用户名: 密码: 验证码:
梁子湖湿地土壤—水—植物系统碳氮磷转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是地球上重要的生存环境和生态系统,湿地碳氮磷转化是生物地球化学循环的内容之一。根据梁子湖湿地的现状,采用实地考察、室内分析、模拟试验及模型模拟方法,对梁子湖湿地土壤-水-植物系统碳氮磷转化进行了研究。主要研究结果如下:
     1 湿地土壤表层有机碳含量在10.9g/kg-39.5g/kg之间,全氮、全磷含量分别为1.39g/kg-2.91g/kg、0.41g/kg-0.52g/kg。土壤表层有机碳、全氮、全磷的分布特征是随地形部位升高(地下水位降低)而降低。土壤有机碳、全氮、全磷在剖面中的分布特征是从表层到底层逐渐降低。土壤中有机碳、全氮、全磷之间有良好的相关性。
     2 湿地土壤有机质、全氮、全磷、速效氮变异系数分别是36.0%、30.6%、13.7%和29.3%;速效磷的变异系数最高为50.4%。土壤有机质、全氮、全磷、速效氮和速效磷的空间自相关理论模型均以球状模型拟合较好。土壤有机质、全氮、全磷、速效氮具有中等空间自相关性。养分的空间自相关距离比较接近。通过克里格插值进行空间插值制图显示土壤有机质和氮磷表现出空间分布的相似性。
     3 湖水全氮平均含量0.71mg/L;铵态氮平均含量为0.065mg/L;硝态氮平均含量为0.257mg/L;全磷平均含量为0.046mg/L。梁子湖水体中氮磷含量呈明显的季节性变化。全氮含量在湖心和出水口是春季最高,冬季最低,主要入水口是夏季最高,冬季最低;硝态氮是春季最高,冬季最低;氨态氮是春季最高,夏季最低;全磷含量是冬季最高,夏季最低。梁子湖氮、氮营养的负荷分别是493.2t和122.2t。不同理论模型对湖水中磷含量的预测结果有较大差异。
     4 温度对沉积物氮、磷释放影响明显,温度高,氮、磷释放量大。pH值对沉积物氮、磷释放也有明显的影响。在偏酸(pH5.5)和偏碱(pH11.5)条件下氮、磷的释放量较湖水正常pH值(pH8.5)增大。梁子湖入水口和出水口沉积物氮、磷的释放量较湖心高。
     5 梁子湖沉积物无机磷酸盐的形态特征是:Ca-P含量最高,在55%-61%之间,Fe-P含量在26%-33%之间,O-P含量在10%左右,Al-P的含量最低,为3%-5%。不同湖区沉积物无机磷酸盐的存在形态有差别,节制闸和高河港Ca-P含量高于湖心,节制闸和湖心的Al-P+ Fe-P含量高于高河港。
     6 沉积物孔隙水中可溶性NO_3~--N浓度随沉积深度增加明显降低而NH_4~+-N浓度则显著增大;沉积物中全氮和有机氮随沉积深度增加而明显降低,NH_4~+-N随沉积深度增加而明显增加。沉积物孔隙水全磷含量随沉积深度增加而递增,而沉积物全磷及不同化学相磷含量随沉积深度增加而降低。
     7 水草分解过程中,随温度的升高向水体释放的碳、氮、磷量增加。水生植物每年约固定31768t碳。
     8 土壤中尿酶的活性在0.084NH_3-Nmg/g-0.255NH_3-Nmg/g之间,磷酸酶的活性在0.072酚mg/100g-0.309酚mg/100g之间,多酚氧化酶的活性在5.767I_2ml/100g-14.666I_2ml/100g之间。脲酶活性与有机质、全氮呈显著正相关;磷酸酶的活性与有机质、全磷和速效磷都呈正相关;多酚氧化酶的活性与有机质、全氮、全磷的含量均呈负相关关系。沉积物中尿酶和磷酸酶活性的季节变化模式为夏季活性最高,冬季活性最低。土壤多酚氧化酶活性的季节变化则表现为:秋>夏>春>冬。
     9 湿地植物全氮含量在3.45g/kg-37.75g/kg之间;植物全磷含量在
Wetland is important ecosesytem and exist environment in globe. Transformations of carbon, nitrogen and phosphorus were content of biogeochemical circulation. Because of the present of Liangzi lake wetland, studies on transformation of carbon, nitrogen, phosphorus in soil-water-plant system at wetland of Liangzi lake, E zhou, Hubei were conducted by a serial of field investigation and simulating experiment. The results were smmmarized as follows:
    1 The content of organic carbon, total nitrogen, total phosphorus were 24.2g/kg -56.8g/kg, 1.39g/kg-2.91g/kg, 0.41g/kg-0.52g/kg respectively. The organic carbon, total nitrogen, total phosphorus increased with drop of topographical location (gone up of ground-water level) in the plow layer of five typical paddy soils. The organic carbon, total nitrogen, total phosphorus was decreased form plow layer to subsoil in five paddy soil profile. The organic carbon, total nitrogen, total phosphorus had significantly correlated each other in plow layer.
    2 Soil properties varied sharply, with available phosphorus showing the highest coefficient of vaeiation and soil total phosphorus the lowest coefficient of vaeiation, their values were 50.4% and 13.7% respectively. Theoertical semivariogram models of soil organic matter, total nitrogen, total phosphorus, available nitrogen and available P were spherical model with a sill. Soil organic matter, total nitrogen, total phosphorus, available nitrogen had middle spatial correlation patterns. No significant differences in ranges of soil organic matter and nitrogen, phosphorus were found. The map of Kringing interpolation indicated that the spatial distribution of soil organic matter and nitrogen, phosphorus were similarity.
