用户名: 密码: 验证码:
水稻抗旱选择回交导入系鉴定与QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是限制水稻生产的重要的限制因素。本研究利用来源于蜀恢527/ZDZ057、蜀恢527/特青、蜀恢527/BG90-2、明恢86/ZDZ057、明恢86/特青和明恢86/BG90-2共计6个BC2F2:5群体,总计149个高代回交选择导入系为材料,对正常灌溉、干旱胁迫条件下的亲本和株系的单株产量及抽穗期、株高、穗长、每穗实粒数、每穗总粒数、结实率和千粒重进行了考查,进行表型分析、相关分析和通径分析。利用这6个作图群体构建的连锁图谱,采用卡方检测和单向方差分析的方法,对干旱胁迫和正常灌溉条件下的产量及其相关性状的数量性状位点进行了分析。主要研究结果如下:
     1.对干旱胁迫和正常灌溉条件下的高代回交导入系群体进行了主要农艺性状分析。结果表明,干旱胁迫条件下的单株产量比正常灌溉条件下的产量下降了10.9%和63%。在干旱胁迫处理条件下,蜀恢527为背景的3个群体的产量表现优于明恢86为背景的3个群体。与轮回亲本相比,同一遗传背景下的性状在正常灌溉和干旱胁迫条件下表现差异较大,其中蜀恢527为背景的群体的每穗实粒数、每穗总粒数和结实率均有增加,表现较为一致,但差异不显著;明恢86为背景的不同群体间的性状表现不一致,在干旱胁迫条件下,导入系群体的表现与轮回亲本相比差异显著。单株产量、每穗实粒数、每穗总粒数和单株有效穗数受干旱的影响较大。此外,共挑选出23个在产量表现上优于轮回亲本优良的导入系。
     2.各性状间相关分析的结果表明,产量与单株有效穗数、每穗实粒数和每穗总粒数都呈现显著相关,同一群体在不同处理条件下产量和产量构成因子之间的相关性基本一致。不同群体在干旱胁迫和正常灌溉条件下的产量与单株有效穗数、每穗实粒数和千粒重的通径分析结果表明,单株有效穗数较多并且穗型较大可以提高产量。通过对不同处理对产量因子的方差分析得出,环境间均存在着显著差异,蜀恢527为背景的3个群体的所有变异因子中,解释的表型变异平均为40.2%,明恢86为背景的3个群体的所有变异因子中,解释的表型变异平均为7.2%。
     3.高代回交导入系群体抗旱相关性状的QTL定位结果表明,蜀恢527/ZDZ057、蜀恢527/特青、蜀恢527/BG90-2、明恢86/ZDZ057、明恢86/特青和明恢86/BG90-2群体在两种处理条件下分别定位到62、67、50、19、27和59个QTL;两种处理下共同定位到10、5、2、2、1和13个QTL;此外,有7、8、3、1、3和10个标记位点在单向方差分析和卡方检测两种方法中都被定位到。一因多效位点分别有20、16、14、4、4和16个。利用正常灌溉与胁迫差值进行QTL定位,检测到41个QTL,这些位点是与抗旱相关的位点。其中,31个QTL在两种处理条件下都被检测到,且效应的大小和方向表现稳定。
Drought is a key limited factor for rice production and yield stability. In this study,149advanced backcross selected introgression lines (ILs) in six random BC2F2:5populations weredeveloped by elite restorers Shuhui527and Minghui86as recurrent parents, ZDZ057, Teqingand BG90-2as donors.8target traits were used for phenotypic analysis, correlation analysisand path analysis, including heading date (HD), plant height (PH), panicle length (PL), filledgrain number per panicle (FGP), total spikelet number per panicle (SPP), sterility fertility(SF), thousand grain weight (TGW) and grain yield per plant (GY). To identify the genomicregions contributing to yield and its components under drought stress and normal irrigationconditions, we detected quantitative traits loci (QTLs) by using Chi-square test and one-wayANOVA, respectively. The main results were as follows:
     1. Phenotypic performance of advanced backcrossing introgression lines under normalirrigation and drought stress suggested that drought stress caused a reduction in the averageyield per plant ranging from10.9%to63%. Under drought stress condition, yieldperformance of3populations in Shuhui527background is better than3populations inMinghui86background. Compared with recurrent parents, several traits even in the samebackgrounds presented different performance under normal irrigation and drought stressconditions. Such as an FGP, SPP and SF increasing in Shuhui527background, which haveconsistent performance, but have no significant difference was observed. However,3populations had different performance in Minghui86backgrounds. Under drought stresscondition, ILs has significant difference with recurrent parent. GY, FGP, SPP and PN havegreater effect. Moreover,23elite lines which had higher yield than recurrent parents wereidentified.
