用户名: 密码: 验证码:
非线性不确定性结构自适应模糊分散控制理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来世界范围内大地震和特大地震频繁发生,给人类造成了严重的灾难。其中土木工程结构的地震破坏和倒塌是造成地震人员伤亡和经济损失的主要因素。因此,研究减轻土木工程结构地震响应、提高结构抗震能力的理论和方法具有重要的意义。大量的研究表明,结构振动控制是提高结构抗震性能的积极有效措施。国内外学者对结构线性地震反应的振动控制理论、方法、技术和控制系统进行了大量的研究,但对结构非线性振动控制的研究较少。震害表明,在大地震和特大地震作用下,即使安装了振动控制系统的结构也不可避免地进入非线性反应阶段,因此,发展结构非线性地震反应振动控制理论和方法对提高结构抗震性能具有重要的意义。
     考虑大型土木工程结构具有结构复杂、自由度数目多、强滞变非线性、多相介质耦合的强非线性和强不确定性等特点,本文重点研究土木工程结构非线性分散振动控制算法,揭示受控结构累积损伤发展规律、能量分配规律和控制机理。主要研究内容如下:
     首先,针对非线性结构中的关键部位或薄弱部位,提出自适应模糊分散控制算法,采用模糊逻辑系统处理控制子结构的非线性以及子系统间的连接,增加补偿控制器控制模糊逼近误差和结构的外干扰,通过Lyapunov稳定性理论设计自适应模糊分散控制算法的自适应律以及补偿控制器,证明提出的非线性分散控制策略的H-infinity性能以及整体结构的输入状态稳定性,并通过仿真分析验证结构非线性分散控制算法的有效性和鲁棒性。
     其次,进行两层钢筋混凝土框架结构地震反应的自适应模糊分散半主动控制的振动台试验,验证自适应模糊分散半主动控制减小滞变非线性结构地震反应的效果及其鲁棒性,研究控制结构的累积损伤发展过程与规律,揭示控制结构的能量分布/分配特点与减震机理。
     第三,进行土-结构耦合系统非线性地震反应的自适应模糊分散半主动控制的地震模拟振动台试验,验证自适应模糊分散控制算法对强非线性和强不确定结构系统的振动控制效果和鲁棒性,研究土-结构耦合系统的累积损伤发展规律和能量分布/分配规律,揭示土-结构耦合系统非线性振动控制的机理和特点。
     最后,基于OpenSees次件开发结构非线性振动的自适应模糊分散控制程序,并通过与试验结果对比验证开发程序的正确性,进一步采用该程序研究结构和土-结构耦合系统地震非线性反应的控制特点。
In recent years, several sizeable earthquakes have caused severe loss of livesand significant economic cost. The heavy damage or collapse to civil structures hasbeen considered as one of the most important reason. Therefore, it is so necessaryto investigate the theory and method on preventing the heavy damage to civilstructures and improving the seismic performance. A Lot of researches to data haveindicated that structural control is an effective methodology in increasing safety andperformance against the seismic excitations. Plenty of researches focused on thecontrol theory, methodology, technique and system subjected to linear structureshave been conducted in the world. However, few literatures can be found about thenonlinear structural control. Due to the severity of earthquakes, the dynamicbehavior of civil structures will unavoidably be nonlinear or inelastic. Earthquakereconnaissance has indicated that even civil structures equipped with vibrationcontrol devices may enter the plastic domain. Hence, it is imperative andinformative to bring out the critical aspects with respect to investigate the theoryand methodology on the nonlinear structural control.
     Due to the property of civil structures, such as structural complexity, highdimensionality, strong nonlinear hysteresis, multiphase coupling nonlinearity anduncertainty, this research effort studies the nonlinear decentralized control strategy,and reveals the principle of cumulative damage evolution, energy distribution andcontrol mechanism. The main research works are outlined as following:
     First, a nonlinear robust control approach is proposed to address the vibrationcontrol problem of civil structures using the subsystem property, in view of theinfluence of the key parts or vulnerable parts in nonlinear structures on the seismicperformance. Fuzzy logic system is employed to treat the nonlinear problem anduncertainty. The auxiliary control compensation is employed to attenuate the fuzzyestimated errors and external excitations. The Lyapunov’s Direct Methods areemployed to design the adaptive law and auxiliary control compensation. The input-to-state stability of the entire system can be guaranteed by the proposed controlmethod. Furthermore, H-infinity performance is achieved through a subsystem with the proposed controller. Numerical examples are presented to demonstrate theeffectiveness and robustness of the proposed controller.
     Second, shaking table tests of a reinforced concrete (RC) frame are performedto investigate the proposed decentralized adaptive fuzzy control algorithm. Theeffectiveness and robustness of the proposed controller in suppressing vibrations ofthe test structure with nonlinear hysteresis are demonstrated. The principle ofcumulative damage evolution is investigated for the controlled/uncontrolledstructure. The characteristic of energy distribution and damping mechanism arerevealed.
