用户名: 密码: 验证码:
济阳坳陷孤岛潜山下古生界油气成藏条件和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以济阳坳陷中最大的潜山—孤岛潜山为研究对象,采用地质、地球物理和地球化学等综合的研究方法,对孤岛潜山下古生界碳酸盐岩油气藏形成的基本要素进行了精细刻画,恢复了孤岛潜山油气藏形成的基本过程,探讨了生油、储油、运移、聚集和保存等过程在时间演化上和空间分布上的匹配关系,分柝了这些关系对孤岛潜山油气藏形成和保存的控制作用。在以上研究基础上,建立了孤岛潜山的油气成藏模式,确定了孤岛潜山油气有利勘探地区和目标,取得了以下主要研究成果及认识。
     (1)济阳坳陷孤岛潜山下古生界主要岩石类型有石灰岩类、白云岩类、泥岩类、岩溶岩类及其他岩类;完成了济阳坳陷孤岛潜山下古生界地层沉积体系的划分(碳酸盐缓坡、碳酸盐台地、台地陆棚以及相关的大陆残积沉积体系)及沉积演化史的研究;确立了济阳坳陷孤岛潜山下古生界地层层序界面的识别标志,以孤古2井为基准将下古生界地层划分为一个超层序、两个一级层序、三个二级层序、五个准二级层序、二十个三级层序。
     (2)利用地震资料解释了寒武系底(Tg2)、奥陶系顶(Tg1)、石炭系底、白垩系底、第三系底(Tg)、沙河街组顶面、东营组顶7个层位;编制了Tg2、Tg1、Tg构造图;白垩系、沙河街组、东营组、新近系等厚度图及白垩系以后4个关键时期的奥陶系顶面古埋深图及各主要时代地层的平面分布图;完成了典型构造、火山侵入体、侵蚀沟谷的地震解释并绘制成图;孤岛潜山为菱形断块山、边界为多条断层构成的断裂带、潜山主体构造呈短轴穹隆、孤岛潜山为多期构造叠合的继承性隆起构造;孤岛潜山构造样式有平面状断层构造、犁式断层及滚动背斜(或断鼻)、冲断背斜、断阶(叠瓦状)、断垒与断堑、束状断层构造、反转断层构造、沿断裂带的火山侵入体、裂谷作用与“U”形侵蚀谷及其充填沉积;孤岛潜山沉降史可分4个时期:裂陷期(J末K初)、断陷期(Es沉积期)、断坳过渡期(Ed沉积期)、坳陷期(N-Q)并研究了各个时期的沉降特征;孤岛潜山构造演经历了七个时期:挤压(T)、拉张(T)、裂陷及挤压(K)、拉张初期(K末,E初)、强烈拉张(Es沉积期)、断坳过渡(Ed沉积期)、坳陷(N);孤岛潜山顺轴向和垂直轴向的演化有所不同:孤西断层发育比孤南、孤北发育的早,孤西断层和孤南、孤北断层的性质不同,三条断裂对潜山形成的控制作用不同。
     (3)孤岛潜山下古生界碳酸盐岩储集空间类型有晶间孔和晶间溶孔、粒间孔和粒间溶孔、铸模孔、溶洞、溶蚀缝和构造缝、方解石晶簇间孔等;孤岛潜山下古生界碳酸盐岩储层具有六种缝洞成因组合体系,包括沉积期缝洞体系、准同生期缝洞体系、成生期缝洞体系、表生期缝洞体系,还有后生期(浅埋藏)缝洞体系和进后生期(深埋藏)缝洞体系;孤岛潜山下古生界碳酸盐岩储层(缝洞段)分布规律是:①沉积期缝洞体系分布主要受控于沉积体系特征或沉积相类型/沉积环境类型,即沉积岩相组合类型,其次受控于三级、四级以及次级层序界面;②准同生期缝洞体系分布主要受三级、四级以及次级层序界面及其相关的准同生白云岩分布的控制;③成岩期缝洞体系分布主要受到原始岩石组构的控制,即间接受到沉积体系/沉积相的控制;④表生期缝洞体系分布严格受一级、二级、准层序界面分布的控制;⑤后生期缝洞体系分布间接受到表生期缝洞体系分布的影响;⑥进后生期(深埋藏)缝洞体系分布主要受到深埋溶解作用(深部地层封存热卤水、有机质成熟作用相关的富羧基热液)、多期构造背斜(轴部)、断层分布的控制;孤岛潜山储层缝洞系统的形成主要受控于岩性和风化剥蚀面;孤岛潜山碳酸盐岩储层(缝洞段)发育的三个基本条件是有利的沉积体系/沉积岩相带是基础,有利的成岩后生作用带是根本,有利的构造作用带是关键;孤岛潜山碳酸盐岩缝洞的形成和改造主要受寒武纪末和奥陶纪末的抬升运动、燕山期挤压运动、喜马拉雅期的深陷阶段强烈拉张运动控制;中奥陶统八陡组顶界SB2属升隆侵蚀层序界面,易形成岩溶储层;沉积期层序界面有利于成岩期成岩溶蚀改造、成岩后生期的埋藏溶解作用的改造叠加,有利于储层缝洞系统的发育;成岩期层序界面有利于表生期岩溶作用和深埋期溶蚀缝洞系统的发育;表生期层序界面发育界面型油气储层,有利于此后综合成因储层缝洞系统的发育。
     (4)孤岛地区至少有四期盐水流体充注事件。孤岛地区A组-F组样品的锶同位素,每一组样品即为一次流体充注,孤岛地区至少有六次流体充注,D组、B组和F组样品先后老新时序关系为:D组→F组→B组;第一期到第三期盐水流体的充注可能是晚古生代沉积时期或中生代沉积时期;第四期盐水流体充注可能发生于新生代以前,处于一个构造抬升阶段,裂隙或断裂带开启,大气淡水的下渗充注;第五期流体的充注与第四期盐水流体的充注相似,有更多的大气淡水的混入和参与;第六期流体充注可能发生于明化镇期,部分流体应来自含烃的沙河街组地层水及大气淡水的混合。
     (5)古岩溶界面附近古岩溶储层的形成主要受两个方面作用的控制:a表生期大气淡水-岩石间的相互作用;b埋藏期具有酸性的混合流体-岩石的相互作用。潜山内幕储层的形成则主要是受深埋作用过程中的深溶作用控制。孤岛潜山下古生界碳酸盐岩基质渗透率值变化范围大,孔隙度大于2%时孔隙度与渗透才有正相关关系,其低孔低渗的特征与其埋深关系不大;孤岛潜山下古生界储层(缝洞段)与碳酸盐岩的成岩作用和岩溶作用关系密切,与岩溶序列具有相当的一致性;孤岛潜山下古生界碳酸盐岩储层(缝洞段)普遍发育高角度缝,碳酸盐岩储层(缝洞段)发育的组段是八陡组、上马家沟组、下马家沟组,冶里-亮甲山组、凤山组次之,不整合面是控制储层(缝洞段)特别是孔洞发育一个因素;孤岛潜山下古生界碳酸盐岩风化壳型储层中Ⅰ级储层(缝洞段)较发育,发育于八陡组至上马家沟组,主要受下古生界顶面(风化壳面)形态控制,断裂发育带的储集特性明显优于断裂不发育的潜山主体及单斜区;孤岛潜山碳酸盐岩内幕储层(缝洞段)中极少发育Ⅰ级储层(缝洞段),主要发育Ⅱ级储层(缝洞段)。孤岛潜山碳酸盐岩内幕储层(缝洞段)成层分布,主要受沉积相带(层序或岩溶相带)控制,断裂的存在对内幕储层储集性能有改善作用,凤山组和冶里-亮甲山组内幕储层较为发育。
     (6)孤岛潜山内幕基质盖层在裂缝不发育的情况下质量好。孤岛潜山孤西、孤南和孤北断层的长期活动性,断层的封堵性差,断层侧向上封堵,纵向上不具封堵性,油气顺断层向上部层位运移,最终运移到新近系储集层中聚集成藏;采用地化指标研究了孤岛潜山油气藏的保存条件,孤岛潜山碳酸盐岩存在两次油气充注,早期油藏流体充注进入储集岩后,由于保存条件差,大部分油藏都受到了破坏,晚期油藏流体充注保存相对较好,但充注量有限,对潜山油气藏的形成意义不大;孤西断裂带内,断层侧向封堵配以局部盖层东营组的封盖形成局部油气藏。
     (7)地球化学指标表明孤岛潜山油气具有不同阶段、不同层位、不同凹陷油气相混的特点;第一类和第二类混源油均来自沙三段和沙一段,两类混源油藏的生物标志化合物参数差异明显,同一类混源油藏中生物标志化合物参数具有较强的可比性,空间分布具有相似性;孤岛潜山至少存在两个含油气系统:渤南洼陷含油气系统、孤南洼陷含油气系统。
     (8)孤岛潜山的油气成藏模式是南北逢源、复式输导、高凸指向、混源充注、断层控制、缝洞发育、逸顶“天窗”、局部成藏;孤岛潜山主体高部位及北东翼单斜区勘探因缺少有效的封盖层和内幕圈闭不落实而失败,孤西断裂带内勘探(孤古4井区块)因局部盖层东营组发育规模较小的圈闭虽成功但成效不大,孤南断裂带勘探因缺少圈闭条件而失败。
