用户名: 密码: 验证码:
超弹性形状记忆合金丝对结构减震控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超弹性形状记忆合金(Shape Memory Alloy,简称SMA)是实施结构被动控制的理想材料。国内外学者致力于SMA在结构振动控制中的研究,取得了一些成果,但在材料本构、阻尼器的研制开发、减震结构振动分析及优化设计等方面,还存在一些问题,有待于进一步研究。在此背景下,本论文在以下几方面进行了系统的理论分析和试验研究:
     (1)试验测试了超弹性NiTi丝的力学性能,研究了循环次数、加载速率、应变幅值、环境温度等因素对SMA滞回曲线及其力学参数(临界应力、单位循环耗能量、模量、残余应变)的影响。在此基础上,对Lagoudas多线性模型进行改进,分别考虑模型参数随加载速率和循环次数的变化规律,建立了多线性动态本构模型和循环现象模型。针对Graesser模型不能反应加、卸载过程中材料力学性能变化的缺陷,提出了改进方法。
     (2)设计并制作了新型自复位SMA阻尼器,兼有耗能和复位功能,且构造简单紧凑、丝材受力均匀。力学试验研究了循环次数、位移幅值和加载频率对阻尼器滞回曲线及其力学参数(最大输出力、残余变形、割线刚度、单位循环耗能量和等效阻尼比)的影响。在SMA多线性动态本构模型和受力分析基础上,建立了阻尼器的力学模型。数值模拟分析了不同功能丝组合(复位丝与耗能丝面积比)对阻尼器力学性能的影响。
     (3)对自复位SMA阻尼器控制下的对称结构弹塑性地震时程反应及其能量分析进行研究,以一三层钢筋混凝土框架结构为算例,分别针对总用丝量相同和控制最大层间位移角相同两种工况,计算比较不同功能丝组合时阻尼器的减震功效和总用丝量,结果表明:当复位丝与耗能丝面积比在0.67~2时,能同时满足减震控制和经济性要求。通过对一二层模型钢框架进行模拟地震振动台试验,验证了自复位阻尼器的减震及复位功能,并证实了理论分析的可靠性。
     (4)对自复位SMA阻尼器控制下的均匀偏心结构在双向地震输入时的时程反应及其能量分析进行研究,以一单自由度偏心体系为算例,分别针对总用丝量相同和控制最大层间位移角相同两种工况,计算比较了不同功能丝组合时阻尼器的减震功效和总用丝量,建议复位丝与耗能丝面积比取0.67~2,以有效抑制结构的平-扭耦联振动并满足经济性要求。另外,假定复位丝与耗能丝面积比为2,计算了不同地震输入下阻尼器对多自由度偏心结构的振动控制。
     (5)为了改善多目标优化算法的计算效率和效果以实现耗能减震结构的优化设计,在二元锦标赛遗传算法基础上改进提出了新的一轮锦标赛遗传算法,该算法采用无回放随机联赛选择机制,根据Pareto支配关系复制个体,每一代选择过程在一轮循环中完成;为了将约束优化问题转化为无约束问题,依据Pareto优于准则建立了能体现约束信息的约束子目标函数。测试函数的比较计算证明该算法能够在较短时间内搜索到更多均匀分布的Pareto解。分别针对对称结构和均匀偏心结构,建立了基于Pareto思想的减震结构多目标优化模型,实现了阻尼器数量、位置和减震效果的共同优化。
Superelastic shape memory alloy (SMA) is a perfect material for passive control of structures. Numerous studies have been conducted in using SMA for structural vibration control, and some developments have been attained. However, there still exist some problems in modeling and application of SMA. Further investigations are carried out in this thesis, concering constitutive model, damper design, vibration analysis and optimization design of damped structures.
     (1) Experiments on the mechanical behaviors of the superelastic NiTi wires are performed. Cyclic number, loading rate, strain amplitude, and temperature are considered to investigate their effects on the hysteretic curves and the mechanical parameters of SMA (such as critical stress, energy dissipation per cycle, modulus and residual strain). Based on the experimental results, the Lagoudas' multilinear model is modified to reflect the dynamic hysteretic hehaviors or the cyclic mechanical behaviors of SMA, considering loading rate or cyclic number's effects on the parameters of the model, respectively. In addition, the Graesser's model is improved to reflect the variations of the hysteretic behaviors of SMA during loading and unloading.
     (2) An innovative recentering damping device (RDD) is designed and manufactured, which provides a perfect energy dissipation compatible with a negligible residual displacement, and has such advantages as the simple configuration and the uniform stresses of the wires. Extensive experiments are carried out to investigate the influences of cyclic number, displacement amplitude and loading frequency on the damper's hysteretic curves and the mechanical behaviors (such as maximum output force, residual deflection, secant stiffness, dissipated energy per cycle and equivalent viscous damping ratio). By analyzing the working mechanism of the RDD, a theoretical model is set up on the basis of the multilinear dynamic model of SMA. Some numerical simulations are taken to compare the mechanical behaviors of the damper with different ratio of cross-sectional area of recentering wires to dissipating wires.
     (3) Seismic nonlinear response time histories and energy analyses of a symmetric structure with the RDD are simulated. Taken a three-story RC frame as an example, some comparisons of the seismic response of the controlled structure and the amount of gross SMA wires are executed, given the same amount of gross wires and the same maximum inter-story displacement ratio of the controlled structure, respectively, and a combination (ratio of cross-sectional area of recentering wires to dissipating wires) of 0.67~2 is suggested to satisfy the desired seismic response of the RDD structure and the economical efficiency. A two-story steel frame model with the RDD is tested on the shaking table, and the results approve that the RDD can decrease the structural vibration and mitigate the residual displacement effectively, which agrees with the theoretical results.