    3 The concentrations of total nitrogen, total phosphorus, NO_3~--N and NH_4~+-N were 0. 71mg/L, 0.046mg/L, 0. 257mg/L, 0. 065mg/L respectively in the water of liangzi lake. The concentrations of total nitrogen, total phosphorus, NO_3~--N and NH_4~+-N show significantly various with seasons. The concentrations of total nitrogen was high in spring, low in winter in lake centre and exit, but in entrance was high in summer, low in winter; The concentrations of NO_3~--N was high in spring, low in winter; The concentrations of NH_4~+-N was high in spring, low in summer; The concentrations of total phosphorus was high in winter, low in summer. The loading of nitrogen and phosphorus was 493.2t and 122.2t respectively. The results of prediction for phosphorus concentration in the water using different models were significant difference.
    4 The temperature and pH play an important role in nitrogen, phosphorus release. High temperature promoted the nitrogen, phosphorus released from sediment. Changing of pH in water body increased the amount of nitrogen, phosphorus released from sediment. The amount of nitrogen, phosphorus released from sediment in entrance and exit was higher than that in centre of lake.
    5 The forms of inorganic phosphorus insurface sediments were Ca-P 55%-61%, Fe-P 26%-33%, O-P about 10%, Al-P 3%-5% respectively. Ca-P was found to be the major
引文
1.中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学出版社,1983
    2.尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响.湖泊科学,1994,6(3):240-244
    3.尹毅,林鹏.红海榄红树林的氮、磷积累和生物循环.生态学报,1993,13(3):221-227
    4.王毅勇,杨青,王瑞山.三江平原大豆田氮循环模拟研究.地理科学,1999,6:555-558
    5.王春雨,万国江,黄荣贵,邹申清,陈刚才.湖泊现代沉积物中磷的地球化学作用与环境效应.重庆环境科学,2000,22(4):39-41
    6.王晓蓉,华兆哲,徐菱,赵闯,吴重华.环境条件变化对太湖沉积物磷释放的影响.环境化学,1996,1:15-19
    7.王春雨,万国江,尹澄清.红枫湖,百花湖沉积物可交还性氮和固定铵的赋存特征.湖泊科学,2002,14(4):301-309
    8.王卫民,杨干荣,樊启学,张家波.梁子湖水生植被.华中农业大学学报,1994,3:281-290
    9.王江涛,赵卫红,张正斌.海水中天然溶解有机碳在针铁矿上的吸附.海洋与湖沼,2000,31(3):309-313
    10.王宪礼.我国自然湿地的基本特点.生态学杂志,1997,16(4):64-67
    11.王宪礼,李秀珍.湿地的国内外研究进展.生态学杂志,1997,16(1):58-62
    12.王政权.地质统计学及在生态学中的应用[M].北京:科学出版社,1999
    13.王效科,庄亚辉,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(1)13-16
    14.王效科,庄亚辉,李长生.中国农田土壤氮20排放通量分布格局研究.生态学报,2001,21(8):1225-1232.
    15.史蒂文森(闵九康等译).农业土壤中的氮[M].北京:科学出版社,1989
    16.田均良,刘普灵,李雅琦,琚彤军,张梅花.西藏高原土壤—植物系统元素分布特征研究.环境科学学报,1996,16(1):37-44
    17 白占国,吴丰昌.百花湖季节性水质恶化的机理研究.重庆环境科学,1995,3:10-14
    18.白永飞,许志信,李德新.内蒙古高原针茅草原群落土壤水份和碳氮分布的小尺度空间异质性.生态学报,2002,22(8):1215-1223
    19.白军红,王庆改,余国营.吉林向海沼泽湿地土壤中氮素分布特征及生产效应研究.土壤通报,2002,33(2):113
    20.白军红,邓伟,张玉霞.内蒙古乌兰泡湿地环带状植被区土壤有机质与全氮空间分异规律.湖泊科学,2002,14(2):145-151
    21.白军红,邓伟,朱颜明.水陆交错带土壤氮素空间分异规律研究—以月亮泡水陆交错带为例.环境科学学报,2002,3:343-348
    22.白军红,邓伟,朱颜明.湿地生物地球化学过程研究进展.生态学杂志,2002,21(1):53-57
    23.白军红,余国营,王国平.地统计学在湿地土壤养分空间异质性研究中的应用.农业环境保护,2001,20(5):311-314
    24.白军红,邓伟,张玉霞.莫莫格湿地土壤氮磷分布规律研究.水土保持学报,2001,15(4):79-81
    25.白军红,邓伟,朱颜明,翟金良,张玉霞.湿地土壤有机质和全氮含量分布特征对比研究—以向海与科尔沁自然保护区为例.地理科学,2002,22(2):231-237
    26.白军红.湿地土壤养分的空间异质性研究方法构想.水土保持学报,2001,15(5):321-326
    27.白红军,余国营,张玉霞.向海湿地土壤中无机磷酸盐的存在形态研究.水土保持学报, 2001,15(10):97-101
    28.白军红,邓伟,朱颜明.霍林河流域湿地土壤碳氮空间分布特征及生态效应.应用生态学报,2003,14(9):1494-1498
    29.白军红,王长科.湿地土壤养分的空间异质性定量研究方法.国土开发与整治,2001,2:39-44
    30.付永清,周易勇.沉积物磷形态的分组分离及其生态学意义.湖泊科学,1999,11(4):376-38
    31.许金树,李亮歌.台湾海峡中、北部沉积物中磷的存在形态.海洋与沼,1990,21(1):62-69
    32.刘景双,王国平.湿地生物地球化学研究概述.水土保持学报,2002,4:1378-1485
    33.刘景双,孙雪利,于君宝.三江平原小叶樟和毛果苔草枯落物中氮素变化分析.应用生态学报,2000,1(6):898-902
    34.刘景双,于君宝,王金达.淡水沼泽湿地泥炭沉积中氮素分布特征.环境科学,2003,2:41-45
    35.刘景双,杨继松,于君宝,王金达.松辽平原黑土有机碳含量时空分异律.地理科学,2003.6:668-673
    36.刘建康.高级水生生物学[M].北京:科学出版社,1999
    37.刘建康.东湖生态学研究[M].北京:科学出版社,1995
    38.刘建新.不同农田土壤酶活性与土壤养分相关关系研究.土壤通报,2004,4:523-525
    39.刘敏,侯立军,许世远.河口滨岸潮滩沉积物-水界面氮、磷的扩散通量.海洋环境科学,2001,20(3):19-23
    40.刘付程,史学正,潘贤章,于东升.太湖流域典型地区土壤磷素含量的空间变异特征.地理科学,2003,23(1):77-81
    41.刘景双,杨继松,于君宝,王金达.三江平原沼泽湿地土壤有机碳的垂直分布特征研究.水土保持学报,2003,17(3):5-8
    42.刘培芳,陈振楼,刘杰.环境因子对长江口潮滩沉积物中氮H~+_4的释放影响.环境科学研究,2002,15(5):28-32
    43.刘子刚.湿地生态系统碳储存和温室气体排放研究.地理科学,2004,5:634-639
    44.刘兵钦,王万贤,宋春雷,曹秀云,周易勇.菹草对湖泊沉积物磷状态的影响.武汉植物学研究,2004,22(5):394-399
    45.关松荫.土壤酶活性影响因子的研究:Ⅰ有机肥料对土壤中酶活性及氮磷转化的影响.土壤学报,1989,26(2):72-78.