     2. The phenotypic correlation analysis and path analysis among yield and its componentsshowed that, GY was significantly correlated with PN, FGP and SPP in all populations undertwo conditions. Consistent performance was presented in the same populations under differentconditions. The path analysis of GY with PN, FGP and TGW in different populations undertwo conditions showed that GY can be increased by big panicle and many panicles. Anovaresults indicated that environment components were highly significant for yield and relatedtraits. For all traits explained an average of40.2%of the total traits variation in3populationswith Shuhui527background, and explained an average of7.2%in3populations with Minghui86background.
     3. Total62,67,50,19,27and59QTLs were detected in Shuhui527/ZDZ057,Shuhui527/Teqing, Shuhui527/BG90-2, Minghui86/ZDZ057, Minghui86/Teqing andMinghui86/BG90-2advanced backcross introgression populations, respectively. Among them,10,5,2,2,1and13QTLs were identified under two conditions, respectively. Moreover,7,8,3,1,3and10QTLs were detected by Chi-square text and one-way ANOVA.20,16,14,4,4and16tightly linked or pleiotropic QTLs were also identified. In addition,41QTLs weredetected by using the differences of trait under stress and irrigation, which were related to thedrought tolerance. Among the41QTLs,31QTLs were identified under two conditions, whichwere stably expressed and derived from the same parents.
引文
[1]陈冰嬬.水稻BC2F2及其衍生BC2F2:3群体遗传组成和目标性状选择导入系群体定位精度与效率的比较研究[D].北京:中国农业科学院,2008
    [2]丁友苗,黄文江,王纪华,等.水稻旱作对产量和产量构成因素的影响[J].干旱地区农业研究,2002,20(4):50-54
    [3]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    [4]胡标林,李名迪,万勇等.我国水稻抗旱性鉴定方法与指标研究进展[J].江西农业学报,2005,17(2):56-60
    [5]金千瑜.水稻不同品种抗旱机理和相关农艺性状QTL特异表达研究[D].浙江:浙江大学,2006
    [6]李成业,熊昌明,魏仙君.中国水稻抗旱研究进展[J].作物研究,2006,5:426-429
    [7]李慧慧,张鲁燕,王健康.数量性状基因定位研究中若干常见问题的分析与解答[J].作物学报,2010,6(6):918-931
    [8]李贤勇,何永歆,李顺武,等.水稻对干旱胁迫的农艺调节研究[J].西南农业学报,2005.18(3):244-249
    [9]黎志康.我国水稻分子育种计划的策略[J].分子植物育种,2005,3(5):603-608
    [10]刘海燕.水稻高代回交导入系抗旱相关性状QTL定位研究进展[D].北京:中国农业科学院,2009
    [11]刘立峰,李自超,穆平.基于作物QTL的分子育种研究进展[J].分子植物育种,2004,2(1):77-83
    [12]刘立峰,穆平,张洪亮,等.水、旱稻根基粗和抗旱系数QTL的标记辅助选择与验证[J].作物学报,2006,32(2):189-196
    [13]凌祖铭,李自超.水旱栽培条件下水-陆稻品种产量和生理性状比较[J].中国农业大学学报,2002,7(3):13-18
    [14]莫惠栋.数量遗传学的新发展-数量性状基因图谱的构建和应用[J].中国农业科学,1996,29(2):8-16
    [15]孟丽君,林秀云,崔彦茹,等.利用高代回交导入群体进行水稻耐盐碱鉴定与筛选[J].分子植物育种,2010,8(6):1142-1150
    [16]邱鹏程,张闻博,李灿东,等.利用选择导入系分析大豆芽期和苗期耐旱性的遗传重叠[J].作物学报.2011,37(3):477-483
    [17]腾胜,钱前,曾大力,等.水稻苗期耐旱性基因位点及其互作的分析[J].遗传学报,2002,29(3):235-240
    [18]万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462
    [19]王建波.ISSR分子标记及其在植物遗传研究中的应用[J].遗传,2002,24(5):613-616
    [20]王树昌.植物抗旱基因工程研究进展[J].热带生物学报,2010,1(4):376-379
    [21]席章营,张桂权.SSR标记及其在作物遗传育种中的应用[J].河南农业大学学报,2002,36(3):293-297
    [22]席章营,朱芬菊,台国琴等.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1):88-92
    [23]肖景华,张启发.绿色基因组与绿色超级稻[J].分子植物育种,2010,8(6):1050-1053
    [24]徐建龙.水稻数量性状位点(QTL)定位研究进展[J].浙江农业学报,2001,13(5):315-321