     (4) Seismic response time histories and energy analyses of an eccentric structure with the RDD excited by bi-directional earthquakes are simulated. Taken an eccentric single-story structure as an example, some comparisons of the seismic response of the controlled structure and the amount of gross wires are executed, given the same amount of gross wires and the same maximum inter-story displacement ratio of the controlled structure, respectively. The results show that the damper with a combination of 0.67~2 can eliminate the coupled lateral-torsional response of the structure at a low cost. Moreover, the seismic response of a three-story eccentric structure controlled by the RDD with a combination of 2 is simulated, considering different earthquakes.
     (5) To improve computational efficiency of multiobjective optimization algorithms for optimal design of damped structures, a novel one-round tournament genetic algorithm is advanced on the basis of the two-branch tournament genetic algorithm. Using stochastic tournament selection without replacement, the individuals are copied according to the Pareto relationships, and selections in each generation are accomplished in one-round repetition. In order to transfer a constrainted problem into an unconstrainted one, each objective function is revised as a constrainted objective function, according to the precedence rules. Test functions testify that the novel algorithm can search more Pareto optima stretching along the Pareto front in a shorter time. Based on the Pareto optimization theory, the multiobjective optimization models of controlled symmetric and eccentric structures are established to achieve the Pareto optima of the number and the placement of dampers and the seismic response of controlled structures.
引文
[1]王根龙,张军慧,梁永朵.中国地震灾害现状及地震灾害系统工程研究.灾害学,2006,21(3):15.19.
    [2]李宏男.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [3]周云著.金属耗能减震结构设计.武汉:武汉理工大学出版社,2006.
    [4]Yao J P T.Concept of structural control.Journal of Structural Division,1972,98(ST7):1567-1574.
    [5]赵林.结构振动半主动控制的实用性研究.工程抗震与加固改造,2005,27(2):32-39.
    [6]阎维明,周福霖,谭平.土木工程结构振动控制的研究进展.世界地震工程,1997,13(2):8-20.
    [7]Soong T T,Dargush G F.Passive energy dissipation systems in structural engineering.New York:John Wiley and Sons,1997.
    [8]李宏男,李忠献,祁凯,贾影.结构振动与控制.北京:中国建筑工业出版社,2005.
    [9]张君英,韩军辉.结构振动被动控制方法概述及应用.山西建筑,2007,33(19):66-67.
    [10]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制.建筑结构学报,2002,23(2):2-12,26.
    [11]苏经宇,曾德民.我国建筑结构隔震技术的研究和应用.地震工程与工程振动,2001,21(4):94-101.
    [12]杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题.力学进展,2003,33(3):301-312.
    [13]欧进萍.结构振动控制--主动、半主动和智能控制.北京:科学出版社,2003.
    [14]李秀岭.非对称建筑结构的磁流变阻尼器半主动控制:(博士学位论文).大连:大连理工大学,2006.
    [15]王静,李军.结构振动控制技术综述.工程设计与研究,2005,4:19-21,31.
    [16]唐意,顾明.某超高层建筑TMD风振控制分析.振动与冲击,2006,25(2):16-19.
    [17]顾明,巩海帆.杨浦大桥抖振及控制分析.同济大学学报,1993,21(3):307-314.
    [18]胡继军,黄金枝,李春祥,董石麟.网壳-TMD风振控制分析.建筑结构学报,2001,22(3):31-35.
    [19]李春祥,刘艳霞,王肇民.质量阻尼器的发展.力学进展,2003,33(2):194-206.
    [20]霍林生.偏心结构利用调液阻尼器减震控制的研究:(博士学位论文).大连:大连理工大学,2005.
    [21]Xu K,Igusa T.Dynamic characteristics of multiple substructures with closely spaced frequencies.Earthquake Engineering and Structural Dynamics,1992,21:1059-1070.
    [22]唐柏鉴,李亚明.大跨屋盖结构的竖向MTMD减震控制.特种结构,2007,24(1):64-67.
    [23]李春祥,韩兵康,杜冬.结构的多重双重调谐质量阻尼器控制策略.振动与冲击,2007,26(2):25-28.
    [24]Li H N,Nin X L.Optimization of non-uniformly distributed multiple tuned mass damper.Journal ofSound and Vibration,2007,308(1-2):80-97.
    [25]刘立平,李英民,韩军,吕辉.调液阻尼器减振效应研究的综述和展望.重庆建筑大学学报,2006,28(4):132-137.
    [26]Vandiver J K.Mitome S.Effect of liquid storage tanks on the dynamic response of offshore platforms.Journal of Petroleum Technology,1979,31(10):1231-1240.
    [27]Sato T.Tuned sloshing dampers.Journal of Wind Engineering,1987,32:67-68.
    [28]Tamura Y,Fujii K,Ohtsuki T,Wakahara T,Kohsaka R.Effectiveness of tuned liquid dampers under wind excitation.Engineering Structures,1995,17(9):609-621.
    [29]程文瀼,瞿伟廉,陆勤,任振华.南京电视塔的风振控制.土木工程学报,1993,26(4):14-20.
    [30]瞿伟廉,宋波,陈研桂,翟新民.TLD对珠海金山大厦主楼风振控制设计.建筑结构学报,1995,16(3):21-28.
    [31]井秦阳,李宏男,王立长,李凡林.大连国贸大厦高层水箱风振控制研究及应用.地震工程与工程振动,2006,26(2):111-118.
    [32]楼梦麟,宗刚,牛伟星,陈根达.土-桩-钢结构-TLD系统振动台模型试验研究.地震工程与工程振动,2006,26(6):172-177.
    [33]宗刚,楼梦麟.调谐液体阻尼器多模态减震实用优化设计方法.工业建筑,2007,37(2):32-36,31.
    [34]章登精.南京长江第三大桥钢塔工程控制技术.中国铁道科学.2007,28(4):133-140.
    [35]Kelly J M,Skinner R I,Heine A J.Mechanism of energy absorption in special devices for use in earthquake resistant structures.Bulletin of N.Z.society for Earthquake Engineering,1972,5(3):63-88.
    [36]Skinner R I,Kelly J M,Heine A I.Hysteresis dampers for earthquake-resistant structures.Earthquake Engineering and Structural Dynamics,1975,3:287-296.
    [37]Whittaker A S,Bertem V V,Thompson C L.Seismic testing of steel plate energy dissipation devices.Earthquake Spectra,1991,7(4):563-604.