This dissertation pays a main research on Gudao buried hill, one of the biggest buried hill in Jiyang depression. This paper integrates geology, geophysics and geochemistry, depicts the factors of petroleum accumulation, reconstructs the process of petroleum accumulation, figures out the relationships between the chron and the distribution of process of petroleum accumulation such as hydrocarbon generation, migration, accumulation, conservation and so on, and studies their control actions on the process of petroleum accumulation of the Gudao buried hill pool. On the basis of the whole studies, this paper gives the comprehensive geological evaluation and the analysis of petroliferious geological conditions of the Gudao buried hill, and has predicted the favorable places for prospecting, and acquires main scientific issues and achievements as follows:
     (1) The Lower Paleozoic of Gudao buried hill in Jiyang depression has many rock types such as limestone, dolostone, mudstone, karst limestone and so on; Sedimentary system can be divided into carbonate ramp,carbonate platform, platform-shelf and eluvial deposits; This paper has studied the evolution of the Lower Paleozoic sedimentary and set the identification mark of the Lower of Paleozoic sequence boundary of Gudao buried hill in Jiyang depression; On the basis of well gugu 2, The Lower Paleozoic is divided into one Super-sequences, two first-order sequence, three second-order sequences, five para-second-order sequences, and twenty third-order sequences.
     (2) This paper accomplished the detail seismic interpretation of the bottom of Cambrian(Tg2), the top of Ordovician(Tgl), the bottom of Carboniferous, the bottom of Cretaceous, the bottom of Tertiary(Tg), the top of Shahejie Formation and the top of Dongying Formation and the isopach map of Cretaceous, Shahejie Formation Dongying Formation and Neogene and the burial depth map of the top of Ordovician and the paleo-geological map in the four key geologic epoch after Cretaceous, and the interpretation and the map of typical structure, volcanic intrusive bodies, eroded channel-vale; Gudao buried hill is a block-gebirg, fault zones being its borderlines, main block of the buried hill being a dome fold, and is a succeed arched structure with multi-period structure. Tectonic styles of Gudao buried hill are plane fault, listric fault, rollover anticline, thrust faulted anticline, imbricated fault, fault horst, graben, sheaf structure, reversal fault, volcanic intrusive bodies along faults; The evolution of Gudao buried hill can be divided four stages: rifting stage(between the last phase of J and the early phase of K ), downfaulting stage(Es), downfaulting- downwarping stage(Ed) and downwarping stage(N-Q), and the depositional characteristics of stages have being studied; Gudao buried hill has undergone seven stages: compress stage(T) , extensional stage(T), faulted depression and compress stage(K), early stage of tension(end of K) ,stage of extreme tension(Es), transitional stage of fault sag(Ed) , stage of stage(N); Guxi fault is earlier than Gubei fault and Gunan fault; The characteristics of Guxi fault, Gunan fault and Gubei fault and their controlling to Gudao burial hill are different to each other.
