用户名: 密码: 验证码:
污染液在地基土体中迁移及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以安徽淮南垃圾填埋场、西溪湿地和富阳中大西郊半岛项目三种不同类型污染场地作为研究对象,通过场地勘察、污染物测定得到土体中不同污染物在空间上的分布规律及迁移特性,对深层土体污染的现状进行了评价。分别以氯离子、总氮和三甲苯为示踪污染物,通过理论分析结果和实测数据的比较,得到合理的污染物迁移模拟参数,对污染物在土体中的迁移扩散趋势进行了预测,并对不同类型的污染场地控制提出了相应的工程控制措施。
     (1)用钻机钻进的方法在填埋场及工业污染区域进行深层取土,填埋场内垃圾层或松散土层用套管护壁以防坍孔,取样过程中用中空岩芯管钻取通长完整土样,避免土样被污染液污染,取样深度一般须达到不透水层;在河水底泥中深层取样比陆地困难,本文所用取样器是课题组拥有发明专利的新型底泥取样器,能一次性钻取2m深底泥样品,操作方法简单,所取土样完整通长,所取底泥样不会受到河水洗刷的影响,取样效果很好。
     (2)本文对污染液及污染土分析测试的污染物有重金属、有机物、COD、氨氮、总氮、总磷、氯离子和痕量有机物等;用全消解法测定土体中重金属全量来评价其质量等级,用逐步提取法测定不同深度土体中重金属各种形态所占比例,分析比较有机物含量与重金属形态的关系;用蒸馏滴定法测定氨氮、总氮含量评价土体不同深度富营养化程度。
     (3)淮南填埋场属于集中污染源引起的土体污染类型,其底部土层中,重金属在0-2m深度范围内含量较高,随着深度增加含量逐渐减小并趋近背景值,填埋场外各勘测点重金属含量沿深度方向变化幅度较小。填埋场内下伏土层中可交换态重金属占总量百分比低于1%,绝大部分重金属主要以残渣态、铁锰结合态和有机态存在,这显著限制了重金属随地下水的运移和扩散。填埋场内与渗滤液充分接触的土层有机态重金属所占百分比明显高于场外背景值,但随着深度增加,有机态含量显著减少并趋于背景值,该分布规律与土体中有机质含量测试结果类似,说明有机质含量高的土层对各重金属有较强的吸附能力。通过地累积指数、富集系数及生态危害指数法对不同深度土体重金属污染评价结果表明:填埋场内1m深度内Cu、Pb、Cr有部分位置呈中度污染,1m深度以下及填埋场外部土层均为无污染-中度污染。
     (4)淮南填埋场堆体内外存在近10m水头差,以氯离子为污染因子进行数值模拟预测可知,经过30年时间渗滤液中氯离子可以迁移到地下4m深度;50年到达5.5m深度左右,100年则达到6-7m深度,而在水平方向,100年后氯离子向下游迁移距离大约为50m,水头是影响该填埋场污染物迁移扩散的主要因素,控制该填埋场土体污染的关键是控制填埋场内渗滤液的水头,通过数值模拟结果可知,当堆体内水体降低到4m时,对污染物迁移深度及水平迁移距离有着较大的影响。
     (5)西溪湿地底泥中重金属、总氮、总磷、有机质在底泥中沿深度变化规律明显:随着埋深增加总体呈降低的趋势,在0.6 m深度附近趋于陆域土壤平均值。重金属含量均未超过国家土壤质量二级标准。用地累积指数和生态危害指数法对底泥重金属污染进行评价:埋深浅于0.6 m的底泥污染程度较高,以中度污染为主,埋深大于0.6 m的底泥没有受到重金属污染或者为轻度污染。底泥有机指数的差异表明:表层底泥受有机污染(富营养化程度)比较严重,0.2~0.6m深度底泥属于尚清洁,0.6m深度以下的稳定层底泥基本未受到有机污染或者为轻度污染,氮、磷在表层底泥孔隙水和上覆水之间存在3~5倍的浓度梯度,在适当条件下,可从底泥孔隙水中向上覆水体释放。
     (6)用总氮为作为底泥中污染物迁移模拟因子,经过15年后,底泥孔隙水中总氮可以入渗到1m深度,30年后接近1.5m,60年后将到达2m深度,120年后可以深达2.5m;经数值模拟发现,不疏浚底泥,只实行上覆水置换,只需要1年半时间,水面0.5m水深处的水体TN含量即达到国家Ⅲ类水标准,5年后该处TN含量达到3.22mg/l,超过了国家V类水质量标准。因此,对底泥进行疏浚,并对上覆水体进行置换是彻底解决河水富营养化的关键,根据模拟计算结果显示,0.6m深度可作为湿地底泥疏浚的参考依据,当疏浚深度不够时对控制水体污染影响很大;用底泥覆盖法具有施工简单、费用低廉的优点,在一定时间内对污染底泥控制有着较好的效果,但对应用条件有较多的要求。
     (7)富阳中大项目污染土为典型的化学工业污染场地,测试结果表明,区域内主要污染物为重金属和化学有机污染物。沿深度方向,重金属Zn在1.75~6.75m深度范围内含量较高,总体呈上部高下部底的规律,在部分深度位置有累积现象,从浓度上看部分超过展览会土壤质量标准中A类土标准,但未超过B类标准;有机污染物集中的1.8~5.5m深度范围内,但种类繁杂,同一地点不同深度常见不同有机污染物的增加或缺失现象,从平面上看,区域1和区域2的污染较重,区域1中钻孔11位置的三甲苯超过B级标准近1倍,是该区域有机污染最严重的地方,需要进行控制处理后方能投入开发使用。
     (8)对富阳中大项目污染土用围堵法进行控制,数值模拟结果表明,当地下室底板不提升时,如果污染物运移以扩散为主,在70年后污染晕将向在防渗墙内运移34cm,尚未到达非污染区;如果墙内水位长期高出墙外水位1米,则70年后非污染区墙面污染物的含量为25 mg/kg,超过了A级标准,需要控制好墙内外的水头才能保证防渗帷幕的发挥较好的拦截效果;若将地板提升2m,在72年的服务年限内,污染物尚不能到达地下室地板,离防渗帷幕非污染区也有48cm的距离,控制效果较好,可以作为该场地污染土控制的首选方案。
Contaminated soil formed by the diffusion of polluted liquid are harmful to the environment and human health directly or indirectly. The contaminated soil from Huainan landfill, Xixi wetland and Fuyang Zhongda project are the research object in this article. The distribution and migration characteristics are deduced by the site survey, concentration of different pollutants measured in soil.Chloride ions and total nitrogen in soil are used as tracer contaminants. With the comparison of measured data and the theoretical analysis results, the reasonable pollutant migration parameters are obtained to predicte the diffusive trend of pollutants in soil. The performance of vertical anti-seepage curtain blocking the diffusive of pollutants in soil are verified.