     Third, shaking table tests of soil-structure system are performed to furtherinvestigate the proposed decentralized adaptive fuzzy control algorithm. Thereinforced concrete (RC) frame resting in a laminar soil container is employed asthe test specimen. The effectiveness and robustness of the proposed controller insuppressing vibrations of the soil-structure system with strong nonlinear hysteresisand uncertainty are demonstrated. The principle of cumulative damage evolutionand characteristic of energy distribution in soil-structure system are investigated.The characteristic and mechanism of nonlinear vibrations in soil-structure systemare revealed.
     Finally, the proposed nonlinear robust controller is developed and integratedinto the OpenSees platform. The validity and feasibility of this programmer isconducted by comparing with the results in shaking table tests. The characteristicsof vibration control for the fixed-base model and soil-structure system are furtherinvestigated subjected to seismic excitations.
引文
[1]Buckle I G, Mayes R L. Seismic isolation:history, application, and performance: A world view[J]. Earthquake Spectra,1990,6(2):161-201.
    [2]瞿伟廉,吴斌,李爱群.工程结构的振动控制理论及其应用[R].建筑、环境与土木工程学科发展战略研究报告,2005.
    [3]苏经宇,曾德民.我国建筑结构隔震技术的应用和研究[J].地震工程与工程振动,2001,21(4):94-101.
    [4]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002,23(2):2-12.
    [5]Li H, Ou J P. A design approach for semi-active and smart base-isolated buildings[J]. Structural Control&Health Monitoring,2006,13(2-3):660-681.
    [6]Chung L L, Yang C Y, Chen H M, Lu L Y. Dynamic behavior of nonlinear rolling isolation system[J]. Structural Control&Health Monitoring,2009,16(1):32-54.
    [7]Pozo F, Montserrat P M, Rodellar J, Acho L. Robust active control of hysteretic base-isolated structures:Application to the benchmark smart base-isolated building[J]. Structural Control&Health Monitoring,2008,15(5):720-736.
    [8]Suresh S, Narasimhan S, Sundararajan N. Adaptive control of nonlinear smart base-isolated buildings using Gaussian kernel functions[J]. Structural Control&Health Monitoring,2008,15(4):585-603.
    [9]Fan Y-C, Yang C-H L J N, Lin P-Y Experimental performance evaluation of an equipment isolation using MR dampers[J]. Earthquake Engineering&Structural Dynamics,2009,38(3):285-305.
    [10]Alexandros A. Taflanidis, Jeffrey T. Scruggs, James L. Beck. Probabilistically robust nonlinear design of control systems for base-isolated structures [J]. Structural Control&Health Monitoring,2008,15(5):697-719.
    [11]Zhou Xu, Anil K. Agrawal. Semi-active control of seismically excited base-isolated building model with friction pendulum systems[J]. Structural Control&Health Monitoring,2008,15(5):769-784.
    [12]Shook D, Roschke P, Ozbulut O. Superelastic semi-active damping of a base-isolated structure[J]. Structural Control&Health Monitoring,2008,15(5):746- 768.
    [13]Araki Y, Asai T, Masui T. Vertical vibration isolator having piecewise-constant restoring force[J]. Earthquake Engineering&Structural Dynamics,2009,38(13):1505-1523.
    [14]欧进萍,杨飏.导管架式海洋平台结构的磁流变阻尼隔震控制[J].高技术通讯,2003,13(6):66-73.
    [15]吴从晓,周云,邓雪松.高位转换隔震与耗能减震结构体系分析研究[J].土木工程学报,2010,43:289-296.
    [16]尚守平,姚菲,刘可.一种新型隔震层的构造及其振动台试验研究[J].土木工程学报,2011,44(2):36-41.
    [17]欧进萍.结构振动控制:主动、半主动和智能控制[M].北京:科学出版社,2003.
    [18]Arima F, Miyazaki M, Tanaka H, Yamazaki Y. A study on building with large damping using viscous damping walls[C].Proceedings of Ninth World Conference on Earthquake Engineering. Tokyo-Kyoto, Japan.1988:821-826.
    [19]Li H, Mao C X, Ou J P. Experimental and theoretical study on two types of shape memory alloy devices[J]. Earthquake Engineering&Structural Dynamics,2008,37(3):407-426.
    [20]Li H, Mao C X, Ou J P. Strain self-sensing property and strain rate dependent constitutive model of austenitic shape memory alloy:experiment and theory [J]. Journal of materials in civil engineering,2005,17(6):676-686.
    [21]李惠,毛晨曦.形状记忆合金(SMA)被动耗能减震体系的设计及参数分析[J].地震工程与工程振动,2001,21(4):54-59.
    [22]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究[J].地震工程与工程振动,2003,23(1):133-139.
    [23]李惠,刘敏,欧进萍.斜拉索-形状记忆合金耗能减振系统动力特性和模态分析[J].振动工程学报,2005,18(1):64-69.