     (3)The reservoir space types of lower Paleozoic of Gudao buried hill are divided into intercrystal pore , intercrystal dissolved pore , intergranular pore, intergranular dissolved pore, moldic pores, vug, dissolved fracture and structural fracture; There are six carbonatite genesis fracture-cavity types: sedimentary period fracture-cavity system, penecontemporaneous fracture-cavity system, diagenetic fracture-cavity system, hypergene fracture-cavity system, catagenesis fracture-cavity system, anadiagenetic fracture-cavity system; Sedimentary period fracture-cavity system is controlled by the depositional system and compiled types of sedimentary facies; Penecontemporaneous fracture-cavity system is controlled by the third-order and fouth sequences surfaces; Diagenetic fracture-cavity system is indirectly controlled by depositional system; hypergene fracture-cavity system is controlled by the first-order, second-order and para-second-order sequences surfaces; Catagenesis fracture-cavity system is indirectly controlled by hypergene fracture-cavity system; Anadiagenetic fracture-cavity system is controlled by anadiagenetic solution and multi-stage anticline and faults; System of vug-fracture is controlled by lithology ,weather-worn surface and sequence boundary; Forming and reforming of the carbonatite vug-fracture are controlled by the uplift movement of latest Cambrian, latest-Ordovician, the compressional movement of Yanshan chron, the estensional movement of Himalayan chron; The top of Badou formation as eroded sequence surface(SB2) is easy to form karst reservoirs; Depositional sequence surface is an advantage to the solution during catagenesis and anadiagenetic stage and easy to form the fracture-cavity system; Diagenetic sequence surface is an advantage to hypergene function and anadiagenetic solution fracture-cavity system.
     (4)There are at least four brine charging events in Gudao; There are at least six fluid charging events according to the A-group~F-group Sr isotope samples; The serials from old to young is D-group→F-group→B-group; The first fluid charging to the third fluid charging occurred in late Paleozoic or Mesozoic; The fourth fluid charging occurred before Cenozoic during the uplift movement with the fracture and faults opening and fresh water seeping; The fifth fluid charging is similar to the fourth fluid charging but with more fresh water taking part in; The sixth fluid charging occurred in Minghuazheng stage, and the mixture fluid is from Shahejie formation water and fresh water.
     (5) Karst reservoirs nearby the ancient karst surfaces are controlled by the freshwater-rock interaction during hypergene stage and acid-water-rock interaction during burial stage; Layered reservoirs are controlled by anadiagenetic solution; The reservoir matrix permeability varies a large range, and is nothing with the burial depth, and is positive correlation to porosity up 2%; The Lower Paleozoic reservoirs(fracture-cavity intervals) are related to diagenesis and karstification and close correspondence to karst serials; Formations of the Lower Paleozoic bear high angle fracture in Gudao burial hill; Carbonatite reservoirs(fracture-cavity intervals) mainly occur in Badou formation, Shangmajiagou formation, Yeli-liangjiashan formation; Uconformity surface is one key element to control the Carbonatite reservoirs(fracture-cavity intervals); I grade reservoirs(fracture-cavity intervals) mainly bear in carbonatite reservoirs concerned with weathering crust, from Badou formation to Shangmajiagou formation controlled by the weathering surfaces; Physical property of reservoirs in fault-zones is better than that in monocline zone; I grade reservoirs(fracture-cavity intervals) rarely bear in layer-reservoirs in Gudao burial hill, and II grade reservoirs(fracture-cavity intervals) mainly bear in in layer-reservoirs in Gudao burial hill; Layer-reservoirs (fracture-cavity intervals)in Gudao burial hill is controlled by the depositional zones(sequence or karst zones), and faults improve the Physical property of layer-reservoirs, and layer-reservoirs (fracture-cavity intervals) bear in Fengshan formation and Yeli-liangjiashan formation.
     (6)The quality of layered cap-rock of Gudao buried hill without fracture is good. By means of studies of fault sealing of fault zone around Gudao buried hill, west, south north faults action last a long time, are lateral sealing and no vertical sealing; According to geochemistry indexes, there are two hydrocarbon charging events in Gudao burial hill carbonatite; Due to the bad oil preservation condition, the first stage oil pool was broken down; Because of the amount of the second hydrocarbon charging being small, there is no contribution to the pool; There are local pools due to the fault lateral sealing with the local caprock in Dongying formation;
     (7)The researches on geochemistry show that hydrocarbon comes from distinct stages, formations and sag, there are two stages hydrocarbon charging, and are two petroleum systems, namely, Bonan sag petroleum system and Gunan sag petroleum system.
     (8)Characteristics of petroleum accumulation of Gudao buried hill are two hydrocarbon sources from south and north, complex hydrocarbon transporting pathway, migration to the eminence of buried hill, mixed sources charge, being controlled by the faults, fracture-cavity reservoir, leakage by "top window", local petroleum accumulation. The wildcats aiming at main block of Gudao buried hill and east-north monocline are not success because of the absence of caprock and layer trap.