    46.关松荫,沈桂琴,孟照鹏.我国主要土壤剖面酶活性状况.土壤学报,1984,21(4):368-380
    47.邬伦.地理信息系统—原理、方法和应用[M].北京:科学出版社,2000
    48.曲向荣,贾宏宇,张海荣,李秀珍,李培军.辽东湾芦苇湿地对陆源营养物质净化作用的初步研究.应用生态学报,2000,11(2):270-272
    49.孙波,赵其国,闾国年.低丘红壤肥力的时空变异.土壤学报,2002,39(20):190-197
    50.孙雪利,刘景双,褚衍儒.三江平原小叶樟和毛果苔草中氮素营养动态分析.应用生态学报,2000,1(6):893-897
    51.孙波,赵其占,张祧林.土壤质量与持续环境Ⅱ土壤质量评价的碳氮指标.土壤,1997,4:169-175
    52.孙广友.美国湿地研究进展.地理科学,1997,17(1):87-89
    53.何池全.毛果苔草湿地植物营养元素分布及其相关性.生态学杂志,2002,21(1):10-13
    54.何池全,赵魁义,余国营,赵志春,王国平.湿地生态过程研究进展.地球科学进展,2000,15(20):165-172
    55.何池全.毛果苔草湿地植物营养元素分布及其生态适应性。生态学杂志,2001,20(6):1-4
    56.何国球.红壤农田生态系统养分循环、平衡和调控.土壤学报,1998,4:321-325
    57.何池全,赵魁义.毛果苔草湿地营养元素的积累,分配及生物循环特征.生态学报.2001,21(12):2074-2080
    58.何振立.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤,1997,2:61-69
    59.何斌,温远光,袁霞,梁宏温.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究.林业科学,2002,2:21-26
    60.吕宪国,何岩,杨青.湿地碳循环及其在全球变化中的意义[A].见:陈宜瑜主编.中国湿地研究[C].长春:吉林科学技术出版社,1995,68-72
    61.吕宪国,黄锡畴.我国湿地研究进展.地理科学,1998,18(4):293-300
    62.向万胜,童成立,吴金水.湿地农田土壤磷素的分布,形态与有效性及磷素循环.生态学报,2001,21(12):2067-2073
    63.朱广伟,陈英旭,周根娣.运河(杭州段)沉积物磷释放的模拟试验.湖泊科学,2002,14(4):343-349
    64.朱广伟,高光,秦伯强.浅水湖泊沉积物中磷的地球化学特征.水科学进展,2003,14(6):714-719
    65.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    66.朱培立,黄东迈,余晓鹤.~(14)C标记秸秆和根茬在淹水及旱地土壤中的矿化特征.土壤通报,1994,25(7):67-70
    67.宋长春.沼泽湿地生态系统土壤CO_2和CH_4排放动态及影响因素.环境科学,2004,4:1-6
    68.宋长春,王毅勇,阎百兴,娄彦景,赵志春.沼泽湿地开垦后土壤水热条件变化与碳、氮动态.环境科学,2004,3:150-154
    69.宋长春.湿地生态系统碳循环研究进展.地理科学,2003,5:622-628
    70.沈志良,刘群,张淑美.长江无机氮的分布变化和迁移.海洋与湖沼,2003,34(4):355-363
    71.沈志良,刘群.长江总氮和有机氮的分布变化与迁移.海洋与湖沼,2003,34(6):577-565
    72.沈善敏.农业系统中碳与主要营养元素循环及中国农田土壤养分收支[A].见:沈善敏主编.中国土壤肥力[C].北京:中国农业出版社,1998,57-110.
    73.肖辉林.大气沉降与森林生产生态系统的氮动态.生态学报,1996,16(1):90-99
    74.余国营.滇池水植物系统金属元素的分布特征和相关性分析研究.水生生物学报,2000,24(2):172-176
    75.沙丽清,郑征,冯治立.西双版纳热带季节雨林生态系统氮的生物地球化学循环研究.植物生态学报,2002,26(6):689-694
    76.张恒军,吴群河.底泥的氮,磷释放及其微生物影响的研究.环境技术,2003,增刊:20-23
    77.张世熔,黄元仿,李国保.黄淮海冲积平原区土壤速效磷,K的时空变异特征.植物营养与土壤学报,2003,1:83-89
    78.张志剑,王光火,王可,朱荫湄.模拟水田的土壤磷素溶解特征及其流失机制.土壤学报,2001,38(1):139-143
    79.张路,范成新,秦伯强.模拟扰动条件下太湖表层沉积物磷行为的研究.湖泊科学,2001,13(1):35-42
    80.张世熔,黄元仿,李国保,张凤荣,高峻.黄淮海冲积平原区土壤有机质的时空变异性.生态学报,2002,22(12):2041-2047
    81.张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报,2004,1:83-90
    82.张朝生,章申.何建邦长江水系沉积物重金属含量空间分布特征研究—空间自相关与分形方法.地理学报,1998,1:87-95
    83.张兴义.薄层农田黑土速效氮磷钾含量的空间异质性.水土保持学报,2004,(18)4:85-88.
