用户名: 密码: 验证码:
不同正畸矫治弓丝减震性能的动态三维有限元研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本实验采用CT扫描结合各种图形处理软件,建立的上颌前牙段三维有限元模型。在中切牙之间组装镍钛合金正畸矫治弓丝与不锈钢正畸矫治弓丝,研究两者的减震特性,为正畸临床提供理论指导。
     方法:
     1、三维有限元模型的建立
     对一年轻女性自愿者进行头颅CT断层扫描获得断层影像,综合应用MIMICS、Rapidform及ABAQUS软件建立三维有限元模型,最后得到本实验的三组模型:无弓丝的上颌有限元模型(Wireless Model,WL模型);带不锈钢弓丝的上颌有限元模型(StainlessSteel Model, SLS模型);及带镍钛合金弓丝的上颌有限元模型(TiNiAlloy Model, TNA模型)。
     2、加载、计算
     本实验建立的三组模型边界条件及载荷相同。上颌远中方向及上端边界采用固定约束;载荷采用梯形脉冲方波曲线的形式加载,载荷大小为50N,加载时长0.1ms,随后撤消载荷,使模型呈自由振动。计算并绘制出载荷条件下的牙根、牙周膜的应力分布图和应力一时间曲线。
     结果:
     1、同等载荷作用下三组模型中,加载侧中切牙的位移均呈现随时间逐渐衰减的规律,最大振幅均发生在第一个振动周期。且装配正畸矫治弓丝将降低矫治系统的响应频率,即增加中切牙的振动周期。将SLS模型与TNA模型相比较,SLS的响应频率略低,周期略长。而非加载侧中切牙的位移均呈现先随时间逐渐增加,然后随时间逐渐衰减的规律。SLS模型衰减所需时间最长,TNA模型与WL模型衰减所用时间较接近。SLS模型、TNA模型与WL模型的非加载侧中切牙的时间位移曲线最大振幅相比,前者增加了3.03倍,而后者增加了48.7%。
     2、同等载荷作用下三组模型中,加载侧中切牙牙周膜的最大Von Mises应力出现时间TNA模型与WL模型相似(t=0.13*10-3s,最大应力发生在近中颊侧颈部),SLS模型出现最晚(t=0.39*10-3s,最大应力发生在中切牙远中颈部)。非加载侧中切牙牙周膜的最大Von Mises应力出现时间依次为WLTNA>WL。
     3、同等载荷作用下三组模型中,加载侧牙根的最大Von Mises应力大小、出现时间及发生位置基本相似。加载侧牙根的最大Von Mises应力出现时间依次为WLTNA>WL。
     结论:
     镍钛合金弓丝比不锈钢弓丝有更好的减震性能,对咬合力的传导起更好缓冲作用。
Objective:
     This study was designed using CT scanning with a variety of graphics software, to build three-dimensional finite element model, and to assembled nickel titanium orthodontic archwire and stainless-steel orthodontic archwire between central incisors. The purpose of the study was to clarify the difference between the both archwires on occlusal force transmission during orthodontic treatment.and to provide theoretical guidance.
     Methods:
     1、The three-dimensional finite element model.
     By spiral CT scanning , a young female volunteers to get head CT images , integrated application Mimics, Rapidform, and Abaqus software to build three-dimensional finite element model,Finally, three groups was divide: no arch wires finite element model of maxillary (Wireless Model, WL model); with stainless steel wire of the maxillary arch finite element model (StainlessSteel Model, SLS model); and with nickel titanium arch wire finite element model of maxillary (TiNiAlloy Model, TNA model).
     2、Loads and calculation.
     The boundary condition was set as fixed constraint on the basal portion of maxillary ; the loading condition of force was applied on the occlusal surfaces of the teeth supposedly as an occlusal force,load curve was a trapezoidal form of square wave pulse load, load size 50N, load duration 0.1ms.Calculated and plotted out the load condition of the root, periodontal ligament of the stress distribution and stress-time curve.
     Results:
     1、Three groups under the same load model, the load side of tooth movement showed a gradual decay over time, the law, the maximum amplitude of vibration occurred in the first period. Orthodontic archwire and the assembly will reduce the frequency response correction system, an increase in the vibration cycle incisors. SLS model will be compared with the TNA model, SLS's response frequency is slightly lower, slightly longer period. Not loaded side of tooth movement were gradually increased over time first and then gradually decay over time the law. SLS model the longest decay time, TNA model and WL model for time spent close to decay. SLS models, TNA model and WL model for non-load side of the central incisors of the time compared to the maximum amplitude displacement curve, the former increased by 3.03 times, while the latter increased by 48.7%.