    [24]Li H, Liu M, Ou J. Vibration mitigation of a stay cable with one shape memory alloy damper[J]. Structural Control&Health Monitoring,2004,11(1):21-36.
    [25]Han Y L, Li Q, Li A Q, Leung A, Lin P H. Structural vibration control by shape memory alloy damper[J]. Earthquake Engineering&Structural Dynamics,2003,32(3):483-494.
    [26]Saadat S, Salichs J, Noori M, Hou Z, Davoodi H, Bar-On I, Suzuki Y, Masuda A.An overview of vibration and seismic applications of NiTi shape memoryalloy[J]. Smart Materials&Structures,2002,11(2):218-229.
    [27] Clark P W, Aiken I D, Kelly J M, Higashino M, Krumme R. Experimental andanalytical studies of shape-memory alloy dampers for structuralcontrol[C].Proceeding of Smart Structures and Materials: Passive Damping. SanDiego, CA, USA.1995:241-251.
    [28] Adachi Y, Unjoh S, Kondoh M. Development of a shape memory alloy damperfor intelligent bridge systems[J]. Materials Science Forum,2000,327:31-34.
    [29] Gu M, Chen S, Chang C. Parametric study on multiple tuned mass dampers forbuffeting control of Yangpu Bridge[J]. Journal of Wind Engineering andIndustrial Aerodynamics,2001,89(11-12):987-1000.
    [30] Gu M, Xiang H. Optimization of TMD for suppressing buffeting response oflong-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,42(1-3):1383-1392.
    [31] Gu M, Xiang H, Chen A. A practical method of passive TMD for suppressingwind-induced vertical buffeting of long-span cable-stayed bridges and itsapplication[J]. Journal of Wind Engineering and Industrial Aerodynamics,1994,51(2):203-213.
    [32] Gu M, Chang C, Wu W, Xiang H. Increase of critical flutter wind speed of long-span bridges using tuned mass dampers[J]. Journal of Wind Engineering andIndustrial Aerodynamics,1998,73(2):111-123.
    [33] McNamara R J. Tuned mass dampers for buildings[J]. Journal of the StructuralDivision,1977,103(9):1785-1798.
    [34] Xu Y, Kwok K, Samali B. Control of wind-induced tall building vibration bytuned mass dampers[J]. Journal of Wind Engineering and IndustrialAerodynamics,1992,40(1):1-32.
    [35] Clark A J. Multiple passive tuned mass damper for reducing earthquake inducedbuilding motion[C].Proceedings of Ninth World Conference on EarthquakeEngineering. Tokyo-Kyoto, Japan.1988:779-784.
    [36] Wirsching P H, Campbell G W. Minimal structural response under randomexcitation using the vibration absorber[J]. Earthquake Engineering&StructuralDynamics,1973,2(4):303-312.
    [37] Kitamura H, Fujita T, Teramoto T, Kihara H. Design and analysis of a tower structure with a tuned mass damper[C].Proceedings of Ninth World Conference on Earthquake Engineering. Tokyo-Kyoto, Japan.1988:415-420.
    [38]Kaynia A M, Biggs J M, Veneziano D. Seismic effectiveness of tuned mass dampers[J]. Journal of the Structural Division,1981,107(8):1465-1484.
    [39]Sladek J R. Effect of Tuned Mass Dampers on Seismic Response[J]. Journal of Structural Engineering,1983,109(8):2004-2009.
    [40]Villaverde R. Seismic control of structures with damped resonant appendages[C].Proceeding of First World Conference on Structural Control. Los Angeles, CA, USA.1994:113-119.
    [41]李春祥,刘艳霞,王肇民.质量阻尼器的发展[J].力学进展,2003,33(2):194-206.
    [42]Housner G W. Dynamic pressures on accelerated fluid containers[J]. Bulletin of the Seismological Society of America,1957,47(1):15-35.
    [43]Kareem A, Sun W J. Stochastic response of structures with fluid-containing appendages [J]. Journal of Sound and Vibration,1987,119(3):389-408.
    [44]Fujino Y, Pacheco B M, Chaisen P, Sun L M, Parametric studies on tuned liquid damper (TLD) using circular containers by free oscillation experiments, Structure Engrineering and Earthquake Engrineering:JSCE.1988,5(2):381-391.
    [45]Sun L M, Fujino Y, Pacheco B M, Isobe M. Nonlinear waves and dynamic pressures in rectangular tuned liquid damper (TLD)-Simulation and experimental verification[J]. Structure Engineering and Earthquake Engineering:JSCE,1989,6(2):81-92.
    [46]Sun L, Fujino Y. A semi-analytical model for tuned liquid damper (TLD) with wave breaking[J]. Journal of fluids and structures,1994,8(5):471-488.
    [47]Sun L, Fujino Y, Koga K. A model of tuned liquid damper for suppressing pitching motions of structures [J]. Earthquake Engineering&Structural Dynamics,1995,24(5):625-636.
    [48]Koh C, Mahatma S, Wang C. Theoretical and experimental studies on rectangular liquid dampers under arbitrary excitations[J]. Earthquake Engineering&Structural Dynamics,1994,23(1):17-31.