    84.张银龙,林鹏.秋茄红树林土壤酶活性时空动态.厦门大学学报(自然科学版), 1999,1:38-42
    85.张文菊,童成立,赵世伟.湿地碳循环过程与计算机模拟研究.西北植物学报,2003,23(6):1049-1055
    86.张兴正,陈怔楼,邓焕广.长江口北支潮滩沉积物—水界面无机氮的交换通量及季节变化.重庆环境科学,2003,9:31-34
    87.张奋清,王丽敏,吴利斌.乌梁素海氮循环转化初探.内蒙古农业大学学报,2004,25(2):31-34
    88.张修峰,何文珊,陆健健.温州三洋湿地底泥氮、磷含量及其对水质的影响.湿地科学,2004,3:192
    89.吴丰昌,白占国,万国江,万曦.贵州百花湖沉积物中磷的再迁移作用.环境科学进展,1996.4:58-41
    90.吴振斌.梁成,成水平,贺锋,傅贵萍,陈辉蓉,邓家齐,詹发萃.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析.环境科学学报,2001,21(5):622-624
    91.吴根福,吴雪昌,金承涛.杭州西湖底泥释磷的初步研究.中国环境科学,1998.2:107-110
    92.吴金水,童成立,刘子勇.有机碳循环的计算机模拟研究:一个新模型的开发和应用[A].湖南省土壤肥料学会[C].长沙:湖南地图出版社,2001,80-83
    93.杨永兴,王世岩,何太蓉.三江平原湿地生态系统磷钾分布特征及季节动态研究.应用生态学报,2001,12(4):522-526
    94.杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望,地球科学进展,2002,4:508-514
    95.李玉中,王庆锁,钟秀丽,任娜.羊草草地植被-土壤系统氮循环研究.植物生态学报,2003,27(2):177-182
    96.李洁荣,邓业成,叶家颖.宫川蜜柑根际土壤酶活性与土壤养分含量相关性的研究.广西植物,2002,2:189-192
    97.李光录,张胜利.侵蚀土壤酶活性与土壤养分的关系.西北林学院学报,2000,3:8-11
    98.李跃林,李志辉,李志安.桉树人工林地土壤肥力灰色关联分析.土壤与环境,2001,3:198-200
    99.李跃林,彭少麟.桉树人工林地土壤酶活性与营养元素含量关系研究.福建林业科技,2002,29:36-9
    100.李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,2004,4:544-552
    101.李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析.土壤学报,2002,3:351-360
    102.李忠佩,程励励,林心雄.红壤腐殖质组成变化特点及其与肥力演变的关系.土壤,2002,1:9-15
    103.李文朝,尹澄清,陈开宁.关于湖泊沉积物磷释放及其测定方法的雏议.湖泊科学,1999,11(4):296-303
    104.李勤生,华俐.武汉东湖磷细菌种群结构的研究.水生生物学报,1989,13(4):340-346
    105.李伟,周进,王徽勤,钟扬.斧头湖挺水植被的群落学研究.武汉植物学研究,1992,10(3):273-279
    106.陆梅,田昆,陈玉惠.高原湿地纳帕海退化土壤养分与酶活性研究.西南林学院学报,2004,1:34-37
    107.范成新,张路,杨龙玉,黄文钰,许朋柱.湖泊沉积物氮磷内源负荷模拟.海洋与湖沼, 2002,4:370-378
    108.范成新.滆湖沉积物理化特性及磷释放模拟.湖泊科学,1995,4:341-350
    109.周庆,刘有美,黄锦龙.桉树林地酶活性研究初报.华南农业大学学报,1997,2:46-50
    110.周礼恺.土壤酶学[M].北京:科学出版社,1987
    111.周易勇,李建秋,张敏,陈旭东,张玉敏.浅水湖泊中沉积物碱性磷酸酶动力学参数的分布.湖泊科学,2001,13(3)261-266
    112.周慧珍.土壤空间变异性研究.土壤学报,1996,3:233-24
    113.周岳溪,陈方荣,钱易.假单胞菌摄磷和释磷条件的研究.环境科学学报,1994,14(4):212-215
    114.林荣根,吴景阳.黄河口沉积物中无机磷酸盐的存在形态.海洋与湖沼,1992,23(4):387-39;
    115.林心雄,孙波,李忠.我国东部土壤有机碳的密度及转化的控制因素.地理科学,2001,4:301-307
    116.林心雄,文启孝,程励励.土壤中有机物质分解的控制因子研究.土壤学报,1995,32(1):38-45
    117.林心雄,文启孝,徐宁.广州和无锡地区土壤中植物残体的分解速率.土壤学报,1985,22(1):47-54
    118.金相灿,刘鸿亮,屠清瑛.中国湖泊富营养化[M].北京:中国环境科学出版社,1990
    119.金相灿,王圣瑞,庞燕,赵海超,周小宁.湖泊沉积物对磷酸盐的负吸附研究.生态环境,2004,13(4):493-497
    120.金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展.土壤,2000,1:11-17
    121.金送笛,李永函,倪彩虹.菹草(Potamogeton crisnus)对水中氮磷的吸收及若干影响因子.生态学报,1994,14(2):168-173
    122.金刚.黄丝草生物量相对增长率与初始生物量关系的季节变化.水生生物学报,1999,23(1):87-89
    123.国家环保局和水和废水监测分析方法编委会编.水和废水监测分析方法[M].北京:中国环境科学出版社,1998
    124.阮小红,张瑛,黄林楠,敖静.微生物在湿地氮循环系统的效应分析.水资源保护,2004,6:1-8
    125.陈灵芝.英国Hampsfe的蕨菜草地生态系统的营养元素循环.植物学报,1983,25(1):67-74
    126.陈宜瑜.中国湿地研究[M].长春:吉林科学技术出版社,1995
    127.陈竑,陈家宝,刘文炜.南宁市南湖沉积物磷释放的研究.重庆环境科学,1998,06:18-21
    128.孟维奇,董云社,耿元波.陆地碳循环研究进展.地理科学进展,2000,19(4):34-39
    129.赵之重.土壤养分空间分布特征研究.青海农林科技,2003,4:1-3
    130.段水旺,章申,晏维金.长江下游氮磷含量变化及其输送量的估算.环境科学,2000,21(1):53-56
    131.胡舂华,濮培民.太湖五里湖沉积通量及其有机质分解速率研究.海洋与湖沼,2000,3:327-333
    132.胡雪蜂,高效江,陈振楼.上海市郊河流底你氮磷释放规律的初步研究.上海环境科学,2001,2:66-70
    133.侯立军,刘敏,许世远.环境因素对苏州河市区段底泥内源磷释放的影响.上海环境科学,2003,22(4):258-260.