引文
[1] Hara H. et al. Paleo-geothermal structure based on illite crystallinity of the Chichibu and Shimanto belts in the Kanto Mountains, central Japan[J]. Journal of the Geological Society of Japan, 1998, 104(10): 705-717.
    [2] Jacob H. Classification, structure, genesis and practical importance of natural solid bitumen[J]. International Journal of Coal Geology, 1989,11(1): 65-79.
    [3] Macgregor D S. Factors controlling the destruction or preservation of giant light oil-field[J]. Petroleum Geoscience, 1996,2: 197-217.
    [5] Moran J E. et al. Determination of source ages and migration patterns of brine from the U.S. Gulf Coast basin using I129[J]. Geochimica et Cosmochimic Acta, 1995,59: 5055-5069.
    [6] Moretti I. The role of faults in hydrocarbon migration[J]. Petroleum Geosciences, 1998, 4(1): 81-94.
    [7] Aydin A. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 2000,17(5): 797-814.
    [8] 陈章明等.油气藏保存与破坏研究[M].北京:石油工业出版社,2003.
    [9] 戴金星等.中国大中型天然气田形成条件与分布规律[M].北京:地质出版社,1997.
    [10] 范善发等.深部碳酸盐岩油气生成和保存的特征及其模拟实验研究.沉积学报,1997,15(2):114-117.
    [11] Macgregor D S. Factors controlling the destruction or preservation of giant light oil-field[J]. Petroleum Geoscience, 1996,2:197-217.
    [12] Jacob H. Classification, structure, genesis and practical importance of natural solid bitumen[J]. International Journal of Coal Geology, 1989,11(1): 65-79.
    [13] Moran J E. et al. Determination of source ages and migration patterns of brine from the U.S. Gulf Coast basin using I129[J]. Geochimica et Cosmochimic Acta, 1995,59: 5055-5069.
    [14] Demaison G. J. et al. Anoxic environment and oil source bed genesis[J]. AAPG Bull.,1980,63: 870-885.
    [15] Dickinson W. R. et al. The dynamics of sedimentary basins[M]. USGS, National Academy Press,1997.
    [16] Cioppa M. T. et al. Timing of hydrocarbon generation and migration: paleomagnetic and rock magnetic analysis of the Devonian Duvernay Formation[J]. Journal of Geochemical Exploration, 2000,69-70: 387-390.
    [17] 冯增昭编著.碳酸盐岩岩相古地理学[M].北京:石油工业出版社,1989.
    [18] 胡见义.石油地质学前沿和勘探新领域[J].中国石油勘探,2004,9(1):8-14.
    [19] 贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [20] 金之钧等.中国典型叠合盆地与油气成藏研究新进展[J].中国科学,D辑,2004, 34(增Ⅰ):1-12.
    [21] 赵重远等.成盆期后改造与中国含油气盆地地质特征[J].石油与天然气地质,2000,21(1):7-10.
    [22] 马永生等.碳酸盐岩储层沉积学[M].北京:地质出版社,1999.
    [23] R.A. Nelson .Geologic Analysis of Naturally Fractured Reservoirs 2nd Edition[M]. Boston: Gulf Professional Publishing a subsidiary of Butterworth-Heinemann, 2001.
    [24] Steven M. Condon. Fracture network of the Ferron Sandstone Member of the Mancos Shale, east-central Utah, USA[J]. International Journal of Coal Geology, 2003, 56: 111-139.
    [25] 邱立伟,杨安平,康志江.新疆塔河裂缝溶洞型油藏储层建模研究[J].特种油气藏,2003,10(6):33-40.
    [26] John C. Reis. Effect of fracture spacing distribution on pressure transient response in naturally fractured reservoirs[J]. Journal of Petroleum Science and Engineering 1998, 20: 31-47.
    [27] S. Bekri, J. F. Thovert, P. M. Adler. Dissolution and deposition in fractures[J]. Engineering Geology, 1997, 48: 285-308.
    [28] 秦启荣,苏培东,邓辉.塔中Ⅰ号断裂带中上奥陶统灰岩裂缝类型划分[J].西南石油学院学报,2002,24(2):50-61.
    [29] 陈科贵,穆曙光,魏彩茹,曹鉴华.一种评价碳酸盐岩储层裂缝参数的测井新模型[J].西南石油学院学报.2003,25(1):23-30.
    [30] 黄辅琼.储层岩心裂缝与试件裂缝定量描述方法研究[J].测井技术,1997,21(5):356-360.
    [31] 王志章.裂缝性油藏描述及预测[M].北京:石油工业出版社,1999.26~32.
    [32] 李善军等.碳酸盐岩地层中裂缝孔隙度的定量解释[J].测井技术,1997,21(3):205-214.
    [33] 黄文新,历元彬.用反射斯通利波确定地层裂缝宽度和渗透率.江汉石油学院学报,1994,16(增刊):26-31.
    [34] 童亨茂,钱祥麟.储层裂缝研究分析方法[J].石油大学学报,1994,18(6):14-20.
    [35] 穆龙新.裂缝储层地质模型的建立[J].石油勘探与开发,1995,22(6):78-82.
    [36] 时华星等.构造正反演裂缝预测方法及应用实例[J].石油物探,2004,43(4):337-340.
    [37] 黄捍东.分形边缘检测在裂缝预测中的应用[J].石油地球物理勘探,2002,37(1):65-68
    [38] 梁兵,王焕弟.储层微裂缝预测技术[J].石油地球物理勘探,2003,38(4):400—404.
    [39] 何光明等.分形理论在裂缝预测中的尝试[J].石油物探,1993,32(2):1-13.
    [40] Adel Malallah, Ibrahim Sami Nashawi. Estimating the fracture gradient coefficient using neural networks for a field in the Middle East[J]. Journal of Petroleum Science and Engineering, 2005, 49: 193-211.