    [25]徐建龙,高用明,傅彬英,等.回交导入后代水稻种质有利基因的鉴定与筛选研究[J].分子植物育种,2005,3(5):619-628
    [26]杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530
    [27]张启发.绿色超级稻培育的设想[J].分子植物育种,2005,3(5):601-602
    [28]张学勇,童依平,游光霞,等.选择牵连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39(8):1526-1535
    [29]张燕之,周毓琦,邹吉承,等.水稻抗旱性鉴定方法与指标研究Ⅱ:旱作时稻的主要农艺性状与其抗旱性指标[J].辽宁农业科学,1996a,(2):6-8
    [30]赵芳明,朱海涛,丁效华,等.基于SSSL的水稻重要性状QTL的鉴定及稳定性分析[J].中国农业科学,2007,40(3):447-456
    [31]赵秀琴,朱苓华,徐建龙,等.灌溉与自然降雨条件下水稻高代回导入系产量QTL的定位[J].作物学报,2007,33(9):1536-1542
    [32]赵秀琴,徐建龙,朱苓华,等.利用回交导入系定位干旱环境下水稻植株水分状况相关QTL[J].作物学报,2008,34(10):1696-1703
    [33]郑天清.水稻高代回交导入系选择群体的选择响应与遗传重叠研究[D].南京:南京农业大学,2006
    [34]郑天清,徐建龙,傅彬英,等.回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J].作物学报,2007a,33(8):1380-1384
    [35]郑天清,徐建龙,傅彬英,等.遗传搭车与方差分析在水稻定向选择群体的抗旱性位点分析中的初步应用[J].作物学报,2007b,33(5):799-804
    [36]朱军.复杂数量性状基因定位的混合线性模型方法[A].王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集[C].北京:中国农业科技出版社,1998,11-20
    [37] Ali I, Condon A G, Peter L, et al. Different mechanisms of adaptation to cyclic water stress in twoSouth Australian bred wheat cultivars [J]. Journal of Experimental Botany,2008,59:3327-3346
    [38] Ali A J, Xu J L, Ismail A M, et al. Hidden diversity for abiotic and biotic stress tolerances in theprimary gene pool of rice revealed by a large backcross breeding program [J]. Field Crops Res,2006,97:66-76
    [39] Allard R W. Principles of plant breeding [M]. John Wiley&Sons, Inc, New York,1960
    [40] Araus J L, Slafer G A, Reynolds M P, et al. Plant breeding and drought in C3cereals: what should webreed for [J]? Ann. Bot,2002,89,925–940
    [41] Atlin G, Lafitte H R. Marker-assisted breeding versus direct selection for drought tolerance in rice [A].In: Saxena N P, O’Toole J C, eds. Field screening for drought tolerance in crop plants with emphasison rice: proceedings of an international workshop on field screening for drought tolerance in rice [C].ICRISAT/The Rockefeller Foundation, Patancheru, India/New York, USA,2002,71–81
    [42] Austin D F, Michael L. Detection of quantitative trait loci for grain yield and yield components inmaize across generations in stress and nonstress environments [J]. Crop Sci,1998,38:1296-1308
    [43] Babu R C, Nguyen B D, Chamarerk V, et al. Genetic Analysis of drought resistance in rice bymolecular markers: association between secondary traits and field performance [J]. Crop Science,2003,43:1457-1469
    [44] Barker R, Dawe D, Tuong T P. The outlook for water resources in the year2020: challenges forresearch on water management in rice production [J]. International Rice Commission Newsletter,2000,49
    [45] Barton N H. Genetic hitchhiking philosophical transactions of the royal society [J]. BiologicalSciences,2000.355:1553-1562
    [46] Bernier J, Kumar A, Venuprasad R, et al. A large-effect QTL for grain yield under reproductive-stagedrought stress in upland rice [J]. Crop Science,2007,47:507-518.