    134.郑丽波,叶瑛,周怀阳.东海特定海区表层沉积物中磷的形态、分布及其环境意义.海洋与湖沼,2003,34(3):274-282
    135.唐牧成.西湖沉积物磷释放影响因子的研究.浙江农业大学学报,1997,3:289-292
    136.埃塞林顿(曲仲相译).环境和植物生态学[M].北京:科学出版社,1989
    137.高俊琴,吕宪国.毛果苔草湿地开垦后土壤中主要营养元素垂直分布.水土保持通报,2002、3:32-34
    138.高效江,陈振楼,许世远.长江口滨岸潮滩沉积物中磷的环境地球化学特征.环境科学学报,2003,23(6):711-714
    139.高超,张桃林,吴蔚东.沉积物中磷形态与湖泊富营养化的关系.中国环境科学,2003,3(6):583-586
    140.殷康前,倪晋仁.湿地研究综述.生态学报,1998,5:539-546
    141.徐尚平,陶澍,曹军.内蒙古土壤pH值,粘粒和有机质含量的空间结构特征.土壤通报,2001,4:67-70
    142.徐小锋,宋长春,宋霞.湿地根际土壤碳矿化及相关酶活性分异特征(英文).生态环境,2004,13(1):40-45
    143.徐冬梅,刘广深,许中坚,王黎明,刘维屏.模拟酸雨对土壤酸性磷酸酶活性的影响及机理.中国环境科学,2003,2:176-179
    144.徐骏.杭州西湖底泥磷分级分布.湖泊科学,2001,13(3):247-254
    145.晏维金,尹澄清,孙濮,韩小勇,夏首先.磷氨在水田湿地中的迁移转化及泾流流失过程.应用生态学报,1999,3:312-316
    146.莫大伦,吴建学.海南岛86种植物的化学成分特点及元素间的关系研究.植物生态学与地植物学学报,1988,12(1):51-62
    147.袁霞,何斌.八角林地土壤酶活性和养分的分布特点及其相关分析,经济林研究,2004,2:10-13
    148.黄绍文,金继运,杨俐苹.乡(镇)级区域土壤养分空间变异与分区管理技术研究.资源科学,2002,24(2):76-82
    149.黄绍文,金继运,杨俐苹.县级区域粮田土壤养分的空间异质性.土壤通报,2002,33(3):188-193
    150.黄自强,暨卫东.长江口水中总磷、有机磷、磷酸盐的变化特征及相互关系.海洋学报,1994,16(1):51-60
    151.黄东迈,朱培立,王志明.旱地和水田有机碳分解速率的探讨与质疑.土壤学报,1998,35(4):482-492
    152.黄敏.稻田土壤微生物磷变化对土壤有机碳和磷索的响应.中国农业科学,2004,9:1400-1406
    153.黄耀,刘世梁,沈其荣.农田土壤有机碳动态模拟模型的建立.中国农业科学,2001,34(5):465-468.
    154.焦念志,刘长安.内陆水域磷浓度预报模式及其应用.洋湖沼通报,1989,1:81-92
    155.隋少峰,罗启芳.武汉东湖底泥释磷特点.环境科学,2001,22(1):102-105
    156.龚子同,张效朴,韦启璠.我国潜育化水稻土的形成特征及增产潜力.中国农业科学,1990,22(1):45-53
    157.董浩平,姚琪.水体沉积物磷释放及控制.水资源保护,2004,6:20-23
    158.韩伟明.底泥释放磷对西湖富营养化的影响.湖泊科学,1993,1:71-77
    159.葛继稳,蔡庆华,刘建康.梁子湖湿地植物多样性现状与评价.中国环境科学,2003,23(5):451-456
    160.岳春雷.人工湿地基质中土壤酶空间分布及其与水质净化效果之间的相关性.科技通报,2004,2:112-115
    161.催保山.湿地生态系统模型研究进展.地球科学进展,2001,16(3):57-62
    162.傅国斌,李克让.全球变暖与湿地生态系统的研究进展.地理研究,2001,20(1):121-128
    163.谢正生.森林生态系统的氮磷循环.广东林业科技,1990,2:33-38
    164.谢锦升.严重侵蚀红壤不同治理模式群落氮、磷养分循环研究.水土保持学报,2001,15(3):16-19
    165.解宪丽.不同植被下中国土壤有机碳的储量与影响因子.土壤学报,2004,5:687-699
    166.潘文斌,蔡庆华.保安湖大型水生植物在碳循环中的作用.水生生物学报,2000,2(5):418-425
    167.潘成忠,上官周平.土壤空间变异性研究评述.生态环境保,2003,3:371-375
    168.潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2004,4:609-618
    169.熊礼明.土壤圈及全球磷素循环[M].南京:江苏科技出版社,1992
    170.缪绅裕.模拟湿地系统中土壤氮磷释放的动态研究.生态科学,1998,17(2):24-28
    171.濯金良.向海湿地土壤全氮全磷和有机质含量及相关性分析.环境科学研究,2001,14(6):40-43
    172. Anderson J M, Lneson P, Huish A C. Nitrogen and cation mobilization by soil faumafeeding on leaf litter and soil organic matter from deciduous wood lands. Soil Biol. Biochem., 1983, 15: 463-467
    173. Antonio P M. Spatial Vrariability partten of phosphous and potassium in No-Tilled Soils for tow sampleing Scales. Soil Sci. Soc. Am. J, 1996, 60: 743-781
    174. Arth I, Frenzel P. Conrad R. Denitrifieation coupled to nitrification in the rhizosphere of rice Soil Biolology and Biochemistry, 1998, 30: 509-515
    175. Ben Johnston, Dominica Minnaard. Sediment nutrient Release within the Manly Lagoon Catchment. In: Freshwater Ecology Report 2003, Department of Environmental Sciences, University of Technology, Sydney
    176. Bocchi S, Castrignano A. Application of factorial kinging for mapping soil variation at field scale. Europen Jounal of Agronomy, 2000, 13: 295-308
    177. Bostrom B, Jansson M, Forsberg C. Phosphorus release from lake sediments. Arch Hydrobio Beih Ergebn Limmol, 1982, 18: 5-59
    178. Carr O J, Coulder R. Fish-fram effluents in rivers(I) Effects on bacterial and populations and alkaline phosphatase activity. WaterRes, 1990, 24: 631-638
    179. Crema L Houmeau Seasonal variability of benthic ammonium release in the surface sediments of the Gulf of Gdansk.. Oceanologia, 2001, 43(1): 113-136
    180. Chang sheng Li. A model of nitrous oxide evolutino from soil Driven by Rainfal. Journal of Geophysical Research, 1992. 97(D9): 9759-9776
    181. Chang sheng Li, V Narayanan, R Harriss. Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochemical Cycles, 1996, 10: 297-306
    182. Chien Y J, Lee DY, Guo H Y. Geostatistics analysis of soil properties of mid-west Taiwan soils. Soil Sci., 1997, 1: 38-42
    183. Chaosheng Zhang, David McGrath. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 2004, 119: 261-275
    184. Chapin F S. The mineral nutrition of wild plants. Annu Rev. Ecol. Syst, 1980, 11: 233-260
    185. Chappell K R, Goulder R. Emzymes as pollutants and the response of native epilithic extracellular enzyme activity. Environ poilu, 1994, 86: 161-169
    186. Criquet S, TaggerS, Vogt G. Laccase activity of forest litter. Soil Biol Biochem., 1999, 31: 1239-1244
    187. David A Wedin, David Tilman. Nitrogen cycling, plant competition and the stability of tallgrass prairier[A]. In: Smith D D, Jacobas C A, eds. proceedings of the Twelfth north American prairie Conference: Recapturing a Vanishing Herit age[C]. Cedarr Falls, Lowa: University of northern Lowa press, 1992. 5-8