    [41] John H. Williams, Carole D. Johnson. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies[J]. Journal of Applied Geophysics, 2004, 55: 151-159.
    [42] Timothy S. Paulsen, Richard, D. Jarrard, Terry J. Wilson. A simple method for orienting drill core by correlating features in whole-core scans and oriented borehole-wall imagery. Journal of Structural Geology,2002, 24: 1233-1238.
    [43] 王端平。张敬轩.胜利油区埕北30潜山储集性裂缝预测方法[J].石油实验地质,2000,22(3):346-349.
    [44] 吴时国,宋建勇,余朝华等。山东济阳坳陷桩海地区井旁构造应力场分析[J].现代地质,2006,20(3):436-440.
    [45] 薛海涛,卢双舫,张学军等。济阳坳陷下古生界碳酸盐岩烃源岩评价[J].地球化学,2006,35(6):609-614.
    [46] 王友启,汤达祯.潜山圈闭成藏特征及地质风险评价—以渤海湾盆地济阳坳陷为例[J].石油实验地质,2006,28(2):147-151.
    [47] 马立驰,王永诗,姜在兴等.断陷盆地碳酸盐岩潜山储层模式—以渤海湾盆地济阳坳陷为例[J].石油实验地质,2006,28(1):21-24.
    [48] 首皓,黄石岩.渤海湾盆地济阳坳陷潜山油藏分布规律及控制因素[J].地质力学学报,2006,12(1):31-36.
    [49] 张多文.济阳坳陷孤西低潜山构造及油气成藏条件分析[J].录井工程,2005,16(3):69-72,80.
    [50] 张雷,卢双舫,申家年等.济阳坳陷车古20潜山油源的分析[J].大庆石油学院学报,2005,29(3):6-9,119-120.
    [51] 马立驰.胜利油田下古生界碳酸盐岩潜山勘探核心技术[J].石油勘探与开发,2005,32(2):72-74.
    [52] 宋传春.济阳坳陷低位古潜山成藏条件分析[J].特种油气藏,2004,11(4):12-15.
    [53] 李丕龙,张善文,王永诗.断陷盆地多样性潜山成因及成藏研究——以济阳坳陷为例[J].石油学报,2004,25(3):28-31.
    [54] 王颖,王英民,赵锡奎.济阳坳陷构造演化对断块型潜山的形成及油气成藏的影响[J].矿物岩石,2004,24(2):73-77.
    [55] 赵锡奎,徐国强,罗志立等.济阳坳陷前中生界潜山形成的构造过程与油气聚集规律[J].成都理工大学学报:自然科学版,2004,31(6):596-600.
    [56] 马立驰,王永诗,吕建波.济阳坳陷下古生界潜山内幕油气藏勘探[J].油气地质与采收率,2004,11(1):26-27.
    [57] 董冬,陈沽.断陷盆地潜山油气藏体系的形成,分布和勘探——以济阳坳陷为例[J].石油勘探与开发,2000,27(6):26-27,41.
    [58] 王永诗,徐国盛等.济阳坳陷义和庄古潜山溶蚀、裂缝发育带灰色—遗传识别[J]. 成都理工学院学报,2002,29(2):173-180.
    [59] 邸志欣,谭绍泉,段卫星等.济阳坳陷复杂潜山断裂带高精度采集方法探讨[J].油气地球物理,2003,1(3):15-18.
    [60] 刘传虎,王军等.济阳坳陷古潜山油气藏体系及勘探技术[J].特种油气藏,2002,9(2),1-5,14.
    [61] 张日华,杜锡勤.济阳坳陷孤北潜山地质构造与油气富集规律[J].石油与天然气地质,1989,10(2):113-121.
    [62] 马学平等.华北地区冶里—亮甲山期层序地层及其岩相古地理。地质科学,1998,33(2):166-179.
    [63] 史晓颍等.华北地台东部寒武系层序地层年代格架。地学前缘,1997,4(3—4):161-173.
    [64] 梅棉相等.华北寒武系层序地层格架及碳酸盐台地演化。现代地质,1997,11(3):275-282.
    [65] 陈建强等.山东淄博地区奥陶系层序地层划分和层序界面的识别标志。现代地质,2001,15(3):247-25.
    [66] 蔡忠贤等.鄂尔多斯地区南缘寒武纪层序地层和海平面变化。地球科学,1997,22(5):484-490.
    [67] 于柄松等.塔里木地台北部寒武纪—奥陶纪层序地层及其与扬子地台和华北地台的对比。中国科学,2001,31(1):17-26.
    [68] 魏魁生等.鄂尔多斯盆地北部下古生界层序地层分析。石油与天然气地质,1997,18(2):128-136.
    [69] 张东等.峰峰仙庄寒武系层序地层分析,山东矿业学院学报(自然科学版),1999,18(3):6-9.
    [70] 苏文博等.海平面变化全球可比性的可靠例证—上扬子地台东南缘奥陶纪层序地层与海平面变化研究。沉积学报,1999,17(3):345-353.
    [71] 史晓颍等.中朝地台奥陶系层序地层序列及其对比。地球科学,1999,24(6):573-580.
    [72] James, Noel P. et al. Evolution of a lower Paleozoic continental-margin carbonate platform, northern Canadian Appalachians, SEPM Special Publication No. 44, 1999, 123-146.
    [73] Read, J. F. Controls on evolution of Cambrian-Ordoavician passive margin, U. S. Appalachians, SEPM Special Publication No. 45, 2000, 147-165.
    [75] D. A. Budd, A. H. Saller, P. M. Harris. Unconformeities and Porosity in Carbonate Strata, AAPG Memoir 63, The American Association of Petroleum Geologists, 1995.
    [76] Maurice E. Tucker, V. Paul Wright. Carbonate Sedimentology, Blackwell Scientific Publications, 1990.