    [38]Tsai K C,Chen H W,Hong C P,et al.Design of steel triangular plate energy absorbers for seismic-resistant construction.Eearthquake Spectra,1993,9(3):505-528.
    [39]周云,刘季.圆环耗能器的试验研究.世界地震工程,1996,4:1-7.
    [40]周云,刘季.双环软钢耗能器的试验研究.地震工程与工程振动,1998,18(2):117-123.
    [41]孙峰,周云,俞公骅,李希平.加劲圆环耗能器性能的试验研究.地震工程与工程振动,1999,19(3):115-120.
    [42]邢书涛,郭迅.一种新型软钢阻尼器力学性能和减震效果的研究.地震工程与工程振动,2003,23(6):179-186.
    [43]李玉顺,大井谦一,沈世钊.极低屈服点软钢阻尼器恢复力模型的研究.地震工程与工程振动,2004,24(6):142-145,153.
    [44]李宏男,李钢,李中军,邢福国.钢筋混凝土框架结构利用“双功能”软钢阻尼器的抗震设计.建筑结构学报,2007,28(4):36-43.
    [45]李钢.新型金属阻尼器减震结构的试验和理论研究:(博士学位论文).大连:大连理工大学,2007.
    [46]Li H N,Li G.Experimental study of structure with "dual function" metallic dampers.Engineering Structures,2007,29(8):1917-1928.
    [47]孙树民.土木工程结构振动控制技术的发展.噪声与振动控制,2001,1:22-28.
    [48]吴从晓,周云,王廷彦.金属耗能器的类型、性能及工程应用.工程抗震与加固改造,2006,28(1):87-94.
    [49]Pall A S,Marsh C.Response of friction damped braced frames.Journal of the structural division,1982,108(6):1313-1323.
    [50]吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证.地震工程与工程振动,2001,21(4):60-65.
    [51]吴斌,张纪刚,欧进萍.Pall型摩擦阻尼支撑内力计算方法.世界地震工程,2004,20(2):6-11.
    [52]张纪刚,单礼会,付瑛琪.Pall型摩擦阻尼框架几何非线性分析.青岛理工大学学报,2007,28(5):1-4,13.
    [53]吴斌,张纪刚,欧进萍.拟粘滞摩擦阻尼器滞回特性及支撑内力分析.哈尔滨工业大学学报,2003,35(7):834-838,843,849.
    [54]吴斌,张纪刚,欧进萍.一种改进的拟粘滞摩擦阻尼器的试验研究与数值分析.土木工程学报,2004,37(1):24-30.
    [55]马路.浅谈消能减震技术在工程结构抗震加固中的应用.安徽建筑,2007,3:80-81,86.
    [56]蔡泽文.粘弹性阻尼器在土木工程中的应用.山西建筑,2007,33(29):93-94.
    [57]Schwahn K J,Delinic K.Verification of the reduction of structural vibrations by means of viscous dampers.ASME,Pressure Vessels and Piping Division,Pittsburgh,PA,1988,144:87-95.
    [58]Arima F,Miyazaki M,Tanaka H,Yamazaki Y.A study on buildings with large damping using viscous damping walls.Proc.Of the 9th World Conference on Earthquake Engineering,Tokyo,1988,V:821-826.
    [59]Constantinou M C,Symans N D,Tsopelas P,Taylor D P.Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation.Proc.ATC 17-1 on Seismic Isolation,Energy Dissipation and Active Control,1993,2:581-591.
    [60]张志强,李爱群,徐庆阳,乌兰.建筑减振粘滞阻尼器工程应用新进展.江苏建筑,2007,2:15-19,58.
    [61]汪大洋,周云,王烨华,丁鲲.粘滞阻尼减震结构的研究与应用进展.工程抗震与加固改造,2006,28(4):22-31.
    [62]邓国基,杨穗华,郑宜,何伟球.广州市档案馆新馆档案库房耗能减震设计.广东土木与建筑,2007,6:13-15.
    [63]刘振宇,李乔,蒋劲松,蒋建军.南宁大桥粘滞阻尼器参数分析.桥梁建设,2007,4:25-28.
    [64]滕振超,杨宇.结构振动控制技术的发展与应用.油气田地面工程,2005,24(11):1-2.
    [65]刘方,邹向阳,赵万里,朱冲,王晓鹏.土木工程结构振动控制的概况与新进展.长春工程学院学报(自然科学版),2007,8(3):15-19.
    [66]Maebayashi K,Shiba K,Mita,Inada Y.Hybrid mass damper system for response control of building.Proceeding of the Tenth World Conference on Earthquake Engineering,Madrid,Spain,1992.
    [67]李爱群,瞿伟廉,程文瀼.南京电视塔风振的混合振动控制研究.建筑结构学报,1996,17(3):9-17.
    [68]黄尚廉,陶宝祺,沈亚鹏.智能结构系统--梦想、现实与未来.中国机械工程,2000,11(1-2):32-35.
    [69]程显文,关群.智能材料在土木工程中的应用.建筑材料,2006,20(1):69-71.
    [70]张微敬,欧进萍.智能控制算法及其在结构振动控制中的应用.世界地震工程,2002,18(2):32-38.
    [71]亓兴军,李小军.土木工程结构减震控制方法综述.工业建筑,2006,36(8):59-63,100.
    [72]魏凤春,张恒,张晓,贺跃进.智能材料的开发与应用.材料导报,2005,20(4):375-378.
    [73]姜德生,Richard O.Claus.智能材料、器件、结构与应用.武汉:武汉工业大学出版社,2000.
    [74]李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展.建筑结构学报,2005,26(3):1-8,29.
    [75]谢建宏,张为公,梁大开.智能材料结构的研究现状及未来发展.材料导报,2006,20(11):6-9.
    [76]刘勇,魏泳涛.智能材料在土木工程中的应用.西南交通大学学报,2002,37(S):105-109.
    [77]王军武.智能材料驱动器的研究与应用.武汉工业大学学报.2000,22(4):4-6.
    [78]Spencer B F,Nagarajaiah S.State-of-the-art of structural control.Journal of Structural Engineering,2003,129(7):845-856.
    [79]王修通,陈政清,倪一清.斜拉桥风雨振观测及控制.土木工程学报,2003,36(6):53-59.
    [80]李金海.关新春,刘敏,欧进萍.斜拉索磁流变液阻尼器半主动振动控制系统的设计与应用.功能材料,2006,37(5):827-830.
    [81]邓友生,孙宝俊.智能材料系统及其在土木工程中的应用研究.建筑技术,2005,36(2):92-95.
    [82]余海湖,赵愚,姜德生.智能材料与结构的研究及应用.武汉理工大学学报,2001,23(11):37-41.
    [83]唐少容,周岱,黄真.智能材料结构的研究应用.建筑技术开发,2005,32(5):139-143.
    [84]李金海,关新春,刘敏,欧进萍.智能结构及其应用问题.高新技术,2003,1:17-20,22.
    [85]吴波,李惠,孙科学.形状记忆合金在土木工程中的应用.世界地震工程,1999,15(3):1-13,46.
    [86]杨杰,吴月华.形状记忆合金及其应用.合肥:中国科学技术大学出版社,1993.
    [87]崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展.防灾减灾工程学报,2005,25(1):86-9446.
    [88]赵可昕,杨永民.形状记忆合金在建筑工程中的应用.材料开发与应用,2007,22(3):40-46.
    [89]崔海宁.形状记忆合金在建筑领域中的应用.山西建筑,2006,32(24):147-148.
    [90]杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [91]贺志荣,王芳,周敬恩.TiNi合金的形状记忆效应及其工程应用研究进展.材料热处理学报,2005,26(5):21-27.
    [92]李化.形状记忆合金在结构抗震中的应用.辽宁工学院学报,2007,27(5):312-315.
    [93]王利红,王金凤.形状记忆合金在智能结构中的设计与应用.机电工程技术,2004,33(11):66-68.
    [94]彭文屹,曾少鹏,章少青.形状记忆合金在土木工程上的应用进展.热处理技术与装备,2007,28(5):1-5,13.
    [95]Ma N,Song G B.Study of damping capacities of Nitinol shape memory alloys in martensite,austenite,and martensite-austenite co-existence phases.Proceedings of SPIE,Smart Structures and Materials:Damping and Isolation,San Diego,California,USA,,2005,5760:142-151.