     2、Three groups under the same load model, the load side of the incisor periodontal ligament in the maximum Von Mises stress appears time TNA model similar to WL model (t = 0.13*10-3s, the maximum stress occurs in the neck near the buccal side), SLS model appeared at the latest (t = 0.39*10-3s, the maximum stress occurred in the central incisor distal neck). Non-load side of the incisor periodontal ligament in the maximum Von Mises stress appears time were WL TNA> WL.
     3、Three groups under the same load model, the load side of the root of the maximum Von Mises stress of size, time of occurrence and the occurrence of similar position. Load side of the root of the maximum Von Mises stress appears time were WL TNA> WL.
     Conclusion:
     The results showed that high damping capacity of nickel titanium arch wire had an obvious ability to buffer the transmission of occlusal force to the PDL than stainless steel arch wires.
引文
[1] Harris EF, Bulter ML. Patterns of incisor root resorption before and after orthodontic correction in cases with anterior openbites [J]. Am J Orthod, 1992, 101(2): 112-119.
    [2] Costopoulos G, Nanda R. An evaluation of root resorption incident to orthodontic intrusion [J]. Am J Orthod Dentofac Orthop.1996, 109(5): 543-548.
    [3] Vardimon AD, Graber TM, Pitaru S, et al. Repair process of external root resorption subsequent to palatal expansion treatment [J]. Am J Orthod Dentofacial Orthop. 1993, 103(2): 120-130.
    [4] Parker RJ, Harris EF. Directions of orthodontic tooth movements associated with external apical root resorption of the maxillary central incisor [J]. Am J Orthod Dentofacial Orthop. 1998, 114(6): 677-683.
    [5] Janson GR ,De Luca Canto G,Martins DR , et al. A radiographic comparison of apical root resorption after orthodontic treatment with 3 different fixed appliance techniques[J]. Am J Orthod Dentofacial Orthop .2000 ,118 (3) :262 - 273.
    [6] Iramaneerat K, Hisano M, Soma K, et al.Dynamic analysis for clarifying occlusal force transmission during orthodontic archwire application: difference between ISW and stainless steel wire [J]. J Med Dent Sci. 2004 Mar;51(1):59-65.
    [7] Miura H, Otsubo K, Yoneyama T, et al. Comparative examination of damping capacities with laser displacement apparatusin orthodontic wires[J] .Orthod Waves. 2002;61:435-40.
    [8]皮忻.口腔解剖生理学[M ]. 5版.人民卫生出版社.2003:257 - 258.
    [9]辛海涛,李玉龙,郭伟国,等.后牙牙周附着与牙齿振动频率和动度的有限元分析.现代口腔医学杂志.2009,23(3):265-268.
    [10] Thresher RW. The stress analysis of human teeth[J ]. J Biomech .1973 ,6(5) :443 - 449.
    [11] Farah JW. Photoelastic and finite element stress analysis of a restored axisym-metric first molar[J]. J Biomech .1973 ,6(5) : 551 - 520.
    [12] Tanaka E, Rodrigo DP, Miyawaki Y, et al. Stress distribution in the temporomandibular joint affected by anterior disc displacement: a three-dimensional analytic approach with the finite-element method[J]. J Oral Rehabi.2001,27(9):754- 759.
    [13]魏洪涛,张天夫,曾晨光,等.牙颌三维有限元模型生成方法的探讨[J ].白求恩医科大学学报, 2000, 26 (2) : 51252.
    [14]陈琼,三维有限元建模方法的研究现状[J].口腔医学.2006, 26(2) : 1542155.
    [15] Sevimay M, Turhan F, Kili?arslan MA, et al. Three dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant supported crown [J]. J Prosthet Dent.2005, 93 (3) : 2272234 .
    [16] Magne P,Oganesyan T. CT scan-based finite element analysis of premolar cuspal deflection following operative procedures[J]. Int J Periodont Rest.2009,29(4):361- 369.
    [17] Tajima K,Chen KK,Takahashi N. Three dimensional finite element modeling from CT images of tooth and its validation[J]. Dent Mater J.2009,28(2):219- 226.
    [18]彭佳美,严斌,王林,等.三维数字化牙颌模型在口腔正畸学中的应用[J].中国实用口腔科杂志.2008,1(2):110-111.
    [19]林川,杜莉,沈颉飞.建立三种桩核系统修复下颌第一磨牙的三维有限元模型[J].实用口腔医学杂志.2008,24(2):236- 239.
    [20]牟雁东,樊瑜波,刘展.不同基牙牙周状况下双侧游离缺损冠外附着体义齿的三维有限元分析[J].中华老年口腔医学杂志.2009,7(4):241- 252.