    [77] Wanger P D., Tasker D R., Wahlman G P. Reservoir degradation and compartmentalization below subaerial unconformities:limestone examples from West Texas, China, and Oman. In: Budd D Saller A and Harris P (Ed), Unconformities and porosity in carbonate strata. 1995, 177-195.
    [78] Cander H. Interplay of water-rock interaction efficiency, unconformities, and fluid flow in a carbonate aquifer:Floridan aquifer system. In: Budd D Saller A and Harris P (Ed), Unconformities and porosity in carbonate strata. 1995, 103-124.
    [79] Mylroie J., Carew J. Kast development om Carbonate Islands. In: Budd D Saller A and Harris P (Ed), Unconformities and porosity in carbonate strata. 1995, 55-103.
    [80] 胡进武,王增根,周炼等.岩溶水锶元素水文地球化学特征[J].中国岩溶,2004,(1):37-42.
    [81] 黄思静,刘树根,李国蓉等.奥陶系海相碳酸盐锶同位素组成及受成岩流体影响[J].成都理工大学学报,2004,31(1):1-7.
    [82] 卢焕章,李秉伦等.包裹体地球化学.北京:地质出版社,1990.
    [83] 石和,黄思静,沈立成等.川黔上古生界锶同位素演化曲线的地层学意义[J].地层学杂志,2002,26(2):108-110.
    [84] 石和,黄思静,沈立成等.重庆秀山寒武纪海相碳酸盐的锶同位素组成及其地层学意义[J].地层学杂志,2003,27(1):71-76.
    [85] Kartsev, A. A., Tabasaranskii, Z.A., Subbota, M.I., Mogilevski, G.A. Geochemical methods of prospecting and exploration for petroleum and natural gas. In: Witherspoon.
    [86] Larter S., Wilhelms A,, Head I., et al. The controls on the composition of biodegraded oils in the deep subsurface—part 1: biodegradation rates in petroleum reservoirs. Organic Geochemistry 2003, 34: 601-613.
    [87] Leythaeuser D., Mackenzie A., Schaefer R G., et al. A novel approach for recognition and quantification of hydrocarbon migration effects in shale-sandstone sequence [J]. American Association of Petroleum Geologist Bulletin, 1984, 68, 196-219
    [88] Leytheauser D., Schwarzkopt Th. The pristine /N-heptadecane ration as an indicator for recognition of hydrocarbon migration effects [A]. In: Leythaeuser, D., and Rullkotter J (eds), Advances in organic geochemistry 1985, Org. Geochem., Oxford, Pergamon Press, 1986, 10: 191-197
    [89] Mackenzie A S., Mackenzie D. Isomerization and Aromatization of Hydrocarbons in sedimentary basins formed by Extension [J]. Geol. Mag., 1983, 120: 417-470
    [90] P. A., Romey, W. D. (Eds.), English Translation. University of California Press, 1959, 349 pp.
    [91] Roadifer, R. E. Size distributions of the world' s largest known oil and tar accumulations. In: Meyer, R. F. (Ed.), Exploration for Heavy Crude Oil and Natural Bitumen. AAPG Studies in Geology, Vol. 25. American Association of Petroleum Geologists, Tulsa, 1987, pp. 3-23.
    [92] Seifert W K., Moldowan J M. Paleoreconstruction by biologic marks [J]. Geochemical Acta, 1981, 43: 229-237
    [93] Seifert W K., Moldowan J M. Use of biological markers in petroleum exploration. In R. B. Johns (eds), Methods in Geochemistry and Geophysics [A], 1986, 24: 261-290
    [94] Withers N. Dinoflagellate sterols [A]. In: Marine Natural Products 5, Academic Press, 1983, 87-130
    [95] Wolff G A., Lamb N A., Maxwell J. R. The origin and fate of 4-methyl steroid hydrocarbons I. 4-methyl sterns [J]. Geochimica et Cosmochimica Acta, 1986, 50: 335-342
    [96] Zengler, K., Richnow, H. R., Rossello-Moro, R., Michaelis, W., Widdel, F.,.Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999, 401: 266-269.
    [97] R. E. Denison, R. B. Koepnick, W. H. Burke, and E. A. Hetherington. Construction of the Cambrian and Ordovician seawater 87 Sr/ 86 Sr curve. Chemical Geology, 1998, 152(3-4): 325-340.
    [98] Qian Qing, Wang Yueming, Li Huimin, Jia Xiuqin, Han Song, and Zhang Qi. Geochemical characteristics and genesis of diorites from Laohushan, Gansu, China. Yanshi Xuebao- Acta Petrologica Sinica, 1998, 14(4): 520-528.
    [99] 衣学磊、侯贵廷.济阳坳陷中、新生代断裂活动强度研究[J].北京大学学报(自然科学版),2002,38(4)504-509.
    [100] 欧阳健、曾文冲.测井地层分析与油气评价.[M]北京:石油工业出版社,1987.1
    [101] 司马立强.测井地质应用技术.[M]北京:石油工业出版社。2002.
    [102] 王贵文、郭荣坤.测井地质学.[M]北京:石油工业出版社,2000.
    [103] 测井学编写组.测井学.[M]北京:石油工业出版社,1998.
    [104] 尚作源、欧阳健、冯启宁.测井新技术与油层评价进展.[M]北京:石油工业出版社,1997.
    [105] 欧阳健等.石油测井解释与储层描述.[M]北京:石油工业出版社,1994.
    [106] 高楚桥等.复杂储层测井评价方法.[M]北京:石油工业出版社,2003.
    [107] M.H.Kamel等.在纯砂岩地层中根据声波测井资料综合Wyllie-Clemenceau方程估算孔隙度.[J]国外测井技术,2003:Vol.18No.2:39~44.
    [108] 邢凤存,朱水桥,旷红伟,安志渊等.EMI成像测井在沉积相研究中的应用[J].新疆石油地质,2006,27(5):607-610.