    [49]李宏男,井秦阳,王立长,李凡林.利用浅水水箱作为阻尼器的大连国贸大厦减振控制研究[J].计算力学学报,2007,24(6):733-740.
    [50]梁启智,熊俊明,黄庆辉.调谐液体阻尼器对高层建筑和高耸结构动力反应 控制研究综述[J].世界地震工程,2002,18(1):123-128.
    [51]Nagashima I, Shinozaki Y. Variable gain feedback control technique of active mass damper and its application to hybrid structural control[J]. Earthquake Engineering&Structural Dynamics,1997,26(8):815-838.
    [52]欧进萍,张春巍,李惠,彭君义.大连市某高层建筑风振和地震反应的主动质量阻尼(AMD)控制分析与设计[J].建筑结构学报,2004,25(3):29-37.
    [53]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,10(85-90.
    [54]Li C, Li J, Qu Y. An optimum design methodology of active tuned mass damper for asymmetric structures[J]. Mechanical Systems and Signal Processing,2010,24(3):746-765.
    [55]Lim C W. Active vibration control of the linear structure with an active mass damper applying robust saturation controller[J]. Mechatronics,2008,18(8):391-399.
    [56]Kobori T, Takahashi M, Nasu T, Niwa N, Ogasawara K. Seismic response controlled structure with active variable stiffness system[J]. Earthquake Engineering&Structural Dynamics,1993,22(11):925-941.
    [57]Kobori T, Kanayama H, Kamagata S. A proposal of new anti-seismic structure with active seismic response control system dynamic intelligent building[C].Proceedings of Ninth World Conference on Earthquake Engineering. Tokyo-Kyoto.1988:465-470.
    [58]Nagarajaiah S. Semi-active control of structures[C].15th Structures Congress. Portland, OR, USA.1997:1574-1578.
    [59]Kawashima K, Unjoh S, Iida H, Mukai H. Effectiveness of the variable damper for reducing seismic response of highway bridges[C].Proceedings of Second U.S.-Japan Workshop on Earth-quake Protective Systems for Bridges. Tsukuba Science City, Japan.1992:479-493.
    [60]Mizuno T, Kobori T, Hirai J, Matsunaga Y, Niwa N. Development of adjustable hydraulic dampers for seismic response control of large structure[C].DOE Facilities Programs, Systems Interaction, and Active/Inactive Damping. New Orleans, LA.1992:163-170.
    [61]Shinozuka M, Constantinou M C, Ghanem R. Passive and activfeuid dampers in structural applications.[C].Proceedings of U.S./China/Japan Workshop on Structural Control. Shanghai, China.1992.
    [62]Symans M, Constantinou M. Semi-active control of earthquake induced vibration[C].Proceedings of Eleventh World Conference on Earthquake Engineering. Acapulco, Mexico.1996.
    [63]Symans M D, Constantinou M C. SEISMIC TESTING OF A BUILDING STRUCTURE WITH A SEMI-ACTIVE FLUID DAMPER CONTROL SYSTEM[J]. Earthquake Engineering&Structural Dynamics,1997,26(7):759-777.
    [64]Symans M D, Constantinou M C, Taylor D P, Garnjost K D. Semi-active fluid viscous dampers for seismic response control[C].Proceedings of First World Conference on Structural Control. Pasadena, CA.1994.
    [65]Patten W. New life for the Walnut Creek bridge via semiactive vibration control[J]. Newsletter of the International Association for Structural Control,1997,2(1):4-5.
    [66]李惠,袁雪松,吴波.粘滞流体变阻尼半主动控制器对结构抗震控制的试验研究[J].振动工程学报,2002,15(1):25-30.
    [67]Ou J, Li H. Analysis of capability for semi-active or passive damping systems to achieve the performance of active control systems[J]. Structural Control&Health Monitoring,2010,17(7):778-794.
    [68]Wu J C, Yang J N, Schmitendorf W E. Reduced-order H[infinity] and LQR control for wind-excited tall buildings[J]. Engineering Structures,1998,20(3):222-236.
    [69]Wong K K F, Zhao D. Effectiveness of inelastic structural control based on elastic displacement and energy[J]. Structural Control&Health Monitoring,2005,12(1):47-64.
    [70]李惠,彭君义.结构模型与控制器降阶的主动控制试验研究[J].振动工程学报,2006,19(1):17-23.
    [71]Yoo B, Ham W. Adaptive fuzzy sliding mode control of nonlinear system[J]. Fuzzy Systems, IEEE Transactions on,1998,6(2):315-321.
    [72]Wang J, Rad A, Chan P. Indirect adaptive fuzzy sliding mode control:Part I: fuzzy switching[J]. Fuzzy Sets and Systems,2001,122(1):21-30.
    [73]Yau H-T, Chen C-L. Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems[J]. Chaos, Solitons&Fractals,2006,30(3):709-718.