    [21] Pileicikiene G, Surna A, Barauskas R,et al. Finite element analysis of stresses in the maxillary and mandibular dental arches and TMJ articular discs during clenching into maximum intercuspation, anterior and unilateral posterior occlusion[J]. Stomatologija. 2007,9(4):121- 128.
    [22]吴琴艳.下颌骨无牙颌后牙区颌骨的三维重建及测量研究[D].四川大学华西口腔医学院硕士学位论文.2007.
    [23] Nagasao T, Kobayashi M, Tsuchiya Y,et al . Finite element analysis of the stresses around fixtures in various reconstructed mandibular models--part II (effect of horizontal load)[J] . J Craniomaxillofac Surg. .2003 ,31(3):168-75.
    [24] Macchi A, Carrafiello G, Cacciafesta V, et al. Three dimensional digital modeling and setup[J]. Am J Orthod Dentofacial Orthop.2006, 129(5):605- 610.
    [25]朱强,汪大林,邱小倩,等.逆向工程法建立下颌第一磨牙种植体有限元模型.中国组织工程研究与临床康复. 2010,14(4):637-640.
    [26] Middleton J ,Jones M ,Wilson A. The role of the periodontal ligament in bone modeling : The initial development of a time dependent finite element model[J]. Am J Orthod Dentofacial Orthop.1996,109 :155-162.
    [27]刘鸿文主编.材料力学[M].第4版.北京:高等教育出版社.2004:1-23.
    [28]夏荣.有限元法及其进展(一)[J].中国口腔种植学杂志.1997,2(2):96.
    [29]张新春,陈慧芝,滕伟,等.动态载荷下三种形式箍效应的有限元分析[J].南方医科大学学报.2008,28(9):1646-1648.
    [30] Genovese K, Lamberti L, Pappalettere C.Finite element analysis of a new customized composite post system for endodontically treated teeth[J].J Biomeeh.2005,38(12):2375-2389.
    [31]李凌星,田力丽,梁伟,等.下领第一磨牙静力与冲击动力的三维有限元力学分析[J].中日友好医院学报.2006,20(3):170-174.
    [32] Karlsson S,Persson M,Carlsson GE.Mandibular movement and veloeity in relation to state of dentition and age[J].J oral Rahabil.1991,18(1):1-8.
    [33]高勃,赵峰,刘振侠.螺旋形种植体弹性模量与骨界面应力分布关系的三维有限元分析[J].1晦床口腔医学杂志.2006,22(11):667-669.
    [34]王革,程祥荣.三维有限元动态分析不同螺距的两种螺纹种植体的应力分布[J].实用口腔医学杂志.2000,16(3):214-216.
    [35]马达,唐亮,潘燕环.动态载荷下下前牙固定桥基牙牙周膜的三维有限元法分析[J].华西口腔医学杂志.2007,25(6):591-594.
    [36] Heckmann SM,Karl M,Wicbmann MG,et al.Loading of bone surmunding imPlants through three unit fixed Partial denture fixation:a finite element analysis based on in vitro and in vivo strain measurements [J].ClinOralImPIRes.2006,17(3):345-350.
    [37] K?rber K, Ludwig K, Karmann KT. Materials suitable for occlusal restorations. First report on Isosit-10 [J]. Dent Labor. 1988,36(9):1085-92.
    [38] Rees JS. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies [J].J Oral Rehabil.2001,28(5):425-432.
    [39] Kamposiora P, Papavasilious G, Bayne SC, et al . Finite element analysis estimates of cement microfracture under complete veneer crowns[J].JprosthetDent.1994,71(5):435-441.
    [40] Hohmann A, Wolfram U, Geiger M, et al. Periodontal Ligament Hydrostatic Pressure with Areas of Root Resorption after Application of a Continuous Torque Moment [J]. Angle Orthod.2007, 77(4): 653-659.
    [41] Cobo J, Sicilia A, Argüelles J,et al . Initial stress induced in periodontal tissue with diverse degrees of bone loss by an orthodontic force: tridimensional analysis by means of the finite element method[J] . Am J Ort hod Dentofacial Ort hop.1993,104 (5) :448– 454. ?
    [1] Funakubo H. Shape Memory Alloys. Precision Machinery and Robotics[M]. New York:Gordon and Breach Science Publishers ,1987.
    [2] Hurst CL, Duncanson MG Jr, Nanda RS,et al. An Evaluation of the Shape-Memory Phenomenon of Nickel-titanium Orthodontic Wires [J]. Am J Orthod Dentofacial Orthop, 1990,98(1):72-76.