    [109] 曹毅民,章成广,杨维英等.裂缝性储层电成像测井孔隙度定量评价方法研究[J].测井技术,2006,30(3):237-239.
    [110] 刘之的,夏宏泉,汤小燕等.成像测井资料在地应力计算中的应用[J].西南石油 学院学报,2005,27(4):9-12.
    [111] 肖丽,范晓敏,梅忠武.塔河油田奥陶系地层成像测井模式探讨[J].测井技术,2005,29(2):125-128.
    [112] 冯斌,田波,等.成像测井技术在胜利油田桩海地区微裂隙构造分析中的应用[J].浙江大学学报:工学版,2003,37(3):254-258.
    [113] Ahmet Tandircioglu and Kubilay Kumsal. Fracture evaluation using FMI log data in the Upper Cretaceous carbonate reservoirs, southeastern Turkey (in Proceedings of the 4th Tunisian petroleum exploration conference). ETAP's Memoir Series, 1994,, 7 83-89.
    [114] Bu Zhihong, Tian Yongmin, and Chi Zhenqing. The application of the FMI technique in deep formations of the Dongpu Depression, Shandong, China[J]. Fault-Block Oil & Gas Field, 1999, 6(5):22-24.
    [115] Haiqing Wu and David D. Pollard. Imaging 3-D Fracture Networks around Boreholes[J]. AAPG Bulletin, 2002, 86: 593-604.
    [121] Downey. N.W., Evoluting seals for hydrocarbon accumulations:AAPG Bulletin, 1984, V. 68, p. 1752-1763.
    [122] Leslie B. Magoon, Wallace G. Dow, The Petroleum System-From Source to Trap, The American Association of Petroleum Geologists, 1994
    [123] Maurice E. Tucker, V. Paul Wright, Carbonate Sedimentology, Blackwell Scientific Publications, 1990
    [124] Michael E. Badley, Practical Seismic Interpretation, International Human Resources Development Corporation, 1985
    [125] M. J. Singleton, R. E. Criss, Efects of normal faulting on fluid flow in an re-producing hydrotbermal system, Comstock Lode, Nevada, 2002, Journal of Voleanology Research 115(2002)437-450
    [126] Q. J. Fisher, S. D. Harris, etc. Hydrocarbon flow across faults by capillary leakage revisited, 2000, Marine and Petroleum Geology, 251-257.
    [127] Q. J. Fisher, R. J. knipe, The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf, 2001, Marine and Petroleum Geology, 1063-1081.
    [128] Wilson. J. L., 1980b, limstone and dolomite reservoir, in C. D. Hobson, ed., Development in Petroleum Geology, V. 2:Essex, U.K., Applied Science Publishers, p. 1-52
    [129] Barnard, P. C., Bastow, M. A. Hydrocarbon generation, migration alteration, entrapment and mixing in the central and northern N. Sea. In: England, W. A., Fleet, A. J. (Eds.), Geological Society Special Publication, No. 59, Petroleum Migration. The Geological Society, London, 1991, pp. 167-190.
    [130] Bernard, F. P., Connan, J.. Indigenous microorganisms in connate waters of many oil. elds: a new tool in exploration and production techniques. SPE 24811. In: 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Washington, DC, October 1992.
    [131] Blumer M., Guillard R. R. L., Chase T. Hydrocarbons of Marine Phytoplankton[J]. J. Mar Biol., 1971, 8: 183
    [132] Brothers L., Engel M H., and Kroos B M. The effects of fluid flow through porous media on the distribution of organic compounds in a synthetic crude oil [J]. Organic Geochemistry, 1991, 17: 11-24
    [133] Burke E A J. raman microspectrometryof fluid inclusions[]J. Lithos, 2001, 55: 139-158
    [134] Carlson R M K., Chamerlain D E. Steroid biomarker clay mineral adsorption free energies: Implications to petroleum migration indices [J]. Organic Geochemistry, 1986, 10: 163-180
    [135] Connan, J. Biodegradation of crude oils in reservoirs. In:Brooks, J., Welte, D. H. (Eds.), Advances in Petroleum Geochemistryl. Academic Press, London, 1984.
    [136] Hill C A. H2S-related porosity and sulfuric acid oil-field karst. In: Budd D Saller A and Harris P (Ed), Unconformities and porosity in carbonate strata. 1995, 301-306
    [137] Horstad, I., Larter, S. R., Petroleum migration, alteration, and remigration within Troll Field, Norwegian North Sea. Bulletin of the American Association of Petroleum Geologists, 1997, 81(2): 222-248.
    [138] Hunt, J. M. Petroleum Geochemistry and Geology. Freeman and Co., 1979.
    [139] 陈建渝,牛瑞卿.断陷盆地多次运移成藏的有机地球化学研究[J].石油大学学报,2000,25(3):253-259
    [140] 陈建渝,李水福,田波,等。孤南洼陷低熟油成因分析。石油勘探与开发,1998,25(5):34-37
    [141] 陈建渝,刘从印,张树林,等。原油中生物标志物的组成是成藏史的反映。地球科学-中国地质大学学报,1997,22(6):97-102
    [142] 陈建渝,牛瑞卿.断陷盆地多次运移成藏的有机地球化学研究。地球科学-中国地质大学学报,2000,25(3):253-259.
    [143] 吴冲龙、王燮培、周江羽等.含油气系统概念与研究方法[J].地质科技情报,1997,16(2):43-50.
    [144] 宋国奇.成藏理论研究中的系统论—从“含油气系统”谈起[J].石油与天然气地质,2003,24(2):111-115.
    [145] 吴富强、李后蜀、胡雪等.渤南洼陷沙四上亚段含油气系统探讨[J].石油勘探与开发,2002,29(3):29-31.