    [47] Bimpong I K, Serraj R, Chin J H, et al. Identification of QTLs for drought-related traits in Alienintrogression lines derived from crosses of rice (Oryza sativacv. IR64)×O.glaberrima under lowlandmoisture stress [J]. Plant Biol,2011,54:237-250.
    [48] Blum A. Breeding crop varieties for stress environments [J]. Critical Rev Plant Sci,1984,2:199-238
    [49] Brown L R, Halweil B. China’s water shortage could shake world food security [J]. World Watch,1998,7(8):3-4
    [50] Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providinggenome-wide coverage in rice (Oryza sativa L.)[J]. Theor Appl Genet,1997,4:553-567
    [51] Champoux M C, Wang G, Sarkarung S, et al. Locating genes associated with root morphology anddrought avoidance in rice via linkage to RFLP markers [J]. Theor Appl Genet,1995,90:969-981
    [52] Collins A R. Linkage disequilibrium and association mapping [J]. Methods in Molecular Biology,2007,376:1-15
    [53] Courtois G, Shinha P K, Prasad, et al. Mapping QTLs associated with drought avoidance in uplandrice [J]. Molecular Breeding,2000,6:55-66
    [54] Datta D, Malabuyac J, Agragon E, et al. A field screening technique for evaluating rice germplasm fordrought to tolerance during the vegetative stage [J]. Field Crops Res,1988,19:123-134
    [55] Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management.Agron [J]. Sustain. Dev,2009,29:185–212
    [56] Fischer K S, Fukai S. How rice responds to drought [A]. In: Fischer K S, Lafitte R, Fukai S, et al..Breeding rice for drought-prone environments [C].2003,32
    [57] Flint-Garcia S A, Thomsberry J M, Buckler E S. Structure of linkage disequilibrium in plants [J]. AnnuRev Plant Biol,2003,54:357-374
    [58] Frisch M, Bohn M, Melchinger A E. Comparison of selection strategies for marker-assistedbackcrossing of a gene [J]. Crop Science,1999,39:1295-1301
    [59] Fukai S, Basnayake J, Cooper M. Modelling water availability, crop growth, and yield of rainfedlowland rice genotypes in northeast Thailand [A]. In: Tuong T P, Kam S P, Wade L, et al., eds.Proceedings of the international workshop on characterizing and understanding rainfed environments[C]. Bali, Indonesia, International Rice Research Institute, Los Banos, Philippines,2001,111–130
    [60] Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits inrice [J]. Field Crops Res,1995,40:67-86
    [61] Haque M M, Mackill D J, Ingram K T. Inheritance of leaf epicuticular wax content in rice [J]. CropSci,1992,32:865–868
    [62] He G M, Sun C Q, Fu Y C, et al. Pyramiding of senescence-inhibition IPT gene and Xa23forresistance to bacterial blight in rice (Oryza sativa L.)[J]. Yi Chuan Xue Bao,2004,31:836-841
    [63] Jongdee B, Pantuwan G, Fukai S, et al. Improving drought tolerance in rainfed lowland rice: anexample from Thailand [J]. Agric Water Manage,2006,80:225–240
    [64] Kadioglu A, Terzi R, Saruhan N, et al. Current advances in the investigation of leaf rolling caused bybiotic and abiotic stress factors [J]. Plant Sci,2012,182:42-48
    [65] Kamoshita A, Wade L J, Ali M L, et al. Mapping QTLs for root morphology of a rice populationadapted to rainfed lowland conditions [J]. Theor Appl Genet,2002,104:880–893
    [66] Kamoshita A, Reynaldo R, Yamauchi A, et al. Genotypic Variation in Response of Rainfed LowlandRice to Prolonged Drought and Rewatering [J]. Plant Production Science,2004,7:406-420
    [67] Kamoshita A, Babu R C, Boopathi N M, et al. Phenotypic and genotypic analysis ofdrought-resistance traits for development of rice cultivars adapted to rainfed environments [J]. FieldCrops Research,2008,109:1-23
    [68] Kamoshita A, Chea S, Hayashi S, et al. A case study on farmers' choice of direct seeding andtransplanting in rain-fed lowlands in Northeast Thailand and Northwest Cambodia [J]. TropicalAgriculture and Development,2009,53:43-54