     (1) The method of drilling is used in landfill and industrial pollution aera for deep soils sampling.It should be attention to using garbage to keep slumping hole from collapse. Hollow core tube sampler is used to drill out long complete soil samples, which avoid soil samples are contaminated by pollutant. It is commonly for the sampling depth reaching impervious layer. It is difficult to drill the sediment sample in river than in land. In this paper, the sediment sampler is our research group's patent invention.which can drill deep sediment samples more than 2m long. Soil samples drilled by that method is very simple, and the sediment samples will not be influenced by polluted water.
     (2) The pollutants detected in this paper including heavy metals, organic matter, COD. ammonia nitrogen, total nitrogen, total phosphorus, chloride ion and trace-level organic compounds, etc.; With the total digested methode. the concentration of heave metal could evaluate the quality level.Gradually extraction and test of heavy metal in soil shows the various forms in soil.Use distillation titration ammonia nitrogen, total nitrogen content in different soil depth could evaluate eutrophication level.
     (3) Huainan landfill belongs to the concentrated pollution sources.In the bottom layer, the heavy metals in the depth range of 0-2m had high content levels..and it gradually decreased with depth and approaches the background value. Beneath the landfill soil the exchangeable heavy metals is less than 1% of the total content, and most of the heavy metals are mainly in residual form, manganese and orgnic bound state, which significantly limits the heavy metals migration in groundwater. The percentage of orgnic states of heavy metal in which leachate full contacted with the organic layer was higher than of the background values, but with the depth increase, a significant reduction in organic content and tends to the background.The distribution of organic matter content along depth are similar to it. which indicating that high soil organic matter content of various heavy metals have a strong adsorption capacity. From Accumulate Index, Enrichment Factor and Ecological Risk Index for different depths of soil heavy metal pollution evaluation.it is shown that Im depth of the landfill Cu, Pb, Cr are moderate polluted, and lm below the depth of landfill external field are non-polluting to moderate soil contamination.
     (4) There is near 10m head in the landfill and the chloride ion is choiced to predict the contaminants migration. The results shows that after 30 years the chloride can migrate underground 4m depth; about 5.5m depth afer 50 years, and it reached 6-7m in depth afer 100 years.In the horizontal direction, the migration of chloride ions to the downstream is approximately 50m distance after 100 years.The high head in landfill is the main factor of the migration and diffusion of pollutants in soil strata under the landfill.Through the numerical simulation results show that the the head decreased to 4m, the migration of contaminants are effected seriously.