    [96]耿冰.形状记忆合金的研究现状及应用特点.辽宁大学学报(自然科学版),2007,34(3):225-228.
    [97]李启全,祁珊.NiTi形状记忆合金超弹性的研究进展.国外金属热处理,2003,24(4):5-9.
    [98]黄兵民,蔡伟,赵蔚,赵连城.热处理和冷变形对Ti-Ni合金非线性超弹性的影响.宇航材料工艺,1997,5:24-28.
    [99]吴波,孙科学,李惠,唐会胜.热处理对形状记忆合金超弹性滞回性能的影响.振动工程学报,2000,13(3):449-454.
    [100]邓宗才,刘春国.SMA超弹性及减隔震器的研究与发展.工程建设,2006,38(5):1-6.
    [101]Piedboeuf M C,Gauvin R.Damping behaviour of shape memory alloys:strain amplitude,frequency and temperature effects Journal of Sound and Vibration,1998,214(5):885-901.
    [102]Dolce M,Cardone D.Mechanical behaviour of shape memory alloys for seismic application-2.Austenite NiTi wires subjected to tension.International Journal of Mechanical Sciences,2001,43(11):2657-2677.
    [103]倪立峰,李爱群,左晓宝,陈庆福,李秋胜.形状记忆合金超弹性阻尼性能的试验研究.地震工程与工程振动,2002,22(6):129-134.
    [104]毛晨曦,张亮泉.形状记忆合金超弹性特性试验研究.低温建筑技术,2007,3:53-54.
    [105]Wolons D,Grandhi F,Malovrh B.Experimental investigation of the pseudoelastic hysteresis damping characteristics of shape memory alloy wires.Journal of Intelligent Material Systems and Structures,1998,9(2):116-126.
    [106]左晓宝.形状记忆合金阻尼器--斜拉索减振控制的试验与分析研究:(博士学位论文).南京:东南大学,2005.
    [107]左晓宝,李爱群,倪立峰,陈庆福.超弹性形状记忆合金丝(NiTi)力学性能的试验研究.土木工程学报,2004,37(12):10-16.
    [108]刘克勇,雷永超,蔡伟,赵连城.钛镍形状记忆合金的研究进展.材料研究与应用,2007,1(2):86-90.
    [109]Miyazaki S,Imai T,Igo Y,Otsoka K.Effect of cyclic deformation on the pseudoelastic characteristics of Ti-Ni alloys.Metallurgical and Materials Transactions A,1986,17(1):115-120.
    [110]Lin P H,Tobushi H,Tanaka K,Hattori T and Makita M.Pseudoelastic behavior of TiNi shape memory alloy subjected to strain variations.Journal of Intelligent Materials Systems and Structures,1994,5(5):694-701.
    [111]Malécot P,Lexcellent C,Foltête E,Collet M.Shape memory alloys cyclic behavior:experimental study and modeling.Journal of Engineering Materials and Technology,2006,128(3):335-345.
    [112]巩建鸣,户伏寿昭.承受各种循环加载的TiNi形状记忆合金的超弹性变形行为.功能材料,2002,33(4):391-393,397.
    [113]Lim T J,McDowell D L.Path dependence of shape memory alloys during cyclic loading.Journal of Intelligent Materials Systems and Structures,1995,6(6):817-830.
    [114]Grandhi F,Wolons D.Characterization of the pseudoelastic damping behavior of shape memory alloy wires using complex modulus.Smart Materials and structures,1999,8(1):49-56.
    [115]Ip K H.Energy dissipation in shape memory alloy wire under cyclic bending.Smart Materials and Structures,2000,9(5):653-659.
    [116]吴晓东,王征,吴建生.用于智能材料与结构的TiNi丝的电阻特性研究.上海交通大学学报,1998,32(2):80-83.
    [117]吴晓东,吴建生,王征,金嘉陵,张一.NiTi形状记忆合金丝的电阻与应力、应变的关系研究.功能材料,1998,29(2):161-164.
    [118]毛晨曦,张亮泉.形状记忆合金应变感知特性试验研究.低温建筑技术,2007,3:51-52.
    [119]Liu Y,Xie Z,Humbeeck J V.Cyclic deformation of NiTi shape memory alloys.Materials Science and Engineering A,1999,273-275:673-678.
    [120]Dolce M,Cardone D.Mechanical behaviour of shape memory alloys for seismic application-1.Martensite and austenite NiTi bars subjected to torsion.International Journal of Mechanical Sciences,2001,43(11):2631-2656.
    [121]Chung J H,Kim H C,Lee J J.A study on the actuation behavior of shape memory alloys under tension-torsion combined loading.Proceedings of SPIE,International Conference on Smart Materials and Nanotechnology in Engineering,Harbin,China,2007,64230Q.
    [122]DesRoches R,McCormick J,Delemont M.Cyclic properties of superelastic shape memory alloy wires and bars.Journal of structural engineering,2004,130(1):38-46.
    [123]崔迪,李宏男,宋钢兵.新形式超弹性形状记忆合金线材力学性能试验研究.大连理工大学学报,2007,47(2):257-263.
    [124]Adachi Y,Unjoh S.Experimental study on seismic response control of bridge by damper devices using shape memory alloys.Proceedings of the 2nd World Conference on Structural Control,Kyoto,Japan,1998:1861-1870.
    [125]Suzuki S,Urushiyama Y,Yaya M.Energy Absorption Material using Buckling Strength of Shape Memory Alloy Plate.Proceedings of SPIE,Smart Structures and Materials:Active Materials:Behavior and Mechanics,San Diego,California,USA,2004,5387:218-226.
    [126]Krumme R.Hayes J,Sweeney S.Structural damping with shape-memory alloys:one class of devices.Proceedings of SPIE,Smart Structures and Materials:Passive Damping,1995,2445:225-240.
    [127]倪立峰,李爱群,左晓宝,陈庆福.形状记忆合金拉压型超弹性阻尼器的试验研究.地震工程与工程振动,2003,23(5):205-208.
    [128]薛素铎,董军辉,卞晓芳,李彬双.一种新型形状记忆合金阻尼器.建筑结构学报,2005,26(3):45-50.
    [129]彭刚.耗能减振器.中国,实用新型专利,02278427.6,2002.
    [130]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究.地震工程与工程振动,2003,23(1):133-139.
    [131]毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析.建筑结构学报,2005,26(3):38-44.