    [69] Kato Y, Kamoshita A, Yamagishi J. Evaluating the resistance of six rice cultivars to drought: rootrestriction and the use of raised beds [J]. Plant and Soil,2007,300:149-161
    [70] Khowaja F S, Norton G J, Courtois B, et al. Improved resolution in the position of drought-relatedQTLs in a single mapping population of rice by meta-analysis [J]. BMC Genomics,2009,10:276
    [71] Kumar R, Malaiya S, Srivastava M N. Evaluation of morph physiological traits associated withdrought tolerance in rice [J]. Indian Journal of Plant Physiology,2004,9:305-307
    [72] Lafitte H R, Courtois B. Genetic variation in performance under reproductive stage water deficit in adoubled-haploid rice population in upland fields [A]. In: Ribaut J M, Poland D, eds. Molecularapproaches for the genetic improvement of cereals for stable production in water-limited environments[C]. A Strategic Planning Workshop held at CIMMYT, El Batan, Mexico,2000,987-102
    [73] Lafitte H R, Courtois B, Atlin G.. The International Rice Research Institute’s experience in fieldscreening for drought tolerance and implications for breeding [A]. In: Saxena N P, O’Toole J C, eds.International Crop Research Institute for Semi-arid Tropics, Patancheru, India; International CropResearch Institute for Semi-arid Tropics and Rockefeller Foundation[C]. New York, USA,2002,25-40
    [74] Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mappingpopulation:associations among traits and genetic markers [J]. Theor Appl Genet,2004,109:1237-1246
    [75] Lafitte H R, Vijayakumar C H M, Gao Y M, et al. Improvement of rice drought tolerance throughbackcross breeding: evaluation of donors and results from drought nurseries [J]. Field Crops Res.,2006,97:77-86
    [76] Lafitte H R, Guan Y S, Shi Y, et al. Whole plant responses, key processes, and adaptation to droughtstress: the case of rice [J]. Journal of Experimental Botany,2007,58:169-175
    [77] Lafitte R, Blum A, Atlin G. Using secondary traits to help identify drought-tolerant genotypes [A]. In:Fischer K S. Manual on breeding rice for tolerance of drought-prone environments [C]. InternationalRice Research Institute (IRRI),2002,18–19
    [78] Lanceras J C, Pantuwan G, Jongdee B, et al. Quantitative trait loci associated with drought tolerance atreproductive stage in rice [J]. Plant Physiology,2004,135:384-399
    [79] Li Z C, Mu P, Li C P, et al. QTL mapping of root traits in a doubled haploid population from a crossbetween upland and lowland japonica rice in three environments [J]. Theor Appl Genet,2005a,110:1244–1252
    [80] Li Z K, Fu B Y, Gao Y M, et al. Genome-wide introgression lines and their use in genetic andmolecular dissection of complex phenotypos in rice (Oryza sativa L.)[J]. Plant Mol Biol,2005b,59:33-52
    [81] Li Z K, Xu J L. Breeding for drought and salt tolerant rice (Oryza Sativa L.): progress andperspectives [A]. In: Jenks MA, Hasegawa PM, Jain SM, eds. Advances in molecular breeding towarddrought and salt tolerant crops [C].2007,531-564
    [82] Li Z K, Shen L S, Courtois B, et al. Development of near isogenic introgression line (NIIL) sets forQTLs associated with drought tolerance in rice [A]. In: J. M. Ribaut, and D. Poland, eds. Molecularapproaches for the genetic improvement of cereals for stable production in water-limited environments[C], CIMMYT, El Batan, Mexico:2000,103-107
    [83] Li J, Wang D, Xie Y, et al. Development of upland rice introgression lines and identification of QTLsfor basal root thickness under different water regimes [J]. Journal of Genetics and Genomics,2011,38:547-556
    [84] Lilley J M, Fukai S. Effect of timing and severity of water deficit on four diverse rice cultivars. I.Rooting pattern and soil water extraction [J]. Field Crops Research,1994,37:205-213
    [85] Lilley J M, Ludlow M M, Mccouch S R, et al. Locating QTLs for osmotic adjustment and dehydrationtolerance in rice [J]. Exp Bot,1996,47:1427-1436