     (5) The contents of heavy metals.TN,TP,OM in the sediments at different depths were tested to evaluate the heavy metals pollution degree, as well as to determine their distribution along depth in this wetland. The tests and evaluation results show that the sediments were moderately polluted within 0.6m below the river bed, and not polluted at the depth deeper than 0.6m with index evaluation methods. The amount of heavy metals are not exceeding II limit of National Soil Standard.The amount of N.P in the shallow sediments was found to be far more than that in pore water, which is in turn much more than that in the above water. So N and P in pore water of sediments could be released into the above water due to the concentration gradient.
     (6) The TN is used to simulate transport of pollutants in sediments, and the results show that the TN can infiltrate to lm depth in sediment after 15 years.1.5m depth after 30 years.2m depth afer 60 years and 2.5m depth after 120 years. The numerical simulation results also showed that the water qulity meet the national III standard afer a half years if just using th method of dredging sediment without implementation of the overlying water replacement.and the TN content reached 3.22mg/L, exceeding the amount of state V water quality standard afer 5 years. Therefore, sediment dredging, and the replacement of the overlying water is the key to solve water eutrophication. According to the simulation results, the top 0.6 m sediment should be dredged from an economy point of view. Sediment covering method has simple construction, low-cost advantages in controling contaminated sediment, but more conditions on the application requirements.
     (7) The region of Fuyang Zhongda project is a typical chemical industrial pollution sites. and the test results show that the main pollutant within the region are heavy metal and chemical organic pollutants. Along the depth direction, heavy metal Zn in 1.75-6.75m depth range concentration is higher, but there is no apparent rules. Most of the contaminant concentration in soil samples are over the A class of exhibition soil standards, but not more than class B standard. Organic pollutants are concentrated in 1.8-5.5 m depth. From plane look, regional 1 and regional 2 pollution is serious, especially Trimethyl Benzene in some regional are more than grade B standard nearly 50%, was the most serious regional organic pollution is the place, need to undertake focused and control of position.
     (8) Large projects on polluted soil Fuyang containment method used to control the numerical simulation results show that when the basement floor does not improve, if the spread of contaminant transport to the main halo in 70 years after the pollution inside will be shipped in the Wall moved 34cm, not yet reached the non-contaminated areas; if the walls above the water level in the long-term water level of one meter outside the wall, the wall 70 years after the levels of contaminants in non-contaminated areas is 25 mg/kg, more than the A level standard, you need to control the Head inside and outside walls to ensure good play impervious curtain blocking effect; If the floor to enhanced 2m, the pollutants still can not reach the basement floor in the service life of 72 years, which have good control effect, and this method can be used as the first choice for control this type polluted soil strata.
引文
[1]Akcay H, Oguz A, Karapire. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments [J]. Water Research,2003,37:813-822.
    [2]Andrea C., Claudio, C., Antonio M., Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging[J]. Environmental Pollution,2003,122:235-244.
    [3]Anna F, Claudio E, Luigi V. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po[J]. Chemosphere,2007,68:761-768.
    [4]Baptista Neto J A, Smith B J, McAllister J J. Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil[J]. Environ. Pollut.2000,109:1-9.
    [5]Besnard E, Chenu C, Robert M. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils [J]. Environmental Pollution.2001,112:329-337.
    [6]Cairney T. Contaminated land problems ans solutions[M]. E&FN SPON.An imprint of Routledge.London an NewYork,2003:6.
    [7]Chen P H, Wang C Y. Investigation into municipal waste leachate in the unsaturated zone of the red soil[J]. Environmental International,1997,23:237-245.
    [8]Chen P H.Assessment of leachates from sanitary landfills:Impact of age,rainfall,and treatment[J].Environmental International,1996.22(2):225-236.
    [9]Dell Anno A, Mei M.L, Pusceddu A et al. Assessing the trophic state and eutrophication of coastal marine systems:a new approach based on the biochemical composition of sediment organic matter[J]. Marine Pollution Bulletin 2002,44:611-622.
    [10]Du Y J, Hayashi S, Xu Y F. Some factors controlling the adsorption of potassium ions on clayey soils[J]. Applied Clay Science.2004.27:209-213.
    [11]Fan W H, Wang W X, Chen J S, et al. Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China[J]. Marine Pollution Bulletin[J],2002,44:816-832.