    [132]Dolce M,Cardone D,Marnetto R.Implementation and testing of passive control devices based on shape memory alloys.Earthquake engineering and structural dynamics,2000,29(7):945-968.
    [133]Dolce M,Cardone D,Marnetto R.SMA re-centering devices for seismic isolation of civil structures.Proceedings of SPIE,Smart Structures and Materials:Smart Systems for Bridges,Structures,and Highways,Newport Beach,California,USA,2001,4330:238-249.
    [134]Cardone D,Mauro Dolce,Felice Carlo Ponzo,Ema Coelho.Experimental behavior of R/C frames retrofitted with dissipating and re-centring braces.Journal of earthquake engineering,2004,8(3):361-396.
    [135]Dolce M,Cardone D,Ponzo F C,Valente C.Shaking table tests on reinforced concrete frames without and with passive control systems.Earthquake engineering and structural dynamics,2005,34(14):1687-1717.
    [136]Zhu S Y,Zhang Y F.Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace.Earthquake engineering and structural dynamics,2007,36(10):1329-1346.
    [137]李宏男,钱辉,宋钢兵.混合型形状记忆合金阻尼器.中国,发明专利,200610200568.3,2006.
    [138]王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析.土木工程学报,2000,33(1):56-62.
    [139]Corbi O.Shape memory alloys and their application in structural oscillations attenuation.Simulation Modeling Practice and Theory,2003,11(5-6):387-402.
    [140]Saadat S,Noori M,Davoodi H,Zhou Z,Suzuki Y,Masuda A.Using NiTi SMA tendons for vibration control of coastal structures.Smart Materials and Structures,2001,10(4):695-704.
    [141]Tamai H,Kitagawa Y.Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building.Computational Materials Science,2002,25(1-2):218-227.
    [142]韩玉林,李爱群,邢德进.工程结构形状记忆合金超弹性拉、压、扭阻尼器.中国,发明专利,03112846.7,2003.
    [143]韩玉林,李爱群,孙志林.索、缆、细长杆用形状记忆合金超弹性阻尼器.中国,发明专利,200510038182.2,2005.
    [144]Ren W J,Li H N,Song G B.Design and numerical evaluation of an innovative multi-directional shape memory alloy damper.Proceedings of SPIE,Active and Passive Smart Structures and Integrated Systems,San Diego,California,USA,2007,6525M.
    [145]Indidi M,Castellano M G,Clemente P,Martelli A.Demo Application of Shape Memory Alloy Devices:The rehabilitation of S.Giorgio Church Bell Tower.Proceedings of SPIE,Smart Structures and Materials:Smart Systems for Bridges,Structures,and Highways,Newport Beach,California,USA,2001,4330:262-272.
    [146]DesRoches R,Delemont M.Seismic retrofit of simply supported bridges using shape memory alloys.Engineering Structures,2002,24(3):325-332.
    [147]张纪刚,吴斌,欧进萍.锥形形状记忆合金阻尼器性能分析与试验研究.地震工程与工程振动,2004,24(6):126-130.
    [148]Tamai H,Miura K,Kitagawa Y,Fukuta T.Application of SMA rod to exposed-type column base in smart structural system.Proceedings of SPIE,Smart Structures and Materials:Smart Systems and Nondestructive Evaluation for Civil Infrastructures,San Diego,California,USA,2003,5057:169-177.
    [149]Leon R T,DesRoches R,Ocel J,Hess G.Innovative beam column connections using shape memory alloys.Proceedings of SPIE,Smart Structures and Materials:Smart Systems for Bridges,Structures,and Highways,Newport Beach,California,USA,2001,4330:227-237.
    [150]Adachi Y,Unjoh S.Development of shape memory alloy damper for intelligent bridge systems.Part of the SPIE Conference on Smart Systems for Bridges,Structures,and Highways,Newport Beach,California,USA,1999,3671:31-42.
    [151]任文杰,李宏男,宋钢兵.基于形状记忆合金的X形板阻尼器的力学模型.振动与冲击,2906,25(4):53-57.
    [152]Khan M M,Lagoudas D C.Modeling of shape memory alloy pseudoelastic spring elements using Preisach model for passive vibration isolation.Proceedings of SPIE,Smart Structures and Materials:Modeling,Signal Processing,and Control,San Diego,California,USA,2002,4693:336-347.
    [153]Mayes J J,Lagoudas D C,Henderson B K.An experimental investigation of shape memory alloy springs for passive vibration isolation.AIAA Space-Conference and Exposition,Albuquerque,NM,2001,4569.
    [154]邓宗才,牛坤.SMA超弹性及阻尼器减震效果的数值模拟.工程抗震与加固改造,2007,29(2):8-12.
    [155]Wilde K,Gardoni P,Fujino Y.Base isolation system with shape memory alloy device for elevated highway bridges.Engineering Structures,2000,22(3):222-229.
    [156]薛素铎,周乾.SMA-橡胶复合支座在空间网壳结构中的隔震研究.北京工业大学学报,2004,30(2):176-179.
    [157]庄鹏,薛素铎,李彬双.SMA-橡胶支座隔震系统的动力响应研究.振动与冲击,2006,25(3):85-89,208.
    [158]邓宗才,孙宏俊,刘春国,牛坤,邓洪亮.新型SMA隔震支座动载性能试验研究.中国工程科学,2005,7(12):61-68.
    [159]左晓宝,李爱群,倪立峰,陈庆福.一种超弹性SMA复合阻尼器的设计与试验.东南大学学报(自然科学版),2004,34(4):459-463.
    [160]薛素铎,王利,庄鹏.一种SMA复合摩擦阻尼器的设计与性能研究.世界地震工程,2006,22(2):1-6.
    [161]Rogers C A.Novel design concepts utilizing shape memory alloy reinforced composites.Proceeds of American Society for Composites 3rd Technical Conference on Composite Materials,Seattle,USA,1988:719-731.