    [74] Roopaei M, Zolghadri M, Meshksar S. Enhanced adaptive fuzzy sliding modecontrol for uncertain nonlinear systems[J]. Communications in NonlinearScience and Numerical Simulation,2009,14(9-10):3670-3681.
    [75] Ho H, Wong Y, Rad A. Adaptive fuzzy sliding mode control with chatteringelimination for nonlinear SISO systems[J]. Simulation Modelling Practice andTheory,2009,17(7):1199-1210.
    [76] Yang J, Wu J, Agrawal A, Hsu S. Sliding mode control with compensator for windand seismic response control[J]. Earthquake Engineering&Structural Dynamics,1997,26(11):1137-1156.
    [77] Yang J N, Wu J, Agrawal A, Li Z. Sliding mode control for seismic-excited linearand nonlinear civil engineering structures[R]. Technical Report NCEER-94-0017,1994.
    [78] Yang J, Wu J, Agrawal A. Sliding mode control for seismically excited linearstructures[J]. Journal of Engineering Mechanics,1995,121(12):1386-1390.
    [79] Yang J, Wu J, Reinhorn A, Riley M. Control of sliding-isolated buildings usingsliding-mode control[J]. Journal of Structural Engineering,1999,122(2):179-186.
    [80] CHEN C W U, Yeh K, LIU K F R E Y. Adaptive fuzzy sliding mode control forseismically excited bridges with lead rubber bearing isolation[J]. InternationalJournal of Uncertainty,2009,17(5):705-727.
    [81] Yakut O, Alli H. Neural based sliding-mode control with moving sliding surfacefor the seismic isolation of structures[J]. Journal of Vibration and Control,2011,17(7):1-14.
    [82] Sastry S S, Isidori A. Adaptive control of linearizable systems[J]. AutomaticControl, IEEE Transactions on,1989,34(11):1123-1131.
    [83] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptivecontrollers for feedback linearizable systems[J]. Automatic Control, IEEETransactions on,1991,36(11):1241-1253.
    [84] Polycarpou M M, Ioannou P A, A robust adaptive nonlinear control design,American Control Conference, IEEE: San Francisco, CA, USA.1993:1365-1369.
    [85] Safak E. Adaptive modeling, identification, and control of dynamic structuralsystems. I: Theory[J]. Journal of Engineering Mechanics,1989,115(11):2386-2405.
    [86]Safak E. Adaptive Modeling, Identification and Control of Dynamic Structural Systems. II:Applications[J]. Journal of Engineering Mechanics,1989,115(11):2406-2426.
    [87]Burdisso R, Fuller C. Feasibility study of adaptive control of structures under seismic excitation[J]. Journal of Engineering Mechanics,1994,120(3):580-593.
    [88]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003.
    [89]Zames G. Feedback and optimal sensitivity:Model reference transformations, multiplicative seminorms, and approximate inverses[J]. Automatic Control, IEEE Transactions on,1981,26(2):301-320.
    [90]Doyle J C, Glover K, Khargonekar P P, Francis B A. State-space solutions to standard H2and H-infinity control problems[J]. Automatic Control, IEEE Transactions on,1989,34(8):831-847.
    [91]Iwasaki T, Skelton R E. All controllers for the general [infinity] control problem: LMI existence conditions and state space formulas[J]. Automatica,1994,30(8):1307-1317.
    [92]Suhardjo J. Frequency Domain Technique for Control of Civil Engineering Structures with Some Robustness Consideration[D]. Notre Dame:University of Notre Dame,1990.
    [93]Schmitendorf W, Jabbari F, Yang J. Robust control techniques for buildings under earthquake excitation[J]. Earthquake Engineering&Structural Dynamics,1994,23(5):539-552.
    [94]Fujinami T, Saito Y, Morishita M, Koike Y, Tanida K. A hybrid mass damper system controlled by H-infinity control theory for reducing bending-torsion vibration of an actual building[J]. Earthquake Engineering&Structural Dynamics,2001,30(11):1639-1653.
    [95]Wu W H, Lin C C. H infinity energy control and its stability analysis for civil engineering structures [J]. Structural Control&Health Monitoring,2004,11(3):161-187.
    [96]Lin C C, Chang C C, Chen H L. Optimal H-infinity Output Feedback Control Systems with Time Delay[J]. Journal of Engineering Mechanics,2006,132(10):1096-1106.
    [97]Savastuk S, Siljak D. Optimal decentralized control.1994:3369-3373vol.3363.
    [98] Siljak D D. Decentralized control and computations: status and prospects[J].International Federation of Automatic Control,1996,20:131-141.
    [99] Guo Y, Hill D J, Wang Y. Nonlinear decentralized control of large-scale powersystems[J]. Automatica-Kidlington,2000,36(9):1275-1290.
    [100]Hashemian H, Ryaciotaki-Boussalis H A, Wei Z. A decentralized approach tocontrol civil structures[C].Proceedings of the American Control Conference.Seattle, WA, USA1995:2936-2937.