    [12]Elisabeth R. Soil Contamination profiles at Marambaia M.S.W. landfill, Brazil.5th ICEG Environ Geotech vol II,2006,1240-1247.
    [13]Foose G. J, Benson C H, Edit T B. Evaluating the effectiveness of landfill liners. In: Proceedings 2nd international conference onenvironmental geotechnics[J]. A.A. Balkema. Rotterdam,1996:217-221.
    [14]Forstner U, Ahlf W, Calmano W. Sediment quality objectives and criteria development in Germany[J]. Water Sci Technol,1993,28(8):307.
    [15]Ergin M, Saydam C, Basturk O et al. Heavymetal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea ofMarmara[J]. Chem. Geo.1991,91:269-285.
    [16]Gartung I E. Landfill technology-German practice of geotechnical landfill design and construction[C]. Complied for Zhejiang university,2006.
    [17]Gade B.Pollmann H, Heindl A, et al.Long-term behaviour and mineralogical reactions in hazardous waste landfills:a comparison of observation and geochemical modeling. Environmental Geology.2001,40(3):248-256.
    [18]Habes G, Nigem Y. Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan[J]. Chemosphere 2006,65:2114-2121.
    [19]Hausmann M N. Engineering principles of ground modification [M]. McGraw-Hill Inc., New York,1990.
    [20]Hakanson L.An ecological risk index for aquatic pollution control:a sedimentological approach [J]. Water Research,1980,14 (8):975-1001.
    [21]Habes G, Nigem Y. Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan[J].Chemosphere,2006,65:2114-2121.
    [22]Honglay C, Yuan W. Investigation into municipal waste leachate in the unsaturated zone of red soil [J]. Environment Intemationai,1997,23(2):237-245.
    [23]Karamanos R E,Bettany J R,Rennie D A.Extractability fo added lead in soils using lead-210[J]. Can. J. of Soil Sci, (1976) 56:37-42.
    [24]Kugler H.Ottner F.Froesechl H,Adamcova R.Schwaighofer B.Retention of inorganic pollutants in clayey base sealings of municipal landfills. Applied Clay Science,2002,21: 45-58.
    [25]Kjeldsen P.Barlaz M,Rooker A P.,et al.Present and long-term composition of MSW landfill leachate:a review[J].Critical Review of Environmental Science Technology,2002,32 (4): 297-336.
    [26]Kjeldsen P.Attenuation of landfill leachate in soil and aquifer material [D]. Ph. D. Thesis, Department of Environmental Engineering, Technical University of Denmark; 1986. Kevin G. Taylor & Philip N. Owens。 Sediments in urban river basins:a review of sediment-contaminant dynamics in an environmental system conditioned by human activities[J]. J Soils Sediments.2009,9:281-303.
    [27]Koda E, Wienclaw E, Martelli L.Transport modelling and monitoring research use for efficiency assessment of vertical barrier surrounding old sanitary landfill[J]. Ann. Warsaw Univ. of Life Sci. SGGW, Land Reclam.2009.41:41-48.
    [28]Krizek R J, Maden MG. Performance of chemically grouted sands [J]. In:Issues in Dam Grouting, ASCE, Denver,CO1985,:1-26.
    [29]Jefferies S A. Bentonite-cement slurries for hydraulic cutoffs[J]. In:Proc.,10th Int. Conf. SM&FE,1981,1:435-440.
    [30]Johnson A I. Hydraulic barriers in soil and rock:a symposium ASTM Committee D-18 on Soil and Rock, United States Committee on Large Dams[M].1985.
    [31]Lieven B, Ronny B. Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient:relationship with fish condition factor[J]. Environ Poll,2003, 126:919.
    [32]Loukia C, Panagiotis G., Athanasios K et al. Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece[J]. Environment International,2008,34:210-225.
    [33]Lerman A.Geochemical processes-water and sediment environments[M].Wiley interscie-nce. New York,1979.
    [34]Lin S C. Four pesticides groundwater pollution study[D]. Master's Thesis. Department of Soil, National Chung-Hsing University, Taichung, Taiwan, Republic of China,1989.
    [35]Lin H. C J, Richards D R,Talbot C A et al. A Three-Dimensional Finite Element Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated Media, Version3.0. USA:Aquaveo.1-105,2009.
    [36]Leidmann P,Fischer K.Nublein F et al. Removal of heavy metals from polluted soil with grass silage juice[J].Chemosphere,1994,28(2):383-390.
    [37]Macklin M G., Dowsett R B. The chemical and physical speciation of trace metals in fine grained overbank flood sediments in the Tyne basin, north-east England[J]. Catena, 1989,16:135-151.