    [162]Rogers C A,Liang C,Jia J.Behavior of shape memory alloy reinforced composite plates-Part Ⅰ:model formulation and control concepts.Proceedings of the 30th Structures,Structural Dynamics and Materials Conference,Mobile,Alabama,USA,AIAA,1989:2011-2017.
    [163]Song G B,Kelly B,Agrawal B N,Lam P C,Srivatsan T S.Application of shape memory alloy wire actuator for precision position control of a composite beam.Journal of Materials Engineering and Performance,2000,9(3):330-333.
    [164]邓宗才,李庆斌.形状记忆合金对混凝土梁驱动效应分析.土术工程学报,2002,35(2):41-47.
    [165]邓宗才.形状记忆合金对纤维增强聚合物梁驱动效应的分析.公路交通科技,2005,22(10):71-74.
    [166]Baz A,Imam K,McCoy J.Active vibration control of flexible beams using shape memory actuators.Journal of Sound and Vibration,1990,140(3):437-456.
    [167]王征,陶宝祺.智能材料结构的振动抑制.振动、测试与诊断,1995,15(1):47-51.
    [168]Shu S G,Lagoudas D C,Hughes D,Wen J T.Modeling of a flexible beam actuated by shape memory alloy wires.Smart Materials and Structures,1997,6(3):265-277.
    [169]Wang X Y,Zheng W P,Hu Y R.Active flatness Control of Membrane Structures Using Adaptive Genetic Algorithm.Proceedings of SPIE,Industrial and Commercial Applications of Smart Structures Technologies,San Diego,California,USA,2007,652704.
    [170]Liang C,Rogers C A.Design of shape memory alloy springs with applications in vibration control.Journal of Intelligent Material Systems and Structures,1997,8(4):314-322.
    [171]McGavin G,Guerin G.Real-time seismic damping and frequency control of steel structures using Nitinol wire.Proceedings of SPIE,Smart Structures and Materials:Smart Systems for Bridges,Structures,and Highways,San Diego,California,USA,2002,4696:176-185.
    [172]Tarefder R A,Ma N,Song G B.Dyn.amic behavior of a two-story building frame braced with SMA for vibration control.Earth and Space-Proceedings of the 10th Biennial International Conference on Engineering.Construction,and Operations in Challenging Environments,League City/Houston,TX,USA,2006.
    [173]卞晓芳,薛素铎.SMA-MR复合型阻尼器.世界地震工程,2004,20(2):23-29.
    [174]汪劲松,徐家球,罗振璧,张江红,白绍平,张伯鹏.用于微系统驱动的形状记忆合金弹簧特性实验研究.机械工程学报,1994,30(5):87-93.
    [175]Lagoudas D C,Bhattacharyya A.Modeling of thin layer extensional thermoelectric SMA actuators.International Journal of Solids and Structures,1998,35(3-4):331-362.
    [176]Mo Y L,Song G,Otero K.Development and testing of a proof-of-concept smart concrete structure.International Symposium on Network and Center-Based Research for Smart Structures Technologies and Earthquake Engineering,Osaka,Japan,2004.
    [177]崔迪.形状记忆合金及其智能混凝土结构研究:(博士学位论文).大连:大连理工大学,2007.
    [178]Burton D S,Gao X,Brinson L C.Finite element simulation of a self-healing shape memory alloy composite.Mechanics of Materials,2006,38(5-6):525-537.
    [179]Sakai Y,Kitagawa Y,Fukuta T,Iiba M.Experimental study on enhancement of self-restoration of concrete beams using SMA wire.Proceedings of SPIE,Smart Structures and Materials:Smart Systems and Nondestructive Evaluation for Civil Infrastructures,San Diego,California,USA,2003,5057:178-186.
    [180]邱自学,姚兴田,袁江.形状记忆合金复合结构无线应变监测的新方法.传感器与微系统,2006,25(7):73-75.
    [181]Tanaka K,Nagaki S.A thermomechanical description of mateials with internal variables in the process of phase transformation.Ingenieur-Archiv,1982,51:287-299.
    [182]Tanaka K.A thermodynamical sketch of shape memory effect:one dimensional tensile behavior.Res Mechanica,1986,18:251-263.
    [183]Sato Y,Tanaka K.Estimation of energy dissipation in alloys due to stress-induced martensitic transformation.Res Mechanica,1988,23(4):381-393.
    [184]Tanaka K.A phenomenological description on thermomechanical behavior of shape memory alloys.Journal of Pressure Vessel Technology,1990,112(2):158-163.
    [185]Liang C,Rogers C A.One-dimensional thermomechanical constitutive relations for shape memory materials.Journal of Intelligent Material Systems and Structures,1990,1:207-234.
    [186]Liang C,Rogers C A.One-dimensional thermomechanical constitutive relations for shape memory materials.Journal of Intelligent Material Systems and Structures,1997,8(4):285-302.
    [187]Brinson L C.One-dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant material functions and redefined martensite internal variable.Journal of Intelligent Material Systems and Structures,1993,4:229-242.
    [188]Achenbach M,Müller I.Creep and yield in martensite transformations.Ingenieur-Archiv,1983,53(2):73-83.
    [189] Achenbach M, Atanackovic T, Muller I. A model for memory alloys in plane strain. International Journal of Solids and Structures, 1986, 22(2):171-193.
    