    [101]Luo N, Rodellar J, Sen M, Vehi J. Decentralized active control of a class ofuncertain cable-stayed flexible structures[J]. International Journal of Control,2002,75(4):285-296.
    [102]Lynch J P, Law K H. Market-based control of linear structural systems[J].Earthquake Engineering&Structural Dynamics,2002,31(10):1855-1877.
    [103]Nishitani A, Nitta Y, Ikeda Y. Semiactive structural-control based on variableslip-force level dampers[J]. Journal of Structural Engineering-Asce,2003,129(7):933-940.
    [104]Rofooei F R, Monajemi-Nezhad S. Decentralized control of tall buildings[J].Structural Design of Tall and Special Buildings,2006,15(2):153-170.
    [105]Monajemi-Nezhad S, Rofooei F. Decentralized sliding mode control ofmultistory buildings[J]. The Structural Design of Tall and Special Buildings,2007,16(2):181-204.
    [106]Ma T W, Xu N S, Tang Y. Decentralized robust control of building structuresunder seismic excitations[J]. Earthquake Engineering&Structural Dynamics,2008,37(1):121-140.
    [107]Faravelli L, Yao T. Use of adaptive networks in fuzzy control of civilstructures[J]. Microcomputers in Civil Engineering,1996,11(1):67-76.
    [108]Faravelli L, Yao T. Self-learning fuzzy control of civil structures[C].Proceedingsof ISUMA-NAFIPS '95The Third International Symposium on UncertaintyModeling and Analysis. College Park, MD, USA.1995:52-57.
    [109]Subramanian R S, Reinhorn A M, Nagacajaiah S, Ryley M A. Hybrid control ofstructures using fuzzy logic[J]. Microcomputes in Civil Engineering,1996,11(1):1-17.
    [110]Battaini M, Casciati F, Faravelli L. Fuzzy control of structural vibration. Anactive mass system driven by a fuzzy controller[J]. Earthquake Engineering& Structural Dynamics,1998,27(11):1267-1276.
    [111]Fujitani H, Midorikawa M, Iiba M, Kitagawa Y, Miyoshi T. Seismic response control tests and simulations by fuzzy optimal logic of building structures[J]. Engineering Structures,1998,20(3):164-175.
    [112]Schurter K C, Roschke P N. Neuro-fuzzy control of structures using acceleration feedback[J]. Smart Materials&Structures,2001,10(4):770-779.
    [113]Lam H, Leung F H F, Tam P K S. Nonlinear state feedback controller for nonlinear systems:stability analysis and design based on fuzzy plant model[J]. Fuzzy Systems, IEEE Transactions on,2001,9(4):657-661.
    [114]Park K S, Koh H M, Ok S Y. Active control of earthquake excited structures using fuzzy supervisory technique [J]. Advances in Engineering Software,2002,33(11-12):761-768.
    [115]Zhou L, Chang C C, Wang L X. Adaptive fuzzy control for nonlinear building-magnetorheological damper system[J]. Journal of Structural Engineering-Asce,2003,129(7):905-913.
    [116]Dounis A I, Tiropanis P, Syrcos G P, Tseles D. Evolutionary fuzzy logic control of base-isolated structures in response to earthquake activity [J]. Structural Control&Health Monitoring,2007,14(1):62-82.
    [117]邢德进,李忠献.应用SMA智能阻尼器的结构模糊控制[J].工程力学,2008,25(10):224-234.
    [118]Dyke S J, Spencer B F, Sain M K, Carlson J D. Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Materials&Structures,1996,5(5):565-575.
    [119]Spencer B F, Dyke S J, Sain M K, Carlson J D. Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics-Asce,1997,123(3):230-238.
    [120]Dyke S J, Spencer B F, Sain M K, Carlson J D. An experimental study of MR dampers for seismic protection[J]. Smart Materials&Structures,1998,7(5):693-703.
    [121]Jansen L M, Dyke S J. Semiactive control strategies for MR dampers: Comparative study[J]. Journal of Engineering Mechanics-ASCE,2000,126(8):795-803.
    [122]Yang G, Spencer B F, Carlson J D, Sain M K. Large-scale MR fluid dampers: modeling and dynamic performance considerations[J]. Engineering Structures,2002,24(3):309-323.
    [123]Yang G Q, Spencer B F, Jung H J, Carlson J D. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications[J]. Journal of Engineering Mechanics-Asce,2004,130(9):1107-1114.
    [124]Hiemenz G J, Choi Y T, Wereley N M. Seismic Control of Civil Structures Utilizing Semi "CActive MR Braces[J]. Computer-Aided Civil and Infrastructure Engineering,2003,18(1):31-44.
    [125]Ribakov Y, Gluck J. Selective combined control stiffness and magnetorheological damping system in nonlinear multistorey structures [J]. The Structural Design of Tall Buildings,2002,11(3):171-195.
    [126]Yoshioka H, Ramallo J C, Spencer B F."Smart" base isolation strategies employing magnetorheological dampers[J]. Journal of Engineering Mechanics-ASCE,2002,128(5):540-551.