    [86] Liu J K, Liao D Q, Oane R, et al. Genetic variation in the sensitivity of anther dehiscence to droughtstress in rice [J]. Field Crops Res,2006a,97:87–100
    [87] Liu L F, Mu P, Zhang H L, et al. Marker-assisted selection and its verification for QTLs of basal rootthickness and index of drought resistance in lowland rice and upland rice [J]. Acta Agron Sin,2006b,169:32
    [88] IJi Z, Mu P, Li C, et al. QTL mapping of root traits in a doubled haploid population from a crossbetwen upland and lowland japonica rice in three environments [J]. Theor Appl Genet,2005,110:1244-1252
    [89] Mackill D J, Coffman W R, Garrity D P. Rainfed lowland rice improvement [M]. International RiceResearch Institute, Los Banos, Laguna, Philippines,1996,242
    [90] Maurya D M, O'Toole J C. Screening upland rice for drought tolerance [A]. In: Progress in upland riceresearch [C]. Proceedings of the1985Jakarta Conference. IRRI, Los Ba os, Philippines,1986
    [91] McCouch S R, Chen X L, Panaud O, et al. Microsatellite marker development, mapping andapplications in rice genetics and breeding [J]. Plant Mol Biol,1997,35(1-2):89-99
    [92] Mei H W, Li Z K, Shu Q Y, et al. Gene actions of QTLs affecting several agronomic traits resolved ina recombinant inbred rice population and two backcross populations [J]. Theor Appl Genet,20054:649-659
    [93] Mitchell J H, Siamhan D, Wamala M H, et al. The use of seedling leaf death score for evaluation ofdrought resistance of rice [J]. Field Crops Research,1998,55:129-139
    [94] Moncada C, Martínez J, Borrero M, et al. Quantitative trait loci for yield and yield components in anOryza sativa×Oryza rufipogon BC2F2population evaluated in an upland environment [J]. Theoreticaland Applied Genetics,2001,102:41–52
    [95] Neeraja C. N, Maghirang-Rodriguez R, Pamplona A, et al. A marker-assisted backcross approach fordeveloping submergence-tolerant rice cultivars [J]. Theor Appl Genet,2007,115:767-776
    [96] Nguyen T T, Klueva N, Chamareck V, et al. Saturation mapping of QTL regions and identification ofputative candidate genes for drought tolerance in rice [J]. Mol Genet Genomics,2004,272:35-46
    [97] O’Toole J C. Adaptation of rice to drought prone environments [A]. In: Drought Resistance in Cropswith Emphasis on Rice [C]. IRRI, Los Banos, Philippines,1982,195-213
    [98] O’Toole J C. Rice and water: the final frontier, in First International Conference on Rice for the Future[M]. Rockefeller Foundation, Bangkok, Thailand,2004,26
    [99] Ouk M, Basnayake J, Tsubo M, et al. Use of drought response index for identification of droughttolerant genotypes in rainfed lowland rice [J]. Field Crops Research,2006,99:48-58
    [100] Ouk M, Basnayake J, Tsubo M, et al. Genotype-by-environment interactions for grain yieldassociated with water availability at flowering in rainfed lowland rice [J]. Field Crops Research,2007,101:145-154
    [101] Pantuwan G, Fukai S, Cooper M, et al. Yield response of rice (Oryza sativa L.) genotypes todrought under rainfed lowlands.2. Selection of drought resistant genotypes [J]. Field Crops Res,2002,73:169-180
    [102] Price A H, Tomos A D. Genetic dissection of root growth in rice (Oryza Sativa L.). II: Mappingquantitative trait loci using molecular markers [J]. Theor Appl Genet,1997,95:143-152
    [103] Price A H, Steele K A, Gorham J, et al. Upland rice grown in soil-filled chambers and exposed tocontrasting water-deficit regimes. I. Root distribution, water use and plant water status [J]. Field CropsResearch,2002a,76,11-24
    [104] Price A H, Cairns J E, Horton P, et al. Linking drought-resistance mechanisms to droughtavoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomataland mesophyll responses [J]. Journal of Experimental Botany,2002b,53,989-1004