    188. Deddy K R, patrick W H. Nitrification-denitrification at plant rool-sediments interface in Wetlands. Limnol Oceanogr, 1989, 34(6): 1004-1013
    189. Delaunerd, Hambrick, Patrick W H. Degradation of hydrocarbon in oxidized and reduced sediments[R]. Report: Louisiana State Univ., Baton Rouge, 1980
    190. De Lange G J. Distribution of exchangeable, fixed, organic and total nitrogen in interbeded turbiditic/pelagic sediment of the Madera Abyssal plain, eastern North Atlantic. Marine Geology, 1992, 109: 95-114
    191. Dorota Maksymowska-Brossard, Crema-L'Houmeau. Seasonal variability of benthic ammonium release in the surface sediments of the Gulf of Gdansk (southern Baltic Sea). Oceanologia, 2001, 43(1): 113-136
    192. Downing J P, Mcybcck M, Orr J. Land and water interface zones. Water Air and Soil Pollut, 1993, 70: 123-137
    193. Duvigneaud P, Denaeyer De Smet S. Biological cycling of minerals in temperate deciduous forests[A] In: ReichleDE, ed. Ecological tudies I: Temperate Forest Ecosytems[C]. Berlin: Spring Verlag, 1970
    194. Eckert W, Nishri A, Parparova R. Factors regulating the flux of phosphate at the sediment water interface of a subtropical calcareous lake: A simulation study with intact sediment cores. Water Air &Soil Pollution, 1997, 99: 401-409
    195. Engelaarwm H G, Symens J C, Laanbroeck H J. Preservation of nitrifying capacity and nitrate availability in waterlogged soils by radial oxygen loss from roots of wetland plants. Biology and Fertility of Soils, 1995, 20: 243-248
    196. Enriques S, Duarte C M, Sand Jensen K. Pattems in decomposition rates among phot synthetic or ganisms: the tmportance of detritus C: N: P content. Gecologia, 1993, (94): 457-471
    197. Franzen L G Can. The earth afford to lose the wetlands in the battle against the increasing greenhouse effect[A] Intemational peat Society proceedings of Int emational peat Congress[C]. Uppsala, 1992, 1-18
    198. Frankignoulle M, Abril G, Borges A. Carbon dioxide emission from European estuaries. Science, 1998, 282: 434-436
    199. Gachter R. Contributiion of bacteria to relrase or fixation of phosphorus in lake sediments. Limnol Oceanogr, 1988, 3: 1542-1559
    200. Gachter, R Giovanoli. Transformation of phosphorous species in settling seston and during early sediment diagenesis. Aquatic Sciences, 1995, 57: 1015-1621
    201. Gale P M, Reddy K R, Graetz D A. Mineralization of sediment organic matter under anoxic condition. Environ Qua, 1992, 21: 394-400
    202. Gallardo A, Schlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem., 1994, 26: 1409~1415
    203. Garcia—GilJ, plaza C C, Soler-Rovira P, et al. Long-term effects of municipal solid waste compost application on soil enzyme activities end microbial biomass. Soil Biol Biochem, 2000, 32: 1907-1913
    204. Goovaerts P. Geostatistics in soil science: state of the art or perspectives. Geoderma, 1999, 89: 1-45
    205. Grundmann G L, Debouzie D. Geostatistical analysis of the distribution of NH_4~+ or NO_2-oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiology Ecolog, 2000, 34: 57-62
    206. Gorham E, Northern Peatlands. Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl., 1991, 1: 182-195
    207. Goudriaan J, Ketner P. A simulation study for the global carbon cycle, including men's impact on the biosphere. Climatic Change, 1984, 6: 167-192
    208. Gramss G, Voigt K-D, Kirsehe B. Oxidoreduetase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere, 1999, 38: 1481-1494
    209. Granli T, Boeckman O C. Nitrous oxide from agriculture. Norwegian Jounal of Agricultural Science, 1994, 12: 7-128
    210. Hanthe B. P release from DOP by phosphatase activity in comparision to P excertion by zoop-lankton. Studies in handwater lake of different trophic level. Hydrogiologia, 1996, 317: 151-162
    211. Hcnriksen T M, Breland T A. Nitrogen availability effects on carbon minerlization fungal nd bacterial growth, and enzyme activities fungal a during decomposition of wheat straw in soil. Soil Biol Biochem, 1999, 31: 1121-1134
    212. Helge Bangell, Gerald Schernewskil, Magdalena Wielgat Spatial seasonatand long-term changes of phosphorus concentrations in the Oderestuary. Jahrestagung2001 in Kiel proceedings of the biannual conference of the German Society of Limnology in Kiel 2001: 466-470
    213. Herodek S L, Stvnoves V. Mobility of phosphrus fraction in the sediment of lake Bealton. Hydrobiologia, 1986, 135: 149-154
    214. Hieltjes A H M, Lijklema L. Fractionation of inorganic phosphorus in careous sediments. J Entiron Qual., 1980, 9: 405-407