    [3] Montero-Ocampo C, Lopez H, Salinas Rodriguez A. Effect of Compressive Straining on Corrosion Resistance of a Shape Memory Ni-Ti Alloy in Ringer's Solution[J]. J Biomed Mater Res,1996,32(4):583-591.
    [4] Michiardi A, Aparicio C, Ratner BD, et al. The Influence of Surface Energy on Competitive Protein Adsorption on Oxidized NiTi Surfaces[J]. Biomaterials,2007,28(4):586-594.
    [5]任超超,白玉兴,秦晓桐等.不同正畸镍钛矫正弓丝机械性能差异的对比研究[J].现代口腔医学杂志, 2008,(03):244-247 .
    [6] Brantley WA, Iijima M, Grentzer TH.Temperature-modulated DSC provides new insight about nickel-titanium wire transformations[J].Am J Orthod Dentofacial Orthop,2003 ,124(4):387-394.
    [7]范旭升.模拟口腔环境下温控型镍钛弓丝力学性能实验研究[D].南昌大学, 2008
    [8] Mullins S.W, Bagby MD, Norman TL. Mechanical Behavior of Thermo-responsive Orthodontic Archwires[J]. DentMater,1996,12(5):308-314.
    [9] Brantley WA, Guo W, Clark WA, et al.Microstructural Studies of 35°C Copper Ni–Ti Orthodontic Wire and TEM Confirmation of Low-temperature Martensite Transformation[J]. Dent Mater, 2008, 24(2):204-210
    [10] Barrett RD, Bishara SE, Quinn JK. Biodegradation of Orthodontic Appliances. Part I. Biodegradation of Nickel and Chromium in vitro[J]. Am J Orthod Dentofacial Orthop,1993,103:8-14.
    [11] Huang HH. Surface Characterizations and Corrosion Resistance of Nickel-titanium Orthodontic Archwires in Artificial Saliva of Various Degrees of Acidity[J]. J Biomed Mater Res A,2005,74(4):629-639
    [12] Wever DJ, Veldhuizen AG, Sanders MM, et al. Cytotoxic,Allergic and Genotoxic Activity of a Nickel-Titanium Alloy[J]. Biomaterials,1997,18(16):1115-1120.
    [13] Edie JW, Andreasen GF, Zaytoun MP. Surface Corrosion of Nitinol and Stainless Steel Under Clinical Conditions[J].AngleOrthod,1981,51(4):319-324.
    [14] Prymak O, Klocke A, Kahl-Nieke B, et al.Fatigue of Orthodontic Nickel–titanium (NiTi) Wires in Different Fluids under Constant Mechanical Stress[J]. Mat Sci Eng,2004,378(1-2):110-114.
    [15] Walker MP, White RJ, Kula KS,et al. Effect of Fluoride Prophylactic Agents on the Mechanical Properties of Nickel-titanium-based Orthodontic Wires[J]. Am J Orthod Dentofacial Orthop,2005,127(6):662-669.
    [16]邢德进,韩玉林,郭肖亭.基于形状记忆合金超弹性的减振研究[J].南通工学院学报(自然科学版), 2003,2(2):19-21.
    [17]贺志荣,王芳,周敬恩. Ni含量和热处理对Ti-Ni形状记忆合金相变和形变行为的影响[J].金属热处理,2006,31(9):17-21.
    [18]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993,(5)99-104.
    [19]舟久保,熙康,千东范译.形状记忆合金[M].北京:机械工业出版社,1992.105-106.
    [20]徐祖耀,形状记忆材料[M].上海:上海交通大学出版社,2000,12. [2]. 55-59.
    [21]谢庆峰,李浩,高岩.热处理对NiTi形状记忆合金的相变的影响[J].材料开发与应用,2007,22(2):5-7.
    [22]郝凤渝,张扬,金伟等.镍钛合金正畸弓丝的使用性能差异分析[J].稀有金属材料与工程,2008,37(7):1295-1298
    [23]聂琼,许天民,林久祥.三种正畸用形状记忆合金丝的结构形貌分析[J].化学通报,2007,08:621-624.
    [24] Meling TR, Odegaard J.The Effect of Short-term Temperature Changes on Superelastic Nickel-titanium Archwires Activated in Orthodontic Bending[J]. Am J Orthod Dentofacial Orthop,2001,119(3):263-273.
    [25] Meling TR, Odegaard J. The Effect of Short-term Temperature Changes on the Mechanical Properties of Rectangular Nickel Titanium Archwires Tested in Torsion[J]. Angle Orthod.,1998,68(4):369-376. ??

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700