    [38]Mahaney W C,Hancock R G V. The effects of industrial pollution on soils in the western Alps,Chamonix area,France.Journal of Radioanalytical and Nuclear Chemistry.1989, 131:289-298.
    [39]Marijan A.Nevenka M, Bozena.et al. The impact of contamination from a municipal solid waste landfill (Zagreb.Croatia) on underlying soil[J]. Water Science and Technology.1998, 78(8):203-210.
    [40]McGinley P M, Katz L E, Weber W J. A distributed reactivity model for sorption by soils and sediments Multicomponent systems and competitive effects [J].Environmental Science and Technology,1993.27(8):1524-1531.
    [41]Methods for Transient and Coupled Problems[J].1987,2:13-42.
    [42]Mohapatra S P. Distribution of heavy metals in polluted creek sediment[J]. Environ Monit Assess,1988,10:157-163.
    [43]Mucha A P, Vasconcelos M T S D, Bordalo A A. Macrobenthic community in the Doura estuary:relations with trace metals and natural sediment characteristics[J]. Environ. Pollut. 2003,121:169-180.
    [44]Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geo journal,1969, 2:109-118
    [45]Mulligan C N, Yong R N. Gibbs B F. Heavy metal removal from sediments by biosurfactants[J]. Journal of Hazardous Materials,2001,85:111-125.
    [46]Oili K. Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SWFinland[J]. Silva Fennica,2003,37(3),399-415.
    [47]Peters R W, Shem L. Adsorption/desorption characteristics of lead on various types of soil[J]. Environ.Progress.1992,11(3):234-240.
    [48]Qian X D, Koerner R M. Gray D H.Geotechnical aspects of landfill design and construction. Prentice-Hall[J]. Inc, New Jersey,2002:131-179.
    [49]Razo I,Carrizales L.Castro J,et al. Arsenic and heavy metal pollution of soil, water and sediments in a Semi-Arid climate mining area In Mexico[J]. Water Air Soil Poll,2004,152: 129-152.
    [50]Riley R G, Zachara J M.Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research[M].U.S. Department of Energy.
    [51]Ritter C J,Rinefierd S M.Natural background and pollution levels of some heavy metals in soils from the area of dayton,Ohio.Environmental Geology.1983,5(2):73-78.
    [52]Ritter E. Soil Contamination Profiles at Marambaia M.S.W Landfill[C],5th ICEG Environmental Geotechnics volume Ⅱ, Brazil.2006:1240-1247.
    [53]Rowe R K, Booker J R.An efficient Analysis of Pollutant Migration though Soil.Numerical Marzougui A, Mammou A B. Impact of the dumping site on the environment:Case of the Henchir El Yahoudia Site, Tunis, Tunisia. C. R[J]. Geoscience, 2006,338:1176-1183.
    [54]Rowe R K, Booker J R.An efficient analysis of pollutant migration through soil.In numerical methods in transient and coupled systems[J],John Wiley,1987:13-42.
    [55]Rowe R K, Brooker J R.Clayey barrier systems for waster disposal facilities.Chapman & hall[J].1995.London.
    [56]Rowe R.K., Booker J R., The analysis of Pollutant migration in a no-homogeneous soil[J]. Geotechnique,1984,34(4):601-612.
    [57]Rowe R K,, Booker J R.A finite layer technique for calculating 3D Pollutant migration in soil[J].Geoteehnique.1986,36:205-226.
    [58]Rowe R.K, Caers C.J., Barone F., Laboratory determination of diffusion and distribution coefficients of contaminants using undisturbed clayey soil[J]. Canadian Geotechnical Journal.1988,25(1):108-118.
    [59]Rowe R K, Quigley R M, Brooker J R. Clay barrier systems for waste disposal facilities [M]. Chapman & Hall, London,1995.
    [60]Sahu S K, Ajmal P Y, Pandit G G,et al. Vertical distribution of polychlorinated biphenyl congeners in sediment core from Thane Creek area of Mumbai, India[J]. Journal of Hazardous Materials.2009 (164):1573-1579.
    [61]Sanin F D., Knappe D R U., Barlaz M A. The fate of toluene, acetone and 1,2-dichloroethane in a laboratory scale simulated landfill[J]. Water Res., Amsterdam, 2000.34:3063-3074.
    [62]Shackelford C D, Rowe R.K., Contaminant transport modeling[C]. Proc.3 rd Int Congress on Environmental Geotechnics V613, Balkema, Rotterdam,1998.939-956.