    215. Houax, Cheng X, Wang Z P. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil SCi. Soc. Am. J., 2000, 64: 2180-2186
    216. Husson O, Verburg P H. Spatial variabil ty of soil sulphate soils in the Plain of Reeds, Mekong delta, Vietnam. Geoderma, 2000, 97: 1-19
    217. Istvanovise V. Seasonal variation of phosphorus relrase from sediments of shallow lake Bulaton. Watre Res., 1988, 22(12): 1473-1481
    218. Jingguo W, Bakken L. Competition for nitrogen during decomposition of plant residues in soil: Effect of spatial placement of N_2rieh and N_2poor plant residues. Soil Biology and Biochemistry, 1997, 29: 153-162
    219. Johannes R E, Pearce A F, Wiebe W J, Crossland C J. Nutrient characteristics of well-mixied coastal waters of Perth, Western Australia, Estuari Coast. Shelf sci. 1994, 39: 273-285
    220. Kasimir-Klemedtsson A, Klemedtsson L, Bergelund K. Greenhouse gas emissions from farmed organic soils: A review. Soil Use and Management, 1997, 13: 245-250
    221. Kaye J P, Heat S C. Competition for nitrogen between plants and soil microorganisms. Trends in Ecology and Evolution, 1997, 12: 139-143
    222. Kelderman P. Phosphate budget and sediment water exchange in Lake Grevelingen. Netheerlands Journal of Sea Research, 1980, 14(3/4): 229-230
    223. Kosinski, L A. Issues in global change research: problems, data and programmes. HDP Report, 1996, 6: 7-21
    224. Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 1995, 27: 753-760
    225. Kramer S, Green D M. Acid and alkaline phosphatase dynamics and their relationship to soil mi croclimate in a semi arid woodland. Soil Biol Biochem., 2000, 32: 179-188.
    226. Kristensen. Benthic Fauna and Biogeochemical progress in Marine ediment: Microbial Activity and Fluxe[A] in: Nitrogen Cycling in Coastal Marine Environment. 1998, 276-291
    227. Laverman A M, Borgers P, Verhoef H A. Spatial variation in nitrate production in saturated coniferous forest soil. Forest Ecology and Management, 2002, 161: 123-132
    228. Lashof D A. The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climate change. Clim. Change. 1989, 14: 213-242
    229. Lee-Hyung Kim, Euiso Choi, Kyung-Ik Gil. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea. Science of the Total Environment, 2004, 321: 115-125
    230. Leggeft J. Emissions scenarios for IPCC in climate change 1994. In: Houghton JJ, eds. The supplementary report to IPCC, Scientific assessment. Cambridge: Cambridge University Press, 1995: 12-231
    231. Lookman R, Vandeweert N, Merekx R. Geostatistical assessment of the regional distribution of phosphate sorption capacity parameters(Feoxand Al_(ox)) in northernBelgium Geoderma, 1995, 66: 285-296
    232. Li C, Y Zhuang, S Frolking, J Galloway, R Harriss, B Moore, D Sehimel, X Wang. Modeling soil organic carbon change in croplands of China. Ecological Applications, 2003, 13(2): 327-336
    233. Liikanen A, Murtoniemi T, Tanskanen H, Vaeisaenen T, Martikainen P J. Effects of Temperature and oxygen availiability on greenhouse gas and nutrient dynamics in sedimentof a eutrophic mid-boreal lake. Biogeochemistry, 2002, 59(3): 269-286
    234. Lucotte M. Fractionation of soil phosphorus. Chem. Geo, 1988, 67: 75-83
    235. Luklema. Phosphorus cycling in a coastal marine sediment. Environ. Sci. Technol. 1980, 14: 537-541
    236. Morris J T, Bradley P M. Effects of nutrient loading on the carbon balance of coastal wetland sediments. L im nology and Orceanog rap by, 1999, 44: 699-702
    237. Matheron. The theory of regionalized variables and its applications. Cahiers du centre de morpMogie mathematique Fontainebleau, 1971, 5
    238. Meyerson A L. Pollen and Palcosalinity analysis from a Holocene tidal marsh sequence. Cap May county. New Jersey. Mar. Geol. 1972, 12: 335-357
    239. Michael R P, Martin T A, Enic L V. Phosphorus diagenesis in lake sediments: investigation using fractionation techniques Mar Freshwater Res., 1995, 46: 89-99
    240. Nauseh M, Nauseh G. Stimulation of peptidase activity in nutrient gradient in the Baltic Sea. Siol Biol Biochem, 2000, 32: 1973-1983
    241. Nelson B W. Sedimentary phosphate method for estlmiting palcosalmities, Science, 1967, 158: 917-920
    242. Newmzn S. Sediments reanspersion effect on alkaline phosphatase activity. Hydrobiologia, 1992, 245: 74-86
    243. Oechel W C, Vourlitis G L, Hastings S J, Bochkarev S A. Change in arctic CO_2 flux over two decades: Effects of climate change at Barrow, Alaska. Ecol. Appl., 1995, 5: 846-855
    244. Palmer M W. Spatial scale and pattens of species-enviroment relationship in hardwood forest plants. Coenoses, 1990, 5: 79-87