    [127]Jin G, Sain M K, Spencer B F. Nonlinear blackbox modeling of MR-dampers for civil structural control[J]. Ieee Transactions on Control Systems Technology,2005,13(3):345-355.
    [128]Tse T. Shear-mode rotary magnetorheological damper for small-scale structural control experiments[J]. Journal of Structural Engineering,2004,130(6):904-912.
    [129]Choi K M, Cho S W, Jung H J, Lee I W. Semi-active fuzzy control for seismic response reduction using magnetorheological dampers[J]. Earthquake Engineering&Structural Dynamics,2004,33(6):723-736.
    [130]Cho S W, Kim B W, Jung H J, Lee I W. Implementation of modal control for seismically excited structures using magnetorheological dampers[J]. Journal of Engineering Mechanics,2005,131(2):177-185.
    [131]Renzi E, Serino a G. Testing and modelling a semi-actively controlled steel frame structure equipped with MR dampers [J]. Structural Control&Health Monitoring,2004,11(3):189-221.
    [132]关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究[J].工程力学,2005,22(6):207-211.
    [133]关新春,郭鹏飞,欧进萍.基于有限元动网格技术的磁流变阻尼器瞬态阻尼力的数值计算[J].工程力学,2010,27(12):46-50.
    [134]欧进萍,关新春.磁流变耗能器及其性能[J].地震工程与工程振动,1998, 18(3):75-82.
    [135]Li H, Liu M, Li J, Guan X, Ou J. Vibration Control of Stay Cables of the Shandong Binzhou Yellow River Highway Bridge Using Magnetorheological Fluid Dampers[J]. Journal of Bridge Engineering,2007,12(4):401-409.
    [136]李惠,刘敏,欧进萍,关新春.斜拉索磁流变智能阻尼控制系统分析与设计[J].中国公路学报,2005,18(4):37-41.
    [137]郭安薪,李惠,李忠军,赵清杰.高架桥梁的地震碰撞和落梁分析及其控制[J].防灾减灾工程学报,2010,30(z1):172-176.
    [138]Guo A, Li Z, Li H, Ou J. Experimental and analytical study on pounding reduction of base-isolated highway bridges using MR dampers [J]. Earthquake Engineering&Structural Dynamics,2009,38(11):1307-1333.
    [139]瞿伟廉,徐幼麟.ER/MR智能阻尼器对空间网壳结构地震反应的半主动控制[J].地震工程与工程振动,2001,21(4):24-31.
    [140]瞿伟廉,王军武,徐幼麟,陈朝晖.ER/MR智能阻尼器耦联的带裙房高层建筑结构地震反应的半主动控制[J].地震工程与工程振动,2000,20(4):87-95.
    [141]李忠献,樊素英,史志利,徐龙河.应用MRF-04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J].土木工程学报,2005,38(8):74-79.
    [142]李秀领,李宏男.磁流变阻尼器结构控制策略研究进展[J].防灾减灾工程学报,2004,24(3):335-342.
    [143]李宏男,杨浩,李秀领.磁流变阻尼器参数化动力学模型研究进展[J].大连理工大学学报,2004,44(4):616-624.
    [144]Housner G W. Limit design of structures to resist earthquakes[C].Proceedings of the1st world conference earthquake engineering. Berkeley, California.1956:186.
    [145]Uang C M, Bertero V V. Evaluation of seismic energy in structures [J]. Earthquake Engineering&Structural Dynamics,1990,19(1):77-90.
    [146]Benedetti D, Carydis P, Limongelli M. Evaluation of the seismic response of masonry buildings based on energy functions[J]. Earthquake Engineering&Structural Dynamics,2001,30(7):1061-1081.
    [147]Wong K K F, Yang R. Evaluation of response and energy in actively controlled structures [J]. Earthquake Engineering&Structural Dynamics,2001,30(10):1495-1510.
    [148]Yang R. Earthquake response and energy evaluation of inelastic structures [J]. Journal of Engineering Mechanics,2002,128(3):308-318.
    [149]Austin M A, Lin W J. Energy balance assessment of base-isolated structures[J]. Journal of Engineering Mechanics,2004,130(3):347-359.
    [150]经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析[J].工程力学,2003,20(3):31-37.
    [151]Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8(3):338-353.
    [152]Passino K M, Yurkovich S. Fuzzy control[M]. Menlo Park, CA:Addison Wesley Longman,1998.
    [153]Wang LX. Stable adaptive fuzzy control of nonlinear systems[J]. Fuzzy Systems, IEEE Transactions on,1993,1(2):146-155.
    [154]Wang L-X. Fuzzy systems are universal approximators[C].Fuzzy Systems,1992, IEEE International Conferenve. San Diego, CA.1992:1163-1170.
    [155]Chen B S, Lee C H, Chang Y C. H-infinity tracking design of uncertain nonlinear SISO systems:Adaptive fuzzy approach[J]. IEEE Transactions on Fuzzy Systems,1996,4(1):32-43.