    [190] Graesser E J, Cozzarelli F A. Shape-memory alloys as new materials for aseismic isolation. Journal of Engineering Mechanics, 1991, 117(11):2590-2608.
    
    [191] Patoor E, Eberhardt A, Berveiller M. Thermomechanical behavior of shape memory alloys. Archives of Mechanics, 1988,40:775-794.
    
    [192] Sun Q P, Hwang K C. Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys-I: Derivation of general relations. Journal of the Mechanics and Physics of Solids, 1993, 41(1):1-17.
    
    [193] Raniecki B, Lexcellent C. RL-models of pseudoelasticity and their specification for shape memory solids. European Journal of Mechanics- A/Solids, 1994, 13(1):21-50.
    
    [194] Boyd J G, Lagoudas D C. A thermodynamic constitutive model for the shape-memory effect due to transformation and reorientation. Proceedings of SPIE, Conference on Smart Materials: Smart Structures and Materials, Orlando, FL, USA, 1994, 2189:276-288.
    
    [195] Boyd J C, Lagoudas D C. Thermomechanical response of shape-memory composites. Journal of Intelligent Material Systems and Structures, 1994, 5(3):333-346.
    
    [196] Boyd J C, Lagoudas D C. A thermodynamic constitutive model for shape memory materials. Part I. The monolithic shape memory alloys. International Journal of Plasticity, 1996,12(6):805-842.
    
    [197] Boyd J C, Lagoudas D C. A thermodynamic constitutive model for shape memory materials. Part II. The SMA composite materials. International Journal of Plasticity, 1996,12(7):843-873.
    
    [198] Lagoudas D C, Bo Z, Qidwai M A. A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mechanics of Composite Materials and Structures, 1996, 3(2): 153-179.
    
    [199] Lagoudas D C, Mayes J J, Khan M M. Simplified shape memory alloy (SMA) material model for vibration isolation. Proceedings of SPIE, Smart Structures and Materials: Modeling, Signal Processing, and Control in Smart Structures, Newport Beach, CA, USA, 2001, 4326:452-461.
    
    [200] Muller I, Xu H. On the pseudo-elastic hysteresis. Acta Metallurgica et Materialia, 1991, 39(3): 263-271.
    
    [201] Sun S, Rajapakse R K N D. Simulation of pseudoelastic behaviour of SMA under cyclic loading. Computational Materials Science., 2003, 28(3-4):663-674.
    
    [202] Li H, Mao C X, Ou J P. Strain self-sensing property amd strain rate dependent constitutive model of austenitic shape memory alloy: experiment and theory. Journal of Materials in Civil Engineering, 2005, 17(6):676-685.
    
    [203] Motahari S A, Ghassemieh M. Multilinear one-dimensional shape memory material model for use in structural engineering applications. Engineering Structures, 2007,29(6):904-913.
    
    [204] Tanaka K, Nishimura F, Tobushi H, Lexcellent C. Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mechanics of Materials, 1995, 19(4):281-292.
    