    [105] Ray J D, Yu C, Mccouch S, et al. Mapping quantitative trait loci associated with root penetrationability in rice (Oryza sativa L.)[J]. Theor Appl Genet,1996,92:619-636
    [106] Sinunonds N W. Principles of Crop Improvement [M]. London: Longmans,1979
    [107] Smith J M, Haigh J. The hich-hiking effect of a favorable gene [J]. Genetical Research,1974.23:23-35
    [108] Steele K A, Price A H, Shashidhar H E, et al. Marker-assisted selection to introgress rice QTLscontrolling root traits into an Indian upland rice variety [J]. Theor Appl Genet,2006,112:208-221
    [109] Sullivan C Y, Ross W M. Selection for drought and heat tolerance in grain sorghum [A]. In:Mussel H, Staples R C, eds. Stress Physiology in Crop Plants [C]. John Wiley&Sons, New York,1979,263-281
    [110] Tanksley S D, Nelson J C. Advance backcross QTL analysis: a method for the simultaneousdiscovery and transfer of valuable QTL from germplasm into elite breeding lines [J]. Theor ApplGenet,1996,92:191-203
    [111] Temnykh S, Genevieve D, Angelika L, et al. Computational and Experimental Analysis ofMicrosatellites in Rice (Oryza sativa L): Frequency, Length Variation, Transposon Associations, andGenetic Marker Potential [J]. Genome Res,2001,11:1441-1452
    [112] Tripathy J N, Zhang J, Robin S, et al. QTLs for cellmembrane stability mapped in rice (Oryzasativa L.) under drought stress [J]. Theoretical Applied Genetics,2000,100:1197-1202
    [113] Venuprasad R, Cruz M T S, Amante M, et al. Response to two cycles of divergent selection forgrain yield under drought stress in four rice breeding populations [J]. Field Crops Research,2008,107:232-244
    [114] Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping ofsingle-nucleotide polymorphisms in the human genome [J]. Science,1998,5366:1077-1082
    [115] Wang J K. Inclusive composite interval mapping of quantitative trait genes [J]. Acta Agron Sin,2009,35(2):239-245
    [116] Wu K S, Tanksley S D. Abundance, Polymorphism and Genetic-Mapping of Microsatellites inRice [J]. Molecular&General Genetics,1993,241(1-2):225-235
    [117] Xu J L, Lafitte H R, Gao Y M, et al. QTLs for drought avoidance and tolerance identified in a setof random introgression lines of rice [J]. Theor Appl Genet,2005,111:1642-1650
    [118] Yamamoto T, Yonemaru J, Yano M. Towards the Understanding of Complex Traits in Rice:Substantially or Superficially [J]. DNA Res,2009,16:141-154
    [119] Yue B, Xiong L, Xue W, et al. Genetic analysis for drought resistance of rice at reproductivestage in field with different types of soil [J]. Theor Appl Genet,2005,111: l127-l136
    [120] Yue B, Xue W, Xiong L, et al. Genetic basis of drought resistance at reproductive stage in rice:separation of drought tolerance from drought avoidance [J]. Genetics,2006,172:1213-1228
    [121] Zou G H, Mei H W, Liu H Y, et al. Grain yield responses to moisture regimes in a ricepopulation:association among traits and genetic markers [J]. Theor Appt Genet,2005, l12: l06-113
    [122] Zhang J, Zheng H G, ARIA, et al. Locating genomic regions associated withcom ponents ofdrought resistance in rice: Comparative mapping within and across species [J]. Theor Appl Genet,2001,103:19-29
    [123] Zheng T Q, Xu J L, Fu B Y, et al. Application of Genetic Hitch-Hiking and ANOVA inidentification of loci for drought tolerance in populations of rice from directional selection [J]. ACTAAgronomica Sinica,2007,5:799-804
    [124] Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits [A]. In: ChenL S, Ruan S G, and Zhu J, eds. Advanced Topics in Biomathematics: Proceedings of InternationalConference on Mathematical Biology [C]. Singapore: World Scientific Publishing Co,1998,321-330
    [125] Zhuang J Y, Lin H X, Lu J, et al. Analysis of QTL×Environment interaction for yieldcomponents and plant height in rice [J]. Theor Appl Genet,1997,95:799-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700