    [156]Marquez H J. Nonlinear control systems:Analysis and design[M]. Hoboken, New Jersey:John Wiley&Sons, Inc.,2003.
    [157]Khalil H K. Nonlinear systems[M].3rd ed. Upper Saddle River, New Jersey: Prentice Hall,2002.
    [158]Carlson J, Chrzan M, Magnetorheological Fluid Dampers., Lord Corporation: USA.1994, U.S. Patent#5277281(900571).
    [159]Jung H J, Spencer B F, Ni Y Q, Lee I W. State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications[J]. Structural Engineering and Mechanics,2004,17(3-4):493-526.
    [160]Hrovat D, Barak P, Rabins M. Semi-Active versus Passive or Active Tuned Mass Dampers for Structural Control[J]. Journal of Engineering Mechanics,1983,109(3):691-705.
    [161]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实验与应用[M].天津:天津大学出版社,2001.
    [162]Park Y J, Ang H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering,1985,111(4):722-740.
    [163]Altoontash A. Simulation and damage models for performance assessment of reinforced concrete beam-column joints[D]. Stanford, CA:Stanford University,2004:94-104.
    [164]张国军,吕西林.高强混凝土框架柱的地震损伤模型[J].地震工程与工程振动,2005,25(2):100-104.
    [165]Chopra A K. Dynamics of structures:theory and applications to earthquake engineering[M]. Prentice Hall Upper Saddle River, New Jersey,1995.
    [166]Stewart J P, Seed R B, Fenves G L. Seismic soil-structure interaction in buildings. II:Empirical findings[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(1):38-48.
    [167]Stewart J P, Fenves G L, Seed R B. Seismic soil-structure interaction in buildings. I:Analytical methods[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(1):26-37.
    [168]Menglin L, Wenjian W. Study on soil-pile-structure-TMD interaction system by shaking table model test[J]. Earthquake Engineering and Engineering Vibration,2004,3(1):127-137.
    [169]Lou M, Zong G, Niu W, Chen G, Cheng F Y. Experimental study on tuned liquid damper performance in reducing the seismic response of structures including soil-structure interaction effect[J]. Structural Engineering and Mechanics,2006,24(3):275-290.
    [170]伍小平,孙利民,胡世德,范立础.振动台试验用层状剪切变形土箱的研制[J].同济大学学报,2002,30(7):781-785.
    [171]Ueng T S, Wang M H, Chen M H, Chen C H, Peng L H. A large biaxial shear box for shaking table test on saturated sand[J]. ASTM geotechnical testing journal,2006,29(1):1-8.
    [172]Bethapudi R. Liquefaction induced lateral spreading in large-scale shake testing[D]. State University of New York at Buffalo,2009.
    [173]Agrawal A, Tan P, Nagarajaiah S, Zhang J. Benchmark structural control problem for a seismically excited highway bridge-Part Ⅰ:Phase Ⅰ problem definition[J]. Structural Control and Health Monitoring,2009,16(5):509-529.
    [174]Ohtori Y, Spencer Jr B. Benchmark control problems for seismically excited nonlinear buildings [J]. Journal of Engineering Mechanics,2004,130(4):366-386.
    [175]McKenna F, Fenves G L, Scott M H. Opensees:Open System for Earthquake Engineering Simulation. Pacific Earthquake Engineering Research Center, University of California:Berkeley, CA2009; Available from: http://opensees.berkeley.edu/.
    [176]Mazzoni S, McKenna F, Scott M H, Fenves G L, Open System for Earthquake Engineering Simulation User Command-Language Manual, Pacific Earthquake Engineering Research Center:University of California, Berkeley.2006:
    [177]Miyamoto H, Gilani A S J, Wada A, Ariyaratana C. Limit states and failure mechanisms of viscous dampers and the implications for large earthquakes [J]. Earthquake Engineering&Structural Dynamics,2010,39(11):1279-1297.
    [178]邢继祥.最优控制应用基础[M].北京:科学出版社,2007:178-183.
    [179]Laub A. A Schur method for solving algebraic Riccati equations[J]. Automatic Control, IEEE Transactions on,1979,24(6):913-921.
    [180]Kim J, LaFave J M. Key influence parameters for the joint shear behaviour of reinforced concrete (RC) beam-column connections[J]. Engineering Structures,2007,29(10):2523-2539.
    [181]Morita S, Kaku T. Slippage of reinforcement in beam-column joint of reinforced concrete frame[C].Eighth World Conference on Engineering. San Francisco, CA.1984:477-484.
    [182]Charney F A. Unintended consequences of modeling damping in structures[J]. Journal of Structural Engineering,2008,134(4):319-349.
    [183]Boulanger R W, Curras C J, Kutter B L, Wilson D W, Abghari A. Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(9):750-759.
    [184]Gajan S. Numerical models for analysis and performance-based design of shallow foundations subjected to seismic loading[R].2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700