    [63]Shackelford C D. Diffusion of containment through waste containment barriers[J]. Transportation Research Record 1219, Transportation Research Board,National Research Council, Washington, D.C.,1989,169-182.
    [64]Shackelford C D.Transit-time Design of Earthen Barriers.Engineering Geology,1990,29 (1):79-94.
    [65]Singh J,Huang P.M, Hammer U.T, et al. Influence of citric acid and glycine on adsorption of Mercury(II) by Kaolinite under various pH conditions [J]. Clay and Clay Minerals, 1996,44:41-48.
    [66]Sheng D C, Smith D W. Numerical modeling of competitive components trans port with non linear adsorption [J]. International Journal for Numerical and Analytical Methods in Geomechenics.2000.24:47-71.
    [67]Schrab G E, Brown K V, Donnelly K C. Acute and genetic toxicity of municipal landfill leachate[J]. Water, Air, and Soil Pollution,1993,69:99-112.
    [68]Srivastava P,Singh B.Angove M.Competitive adsorption behavior of heavy metals on kaolinite[J] Journal of Colloid and Interface Science,2005,290:28-38.
    [69]Schiff K C,Weisberg S B,Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Mar. Environ[J]. Res.1999,48: 161-176.
    [70]Slack R J,Gronow J R,Voulvoulis N.Household hazardous waste in municipal landfills: contaminants in leachate[J]. Science of the Total Environment,2005,337:119-137.
    [71]SmithD,Pivonka P,Christian J et al.Theoretical alanalysis of anion exelusion and diffusive transport through platy-clay soil[J]. Transport in porous media.2004,57:251-277.
    [72]Talor K G,Owens P N.Sediments in urban river basins:a review of sediment-contaminant dynamics in an environmental system conditioned by human activities.J Soils Sediments,2009,9(4):281-303.
    [73]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of trace metals [J]. Analytical Chemistry,1979,51:844-851.
    [74]Tokunaga S.Soil pollution:State of the art in Japan and soil washing process.1996,2(2): 126-139.
    [75]Xie H J, Chen Y M, Zhan L T.Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system [J]. Journal of Zhejiang University Science A 2009,10(3):439-449.
    [76]Yanful E K,Wayne N H,Quigley R M.Heavy metal migration at a landfill site, Sarnia, Ontario, Canada-I.Thermodynamic assessment and chemical interpretations. Applied Geochemistry.1988,3(5):523-533.
    [77]Yaws C L.Handbook of the Transport property data:viscosity,thermal conductivety and diffusion cewfficients of liquids and gases.gulf pub,Houston,1995.
    [78]Yi Y J, WANG Z Y, Zhang K, et al. Sediment pollution and its effect on fish through food chain in the Yangtze River[J]. Int J Sediment Res.2008,23:338-347.
    [79]Yu R L,Yuan X, Zhao Y H et al. Heavy metal pollution in intertidal sediments from Quanzhou Bay[J], China. J Environ Sci,2008,20:664-669.
    [80]USEPA. Slurry trench construction for pollution migration control[M]. Superfund, EPA-540/2-84-001,1984. Feb.
    [81]Zhang J, Huang W W, Liu S M et al. TransPort of Partieulate heavy metal towards the China sea:a Preliminary study and comparison [J]. Marine Chemistry,1992,40:161-178.
    [82]Zhang J, Liu C L, Riverine composition and estuarine geochemistry of particulate metals in China Weathering features, anthropogenic impact and chemical fluxes[J]. Estuar. Coast. Shelf S.2002,54:1051-1070.
    [83]白国良,梁冰.细河污染物在地下水中运移规律的模拟研究.农业环境科学学报,,2007,26(5):1911-1916.
    [84]毕春娟.长江口潮滩重金属环境生物地球化学研究[D].上海:华东师范大学,2004:157-159.
    [85]陈云敏,谢海建,柯瀚.层状土中污染物的一维扩散解析解[J].岩土工程学报,2006,28(4):521-524.
    [86]陈刚才,甘露,万国江.土壤有机物污染及其治理技术[J].重庆环境科学.2000,22(2):45-49.
    [87]程静.ICP-AES法测定水中总磷[J],山西化工,2003,23(2):38-39.
    [88]邓焕广,张菊,陈振楼.上海市老港垃圾填埋场潮滩重金属污染及评价研究[J].土壤通报,2007,38(2):347-351.
    [89]杜延军,金飞.刘松玉等.重金属工业污染场地固化/稳定处理研究进展[J].岩土力学.2011,32(1):116-124.
    [90]范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相关分析[J].湖泊科学,2000,4(12):359-366.