    245. Pseenner R, Rpuckso. phosphorus fractionation: advantages and limits of the methods for the study of sediment p and interactions. Arch Hydrogiol, 1988, 30: 43-59
    246. Pimentel D. Environment and economic costs of soil erosion and conservation benefits. Science, 1995, 267: 1117-1123
    247. Reddy K R, Patrick W H. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen lossma flooded soil. Soil Biol Biochem., 1975, 7: 87-94
    248. Richert M, Saamio S, Juutinen S. Distribution of assimilated carbon in the system Phragmites australis waterlogged peat soil after carbon pulse labeling. Biology and Fertility of Soils, 2000, 32: 1-7
    249. Rigler F H. A tracer study of the phosphorus cycles in lake water. Ecology, 1956, 37: 550-562
    250. Ritz K, Mcnicol J W, Nunan N. Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMSMicrobioiogy Ecology, 2004, 49: 191-205
    251. Robertson G P. Soil resources, microbial activity, and prtmary production across an agricultural ecosystem. Ecological Application, 1997, 7: 158-170
    252. Rounsevell M D A, Evans S P, Bullock P. Climate change and agricultural soils: Impacts and adaptation. Climate Change, 1999, 43: 683-709
    253. Span D. Variation of nutrient stocks in the superficial sediment of lake Genevn frok1978-1988. Hydrobiologia, 1990, 207: 161-166
    254. Schlesinger W H. Carbon balance in terrestrial detritus. Annu. Ecol. Syst, 1977, 8: 51-81
    255. Sinke A J, T E Carpenburg. Influenceof bacterial prcess on the phosphorus release fromsediments in the eutrophic Loosdreeht Lakes, The netherlands. Arch Hydmbiol, 1988, 30: 5-13
    256. Shodergard M, Windolf J, Jeppesen E. phosphorus fractions and profiles in the sediment of shallow Denis lakes as related to phosphorus load, sediment composition and lakes chemistry. Water Res., 1996, 30: 992-1002
    257. Silva C D. Phosphorus availability and phosphatase activity in the sediments of Mandovecstuary. Geo. Indian Jaurnal of Marine Science, 1990, 19: 143-144
    258. Souza L C de, Queiroz J E. Spatial variability of soil Salinity in an alluvial soil of the semi-aridregion of paraiba State. Pevista Brasileira. de. Engenhada Agricolae. Ambiental, 2000, 4(1): 35-44
    259. Stenger R, Priesack E, Beese F. Spatial variation of nitrate-n and related soil properties at the plot-scale. Geoderma, 2002, 105: 259-275
    260. Smith p, Smith J U, powlson D S. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81: 153-225
    261. Smith S V Serruya S, Geilman Y. Internal Sources and sinks of water P, N, Ca and C in Lake Kinneret Israe Limnol. Ocranog, 1989, 34(7): 1202-1213
    262. Stephen D, Moss B, Phillips G. Do rooted macrophytes increase sediment phosphorus release. Hydrobiologia, 1997, 342/343: 27-34
    263. Taylor J P, Wilson B, Mills M S. Comparison of microbial numbers and enzymatic activities in surface and subsoils us mgvarious techniques. Soil Biol Biochem, 2002, 34: 387-401
    264. Velthof G L, Jarvis S C, Stein A. Spatial variability of nitrous oxide fluxes m mown or gressland on a poorly drained clay soil. Soil Biol. Biochem, 1996, 9: 1215-1225
    265. Vincent, W F, M T Downes. Nitrate accumulation in aerobic hypolimnia: relative Importance of benthic and planktonic nitrifiers in an oligotrophic lake. Applied and Environmental Microbiology, 1981, 42: 565-573
    266. Wbgu(German Advisory Council on Global Change). The accounting of biological smksand sources under the Kyoto protocol: A step forwards or backwards for Global Environmental protection. [R]Special Report, Bremerhaven, Germany, 1998
    267. Weisner S E B, Eriksson P G, Granei ali W. Influence of Macrophytes on nitrate removal in wetlands. Ambio, 1994, 23: 363-366
    268. Weston H Nnowlin, Jennifer L Evarts, Micael J Vanni. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshwater Biology, 2005, 50(2): 301-302
    269. Wilhelm G, Poriss. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia, 1998, 170: 245-266
    270. Whitneyd D. The cycies of nitrogen and phosphonus[A].In: pomeroy, L R(eds) The Ecollogy of A Sait Marsh[C]. New York: Springer Verlag press, 1981
    271. Willium J M. Wetland[M]. New York: Nostrand Reinhold Company Inc. 1986
    272. Williams J D H, Syes J K, Harris R F. Fractionation of inorganic phosphorus in calcareous lake sediments. Soil science society of America proceeding, 1971, 35: 250-255
    273. William F Debusk. Nitrogen Cycling in Wetlands. Florida: University of Florida press, 1999
    274. Yamada H, Kayama M. Distribution and dissolution of several forms Of phosphorus in coastal marine sediments. Oceanol Acta, 1987, 10(3): 311-321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700