    [205] Lexcellent C, Bourbon G. Thermodynamical model of cyclic behaviour of Ti—Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests. Mechanics of Materials., 1996, 24(1):59-73.
    [206]巩建鸣,户伏寿昭,高田和幸,奥村佳代.循环加载条件下TiNi形状记忆合金超弹性变形特性分析与模拟.航空材料学报,2002,22(4):6-12.
    [207]邓宗才,霍达,杜修力.形状记忆合金本构模型的研究进展.北京工业大学学报,2002,28(4):189-204.
    [208]Wilde K,Gardoni P,Fujino Y.Base isolation system with shape memory alloy device for elevated highway bridges.Engineering Structures,2000,22(3):222-229.
    [209]Wesolowsky M J,Wilson J C.Hysteresis modeling of shape memory alloys for seismic engineering applications.Proceedings of the 8th U.S.National Conference on Earthquake Engineering,San Francisco,California,USA,2006,1095.
    [210]中华人民共和国建设部.建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社,2001.
    [211]毛晨曦.形状记忆合金耗能减振结构体系的试验研究与设计方法:(硕士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [212]李惠,毛晨曦.形状记忆合金(SMA)被动耗能减震体系的设计及参数分析.地震工程与工程振动,2001,21(4):54-59.
    [213]Motahari S A,Ghassemieh M,Abolmaali S A.Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations.Journal of Constructional Steel Research,2007,63(12):1570-1579.
    [214]贺国京,阎奇武,袁锦根.工程结构弹塑性地震反应.北京:中国铁道出版社,2005.
    [215]徐赵东.(铅)粘弹性阻尼结构的试验与研究:(博士学位论文).西安:西安建筑科技大学,2001.
    [216]徐赵东,郭迎庆.Matlab语言在建筑抗震工程中的应用.北京:科学出版社,2004.
    [217]官伟,赖颖.框架结构地震反应的弹塑性时程分析.山西建筑,2006,32(9):43-44.
    [218]阎盛海.建筑结构抗震分析.北京:中国建材工业出版社,1999.
    [219]张新培.钢筋混凝土抗震结构非线性分析.北京:科学出版社,2003.
    [220]克拉夫 R W,彭津 J.结构动力学.北京:科学出版社,1981.
    [221]周云,徐彤,周福霖.抗震与减震结构的能量分析方法研究与应用.地震工程与工程振动,1999,19(4):133-139.
    [222]谢礼立,翟长海.最不利设计地震动研究.地震学报,2003,25(3):250-261.
    [223]Bruno S,Valente C.Comparative response analysis of conventional and innovative seismic protection strategies.Earthquake engineering and structural dynamics,2002,31(5):1067-1092.
    [224]李宏男.结构多维抗震理论.北京:科学出版社,2006.
    [225]Esteva L.Earthquake engineering research and practice in Mexico after the 1985 earthquake.Bulletin of the New Zealand Society for Earthquake Engineering,1987,20:159-200.
    [226]刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社,1993.
    [227]崔鸿超.日本兵库县南部地震震害综述.建筑结构学报,1996,17(2):2-13.
    [228]李宏男,刘志刚.伊朗Arekul地震灾区现场震害考察.工程抗震,1998,3:39-43.
    [229]江宜城,唐家祥.单轴偏心的单层隔震框架结构地震扭转反应分析.世界地震工程,1999,15(4):57-61.
    [230]李宏男,赵衍刚.日本新县中越大地震震害调查及分析.自然灾害学报,2005,14(1):165-174.
    [231]丰定国.抗震结构设计.武汉:武汉理工大学出版社,2004.
    [232]郑久建,魏琏.多高层建筑采用粘滞阻尼器减震结构的扭转分析.工程抗震,2004,2:1-5.
    [233]金峤.结构振动的滑模变结构控制研究:(博士学位论文).大连:大连理工大学,2005.
    [234]Shum K M,Xu Y L.Multiple-tuned liquid column dampers for torsional vibration control of structures:experimental investigation.Earthquake Engineering and Structural Dynamics,2002,31(4):977-991.
    [235]Xu Y L,Shum K M.Multiple-tuned liquid column dampers for torsional vibration control of structures:theoretical investigation.Earthquake Engineering and Structural Dynamics,2003,32(2):309-328.
    [236]Yoshida O,Dyke S J,Giacosa L M,Truman K Z.Experimental verification of torsional response control of asymmetric buildings using MR dampers.Earthquake Engineering and Structural Dynamics,2003,32(13):2085-2105.
    [237]Yoshida O,Dyke S J.Seismic control of a nonlinear benchmark building using smart dampers.Journal of Engineering Mechanics,2004,130(4):386-392.
    [238]李宏男,杨浩.多维地震作用下偏心结构的磁流变阻尼器半主动控制.地震工程与工程振动,2004,24(3):167-174.
    [239]Juan C,Almaza J L.Torsional balance of plan-asymmetric structures with frictional dampers:analytical results.Earthquake Engineering and Structural Dynamics,2005,34(9):1089-1108.
    [240]Nagarajaiah S,Reinbom A M,Constantinou M C.Torsional-coupling in sliding base isolated structures.Journal of structural engineering,1993,119(1):130-149.
    [241]张俊发,杨迪雄,刘云贺,文波.空间非对称框架结构偏心扭转地震反应的控制.西安建筑科技大学学报(自然科学版),2002,34(4):349-353.
    [242]吴香香,李宏男.结构偏心对基础隔震结构地震反应的影响.地震工程与工程振动,2003,23(1):145-151.
    [243]李宏男,吴香香.偏心隔震结构扭转地震作用的简化计算公式.哈尔滨工业大学学报,2004,36(1):52-54.
    [244]魏保敏.设有形状记忆合金复合隔震支座结构的多维及平-扭耦联地震反应分析:(硕士学位论文).西安:西安建筑科技大学,2005.
    [245]李宏男,杨浩.多维地震作用下偏心结构动力反应的Simulink仿真分析.防灾减灾工程学报,2004,24(4):355-362.
    [246]中华人民共和国建设部.高层建筑混凝土结构技术规程(JGJ 3-2002).北京:中国建筑工业出版社,2002.
    [247]Zhang R H,Soong T T.Seismic design of viscoelastic dampers for structural applications.Journal of Structural Engineering,1992,118(5):1375-1392.
    [248]Shukla A K,Datta T K.Optimal use of viscoelastic dampers in building frames for seismic force.Journal of Structural Engineering,1999,125(4):401-409.
    [249]Wu B,Ou J P,Soong T T.Optimal placement of energy dissipation devices for three-dimensional structures.Engineering Structures,1997,19(2):113-125.
    [250]Takewaki I.Optimal damper placement for minimum transfer functions.Earthquake Engineering and Structural Dynamics,1997,26(11):1113-1124.
    [251]Singh M P,Moreschi L M.Optimal placement of dampers for passive response control.Earthquake Engineering and Structural Dynamics,2002,31(4):955-976.
    [252]Wongprasert N,Symans M D.Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building.Journal of Engineering Mechanics,2004,130(4):401-406.
    [253]周建中,赵鸿铁,薛建阳.粘弹性阻尼结构的递归神经网络优化.西安建筑科技大学学报(自然科学版),2005,37(1):35-39.
    [254]雷劲松,陈敏,邹银生.粘弹性阻尼器消能结构基于H_2和H-性能优化设计.湖南大学学报(自然科学版),2007,34(1):5-13.
    [255]徐龙河,周云.半主动控制装置在受控结构中的优化设置.地震工程与工程振动,2000,20(3):143-148.
    [256]黄冀卓,王湛.基于遗传算法的抗震钢框架多目标优化设计.力学学报,2007,39(3):389-397.
    [257]黄冀卓,王湛,马人乐.一种新的求解约束多目标优化问题的遗传算法.计算机工程与应用,2006,23:47-51.
    [258]Crossley W A,Cook A M,Fanjoy D W,Venkayya V.Using the two-branch tournament genetic algorithm for multiobjective design.AIAA Journal,1999,37(2):261-267.
    [259]Zheng D X M,Ng S T,Kumaraswamy M M.Applying a genetic algorithm-based multiobjective approach for time-cost optimization.Journal of Construction Engineering and Management,2004,130(2):168-176.
    [260]雷英杰,张善文,李续武,周创明.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005.
    [261]Fonseca C M,Fleming P J.An overview of evolutionary algorithms in multiobjective optimization.Evolutionary Computation,1995,3(1):1-16.
    [262]郑金华著.多目标进化算法及其应用.北京:科学出版社,2007.
    [263]Ahlawat A S,Ramaswamy A.Multiobjective optimal absorber system for torsionally coupled seismically excited structures.Engineering Structures,2003,25(7):941-950.
    [264]周明,孙树栋著.遗传算法原理及应用.北京:国防工业出版社,2000.
    [265]解可新,韩立兴,林友联.最优化方法.天津:天津大学出版社,1997.
    [266]王龙奎,汪祖柱.关于多目标演化算法的策略分析.安徽大学学报(自然科学版),2005,29(3):25-29.
    [267]Cheng F Y,Li D.Multiobjective optimization design with pareto genetic algorithm.Journal of Structural Engineering,1997,123(9):1252-1261.
    [268]李钢,李宏男.位移型耗能减震结构优化设计.振动与冲击,2007,26(4):65-68,170.
    [269]张琴,楼文娟,陈勇.粘弹性阻尼器参数设计及位置优化实用方法.结构工程师,2003,3:39-44.
    [270]徐玉野,王全凤,罗漪.地震作用下摩擦耗能减震结构优化分析的遗传算法求解.计算力学学报,2005,22(1):83-88.
    [271]徐龙河,周云,李忠献.半主动控制装置在受控结构中的优化设置.地震工程与工程振动.2000,20(3):143-148.
    [272]贝伟明,李宏男.磁流变阻尼器在结构减震控制中的位置优化研究.工程抗震与加固改造,2006,28(3):73-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700