injury [J]. Am J Respir Crit Care Med, 2003, 167(12): 1627-1632.
    58. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination [J]. Am J Respir Crit Care Med, 1994, 149(3 Pt 1): 818-824.
    59. Abraham E. Neutrophils and acute lung injury [J]. Crit Care Med, 2003, 31(4 suppl.):S195-199.
    60. Bone RC. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS) [J]. Ann Intern Med, 1996, 125(8):680-687.
    61.丁新民,段蕴铀,彭朝胜等.地塞米松对海水淹溺肺损伤兔肺水肿吸收的影响[J].中华急诊医学杂志, 2006, 15(9): 801-804.
    62. Modell JH, Gaub M, Moya F, et al. Physiologic effects of near drowning with cholrinated fresh water, distilled water and isotonic saline [J]. Anesthesiology, 1966,27(1):33-41.
    63. Modell JH , Graves SA, Ketover A, et al. Clinical course of 91 consecutive near-drowning victims [J]. Chest, 1976, 70(2):231-238.
    64. Marcinkiewicz J. Prostanoids and MPO-halide system products as a link between innate and adaptive immunity [J]. Immunol Lett, 2003, 89 (2-3): 187-191.
    65. Jesmin S, Gando S, Matsuda N, et al. Temporal changes in pulmonary expression of key procoagulant molecules in rabbits with endotoxin-induced acute lung injury: elevated expression levels of protease-activated receptors [J]. Thromb Haemost, 2004, 92(5):966-979.
    66. Jesmin S, Gando S, Zaedi S, et al. Chronological expression of PAR isoforms in acute liver injury and its amelioration by PAR2 blockade in a rat model of sepsis [J]. Thrombosis and Haemostasis, 2006, 96(6):830-838.
    67. Ikawa K, Nishioka T, Yu Z, et al. Involvement of neutrophil recruitment and protease-activated receptor 2 activation in the induction of IL-18 in mice [J]. J Leukoc Biol, 2005, 78(5):1118-1126.
    68. Jeyaseelan S, Chu HW, Young SK, et al. Distinct roles of pattern recognition receptors CD14 and Toll-like receptor 4 in acute lung injury [J]. Infect Immun, 2005, 73 (3): 1754-1763.
    1. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome[J] . J Pathol, 2004 ;202 (2) :145 - 156.
    2. Hirota Y, Osuga Y, Hirata T, et al. Activation of protease-activated receptor 2 stimulates proliferation and interleukin (IL)-6 and IL-8 secretion of endometriotic stromal cells[J] . Human Reproduction, 2005;20(12):3547-3553.
    3. Yagi Y; Otani H; Ando S, et al. Involvement of Rho signaling in PAR2-mediated regulation of neutrophil adhesion to lung epithelial cells[J]. Euro J Pharma, 2006; 536 (1-2) : 19 - 27.
    4. Ossovskaya VS, Bunnet NW. Protease-activated receptors: contribution to physiology and disease[J]. Physiol Rev, 2004;84(2): 579-621.
    5. Asokananthan N, Graham PT, Fink J, et al. Activation of protease-activated receptor (PAR)-1, PAR2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells [J]. Immunol,2002a;168: 3577–3585.
    6. Henry PJ. The protease-activated receptor2 (PAR2)-prostaglandin E2-prostanoid EP receptor axis: a potential bronchoprotective unit in the respiratory tract? [J] Eur J Pharmacol, 2006; 533(1-3): 156-170.
    7. Kawabata A, Kanke T, Yonezawa D, et al.2004a. Potent and metabolically stable agonists for protease-activated receptor-2: evaluation of activity in multiple assay systems in vitro and in vivo[J]. Pharmacol Exp Ther,2004a; 309: 1098–1107.
    8. Uehara A, Muramoto K, Takada H, et al. Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through proteinase-activated receptor 2 [J]. J Immunology, 2003; 170(11): 5690-5696.
    9. Morello S, Vellecco V, Roviezzo F, et al. A protective role for proteinase activated receptor 2 in airways of lipopolysaccharide-treated rats. Biochem Pharmacol, 2005; 71(1-2): 223-230.
    10. Kim MS;Jo H;Um JY;et al. Agonists of proteinase-activated receptor 2 induce TNF-alpha secretion from astrocytoma cells. Cell Biochem Funct, 2002;20(4):339-345.
    11. Ritchie E;Saka M;Mackenzie C, et al. Cytokine upregulation of proteinase- activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br J Pharmacol, 2007; 150(8):1044-1054.
    12. Yoshida N, Katada K, Handa O, et al. Interleukin-8 production via protease-activated receptor 2 in human esophageal epithelial cells. Int J Mol Med, 2007; 19(2): 335-340.
    13. Alessi DR , Andjelkovic M, Caudwell B , et al. Mechanism of activation of protein kinase B by insulin and IGF - 1[J] . EMBO J , 1996 , 15(23) : 6541 - 6551.
    14.张滨,钱睿哲,陆超等。PKB在类胰蛋白酶诱导基因表达中的作用。中国病理生理杂志,2005;21(11):2097-2101.
    15. Oshiro A, Otani H, Yagi Y, et al. Proteaseactivated receptor-2-mediated inhibition for Ca2+ response to lipopolysaccharide in Guinea pig tracheal epithelial cells. Am J Respir Cell Mol Biol, 2004;30:886–892.
    16.王海燕,何韶衡,林珏龙。蛋白酶激活受体-2介导A549细胞胞浆游离钙的释放。汕头大学医学院学报,2005;18(2): 81-85.
    17. Kunzelmann K, Sun J, Markovich D, et al. Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR2). FASEB J, 2005; 19(8):969–970.
    18. Su X; Camerer E; Hamilton JR, et al. Protease-activated receptor-2 activation induces acute lung inflammation by neuropeptide-dependent mechanisms. The Journal of Immunology,2005; 175(4): 2598-2605.
    19. Steinhoff M;Vergnolle N;Young SH,et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med, 2000;6(2):151-158.
    20. Schmidlin F , Amadesi S , Vidil R , et al. Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle[J ] . Am J Respir Crit Care Med , 2001 , 164(7) : 1276 - 1281.
    21. Vliagoftis H, Schwingshackl A, Milne CD, et al. Proteinase-activated receptor-2- mediated matrix metalloproteinase-9 release from airway epithelial cells. J Allergy Clin Immunol, 2000;106: 537–545.
    22. Jesmin S, Gando S, Zaedi S,et al. Chronological expression of PAR isoforms in acuteliver injury and its amelioration by PAR2 blockade in a rat model of sepsis. Thrombosis and Haemostasis, 2006; 96(6):830-838.
    23. Kazerani HR, Plevin R, Kawagoe J, et al. Lack of effect of proteinase-activated receptor-2 (PAR2) deletion on the pathophysiological changes produced by lipopolysaccharide in the mouse: comparison with dexamethasone. J Pharm Pharmacol, 2004; 56:1015–1020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700