    [91]方满,朱俊林,刘洪海.垃圾填埋场底土层污染状况调查[J].环境监测管理与技术,2000,12(1):23-25.
    [92]弓晓峰,陈春丽,周文斌等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,24(4):732-736.
    [93]郭怡雯,张明,陈熙.硝酸盐(钙)颗粒应用于底泥原位修复的研究[J].环境研究与监测,,2009,1:51-55.
    [94]胡瑞霞,高柏,孙占学.某铀矿山尾矿坝下游土壤重金属形态分析[J].金属矿山,2009,2:160-162.
    [95]韩洪晶,王宝辉,王西蕊.石油污染物在湖底淤泥中迁移和分布规律的研究[J].齐齐哈尔大学学报,2009,25(1):88-93.
    [96]韩立华.电阻率法在污染土评价与处理中的应用研究[D].2006,东南大学,博士学位论又.
    [97]洪祖喜,何品晶,邵立明.水体受污染底泥原地处理技术[J].环境保护,2002,10:15-17.
    [98]蒋萏芳,郑乐平,孙为民.淀山湖上覆水与沉积物孔隙水中重金属的分布特征[J].环境化学,2003,22(4):318-323.
    [99]贾振邦,梁涛,林健枝等.香港河流重金属污染及潜在生态危害研究[J].北京大学报,1997,33(4):485-492.
    [100]李振泽.土对重金属离子的吸附解吸特性及其迁移修复机制研究[D].2009,浙江大学博士论文.
    [101]廖利,全宏东,吴学龙等.深圳盐田垃圾场对周围土壤污染状况分析[J].城市环境与城市生态,1999,,12(3):51-53.
    [102]龙晓燕,胡中雄.垂直隔离工程控制污染运移的应用研究[J].工程勘察,2000,(1):8-12.
    [103]刘伟.垃圾填埋场防渗帷幕服役寿命分析及厚度计算方法[D].浙江大学,2010,硕士学位论文.
    [104]刘文清.最新水利水电防渗工程施工工艺与技术标准使用手册.安徽:安徽音像文艺出版社,2004.
    [105]楼紫阳,柴晓利,赵由才等.生活垃圾填埋场渗滤液性质随时间变化关系研究[J].环境科学学报,2007(6):987-992.
    [106]李剑超.河湖底泥有机污染物迁移转化规律研究[D].2002,河海大学博士论文.
    [107]刘长礼,张云,张凤娥等.北京某垃圾处置场对地下水的污染[J],地质通报,2003,22(7):531-535.
    [108]刘长礼,张云,焦鹏程.上海浦东表层粘性土对城市垃圾污染质的阻隔能力[J].地球学报.2001,,22(4):360-364.
    [109]罗玉兰,徐颖,曹忠.秦淮河底泥及间隙水氮磷垂直分布及相关性分析.农业环境科学学报,2007,26(4):1245-1249.
    [110]卢丽君.利用生物促生剂和曝气修复受污染底泥的试验研究[D].东华大学,2007,硕士学位论文.
    [111]马伟芳.植物修复重金属—有机物复合污染河道疏浚底泥的研究[D],天津大学,2006,博士学位论文.
    [112]马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究[J].环境科学,1999,,20(2):7-11.
    [113]潘建民.湖州市杨家埠垃圾填埋场环境污染调查及评价.环境污染与防治,1996,18 (2):34-37.
    [114]全国科学技术名词审定委员合.土壤学名词审定委员会·土壤学名词[M].北京,科学出版社,1998.
    [115]孙毅,李光荣.污染土固化处理技术在治理深圳河工程中的应用[J].水利水电快报,2007,28(11):24-26.
    [116]宋跃群,麻素挺,陶甄彦.温州杨府山垃圾填埋场底层土壤污染状况研究[J].环境卫生工程,2005,13(5):16-18.
    [117]桑稳姣,程建军,姜应和.武汉墨水湖底泥中总氮、总磷污染特征分析[J].中国给水排水,2008,24(5):45-47.
    [118]孙宁波,王宇庭,孙春光,等.黄河三角洲水库底泥中氮、磷特征及其与水体磷富营养化关系[J].青岛农业大学学报(自然科学版),2007,,24(4):274-278.
    [119]宋宪强,雷恒毅,余光伟.重污染感潮河道底泥重金属污染评价及释放规律研究[J].环境科学学报,2008,28(11):2258-2268.
    [120]沈亦龙,何品晶,邵立明.太湖五里湖底泥污染特性研究[J].长江流域资源与环境,,2004,,13(6):584-588.
    [121]沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律分析[J].污染防治技术,1999,12(1):10-13.