    [146] 伍涛、陈建渝、田世澄.济阳坳陷孤南洼陷油气成藏系统[J].石油与天然气地质,1999,20(4):326-329.
    [147] 褚庆忠.成藏动力学系统研究综述[J].天然气勘探与开发,2001,24(2):51-56.
    [148] 曾溅辉、王捷等.油气运移机理及物理模拟(油气成藏机理研究系列从书,卷五)[M].北京:石油工业出版社,2002.
    [149] 康永尚、郭黔杰.论油气成藏流体动力系统[J].地球科学—中国地质大学学报,1998,23(3):281-284.
    [150] 刘传虎、王军.济阳坳陷古潜山油气藏体系及勘探技术[J].特种油气藏,2002,9(2):1-5.
    [151] 孔凡仙、郑和容、冯有良.东营凹陷中生代火山岩地球化学特征及其形成的大地构造环境[J].复式油气田,1994,5(2),26-31.
    [152] Fritz H. Frimmel, Peter Hirsch, Georg Matthess, et al. Perspectives and needs for future work (in Progress in hydrogeochemistry; organics; carbonate systems; silicate systems; microbiology; models)[M]. Springer-Verlag, Berlin, Federal Republic of Germany (1992) 499-502
    [153] 高春文、罗群.生储盖组合划分新方案[J].石油勘探与开发,2002,29(6):29-31.
    [154] 田世澄、陈永进.论成藏动力系统中的流体动力学机制[J].地学前缘,2001,8(4):329-336.
    [155] 肖焕钦、陈广军.断层在油气成藏中的作用探讨——以济阳坳陷为例[J].特种油气藏,2003,10(2):17-19.
    [156] 秦建中、刘宝泉等.关于碳酸盐烃源岩的评价标准[J].石油实验地质,2004,26(3):281-286.
    [157] 汪本善、张丽洁等.碳酸盐烃源岩排烃的若干特点[J].地球化学,1996,25(4):317-323.
    [158] 张克银、艾华国等.碳酸盐岩顶部不整合面结构层及控油意义[J].石油勘探与开发,1996,23(5):16-19.
    [159] 张国成、王廷栋等.塔里木盆地和田气田碳酸盐岩储层的多期次多来源油气聚集特征[J].地学前缘(中国地质大学,北京),2000,7(增刊):239-248.
    [160] 陶士振、张宝民等.流体包裹体方法在油气源追踪对比中的应用—以四川盆地碳酸盐岩大型气田为例[J].岩石学报,2003,19(2):327-336.
    [161] Coffey, B. P. Fred Read, J. Mixed carbonate-siliciclastic sequence stratigraphy of a Paleogene transition zone continental shelf, southeastern USA. Sedimentary Geology. 2004, 166(1-2): 21-57.
    [162] Cross, T. A. and Lessenger, M. A. Sediment volume partitioning: rationale for stratigraphic model evolution and high-resolution stratigraphic correlation. Gradstein F. M., Sandvik, K. O, Milton, N. J, eds. Sequence Stratigraphic Concepts and Applications. NPF Special Publication, 1998, 8: 171—195.
    [163] Schmidt Vand McDonald D A. The role of secondary porosity in the course of sandstone diagenesis[M]. Society of Economic Paleontologists and Mineralogists Special Publication 26, 1979: 175~208.
    [164] Mazzullo S J, Harris P. Mesodiagenetic dissolution: Its role in porosity development in carbonate reservoirs. AAPG Bulletin, 1992, 76 (5) :607~620.
    [165] 施继锡、余孝颖,碳酸盐岩包裹体有机质特征与非常规油气评价,矿物学报,1996.vol.6.No.2:103-108.
    [166] Rossi, C. Goldstein, R. H. Marfil, R. Pore fluid evolution and quartz diagenesis in the Khatatba Formation, Western Desert, Egypt. Journal of Geochemical Exploration. 2000, 69-70; 91-96.
    [167] Kharaka Y K, L ungedard P D, Ambats G, et al. Generation of aliphatic acid anions and carbon dioxide by hydrouspyro lysis of crude oils. App ied Geochemistry, 1993, 8: 317-324
    [167] 郑荣才、陈洪德等,川东黄龙组古岩溶储层的稳定同位素和流体性质[J].地球科学,1997,22(4):424—428.
    [169] Bjrhykke K,A agaard P,Egeberg P K(王铁冠,张枝焕译).从北海与(墨西哥湾)海湾沿岸盆地地层水分析论储集岩中碳酸盐、长石和伊利石沉淀作用的地球化学制约因素[M].见:佚名油藏地球化学[M].北京:石油工业出版社,1997.
    [170] L iM aowen,L arter S R,Stoddart D et al(王铁冠,张枝焕译).石油运移过程中吡咯类含氮化合物的分馏作用:有关运移地球化学参数的推论[M].见:佚名油藏地球化学[M].北京:石油工业出版社,1997.
    [171] Giles M R. Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs[J]. Marine and Petroleum Geology. 1987, 4: 188-204.
    [172] Roberts, D. G. Theory and evaluation of formation pressures: A pressure detection reference handbook. Marine and Petroleum Geology. 1986, 3(4): 339.
    [173] Allen P A., Basin Analysis Principles and Applications. London: British Petrol. Comp. Inc, 1992, 1-147.
    [174] 戴金星,宋岩,张厚福等.中国天然气聚集区带[M].北京:科学出版社,1997.
    [175] 郝石生、贾振远.碳酸盐岩油气形成和分布[M].北京:石油工业出版社,1989.
    [176] 高岗、郝石生.碳酸盐岩基质与缝合线的生烃和排烃特征[J].中国科学D辑,2000,30(2):175-179.
    [177] 曹瑞成,陈章明.早期勘探区断层封闭性评价方法[J].石油学报,1992,13(1):1~7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700