    [122]沈耀良.垃圾填埋场渗滤液中重金属的去除[J].环境保护,1994,3:15-16.
    [123]隋桂荣.太湖表层沉积物中OM.TN、TP的现状与评价[J].湖泊科学,1996,8(4):319-324.
    [124]张敏.长江中下游浅水湖泊富营养化机制与重金属污染研究[D],中国科学院研究生院博士学位论文,2005,北京.
    [125]王高辉.矿区煤矸石山周围土壤重金属分布规律研究[J].能源环境保护,2008,22(2):11-14.
    [126]王洪涛.多孔介质污染物迁移动力学[M],高等教育出版社,2008.
    [127]王澎,王峰,陈素云.SVE法修复污染场地所需工艺参数的确定,环境工程,,2010,28(6):108-112.
    [128]王焘,郑余阳,杨磊.苯酚污染土壤的电动力学修复技术研究[J].环境科技,2009,22(2):22-25.
    [129]王浩,章明奎.污染土壤中有机质和重金属互相作用的模拟研究[J].浙江大学学报(农 业与生命科学版).2009.35(4):460-466.23-25.
    [130]王小雨,冯江,胡明忠.湖泊富营养化治理的底泥疏浚工程[J].环境保护,2003,2:22-23.
    [131]王永华,钱少猛,徐南妮等.巢湖东区底泥污染物分布特征及评价[J].环境科学研究,2004,17(6):22-26.
    [132]唐艳,胡小贞,卢小勇.污染底泥原位覆盖技术综述.生态学杂志,2007,26(7):1125-1128.
    [133]吴芝瑛,虞左明,盛海燕等.杭州西湖底泥疏浚工程的生态效应[J].湖泊科学,2008,20(3):277-284.
    [134]吴明,丁平.西溪国家湿地公园生态监测体系研究报告(六)[R].杭州:西溪国家湿地公园示范项目研究组,2007.
    [135]谢焰,谢海建,陈云敏.填埋场底土污染物浓度实测值和理论解的比较[J].自然灾害学报,2009,18(5):62-69.
    [136]谢海建,唐晓武,陈云敏.原始土层影响下成层介质污染物一维扩散模型[J].浙江大学学报(工学版),2006,40(12):2191-2195.
    [137]席永慧,任杰,胡中雄.污染物离子在粘土介质中扩散系数和分配系数的测定[J].岩土工程学报.2003,28(3):397-402.
    [138]徐晓炎.土壤中镉的吸附解吸特性与其对水稻吸收镉的影响[D].2004,南京农业大学,硕士学位论文.
    [139]严家平,赵志根,许光泉等.淮南煤矿开采塌陷区土地综合利用[J].煤炭科学技术.2004,32:56-58.
    [140]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属和营养元素的多元分析[J].中国环境科学,,2003,,23(2):206-209.
    [141]叶文瑾.太湖富营养化水体和底泥中微生物群落的分子生态学研究[D],2009,上海交通大学博士论文。
    [142]尤鑫,林于廉,龙腾锐.微波催化氧化技术在垃圾渗滤液处理中的应用[J].工业水处理.2009,29(5):15-18.
    [143]袁旭音,王禹,孙成等.太湖底泥中多氯联苯的特征与环境效应[J].长江流域资源与环境2004,13(3):272-276.
    [144]张海清,余海珊,崔杰锋等.龙湾涌沉积物重金属污染现状评价[J].中国环境管理.2001,2:29-31.
    [145]张宇峰,张雪英,徐炎华.土壤中水动力弥散系数的研究进展[J].环境污染治理技术与 设备.2003.4(7):8-12.
    [146]詹良通,刘伟,陈云敏等.某简易垃圾填埋场渗滤液在场底天然土层迁移模拟与分析[J].环境工程学报,2010(已录用)
    [147]张修峰,陆健健。温州三垟湿地底泥疏浚对水体总磷浓度影响的生态模型研究[J],农业环境科学学报2006,25(增刊):158-162.
    [148]张文杰,陈云敏,詹良通.垃圾填埋场渗滤液穿过垂直防渗帷幕的渗漏分析[J].环境科学学报.2008,28(5):925-929.
    [149]郑铣鑫.城市垃圾处理场对地下水的污染[J].环境科学,1989,(3):89-92.
    [150]中国农业百科全书总编辑委员会土壤卷编辑委员会.中国农业百科全书.土壤卷[M].北京:中国农业出版社,1996.
    [151]褚红榜;广州市垃圾填埋场渗滤液及其周围水体与土壤中的多环芳烃和邻苯二甲酸酯初探[D],广州大学硕士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700