用户名: 密码: 验证码:
分布式光纤传感技术在结构应变及开裂监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式光纤传感技术引入国内已有近十年时间,已在相当工程中得以应用,并取得了许多成果。然而,在实际工程应用中分布式传感光纤的布设技术和工艺扮演着重要角色,布设过程中必须考虑光纤的存活率,过多线路修复会明显增加线路的光纤损耗,从而造成监测网络稳定性降低甚至失效。特别是大型新建结构监测,施工过程铺设的分布式传感光纤极易受其它工种破坏,将其埋入结构内部可为传感光纤提供稳定工作环境。BOTDA作为一种分布式监测技术,通过合理地设计监测网络可实现结构整体性能的监测,但构件的局部相关性能如结构开裂,同样也是影响结构安全性、适用性及耐久性的关键指标。
     本文围绕BOTDA技术应用于结构应变和开裂监测中的关键技术,通过理论分析和试验研究完善了分布式传感光纤在混凝土内部的布设工艺,同时进行了分布式光纤监测结构开裂的试验研究,作为结构整体健康监测的重要补充。
     本文主要的研究工作归纳如下:
     (1)采用气吹-灌浆技术进行混凝土内部光纤布设工艺的研究和完善:依据三步骤布设传感光纤,首先通过研制的微管固定装置在结构内部布设微管,再采用气吹技术将传感光纤吹入微管,最后采用灌浆技术固定传感光纤。并通过室内模拟试验,比选传感光纤类型、微管连接方式、一次性布设长度等,完善布设工艺;
     (2)分布式光纤传感器应变传递性能分析和研究:通过理论分析和试验研究对埋入式及表面式光纤传感器的应变传递性能进行系统研究,分析不同管径、光纤类型、粘结剂对测量精度的影响,为适应于不同结构的传感器优化设计提供指导;
     (3)依托隧道健康监测项目,进行了气吹-灌浆工艺铺设传感光纤的工程应用,实现了混凝土内部应变的分布式监测。将光纤时变应力场监测结果与施工初期埋入的传统传感器初始应力场叠加,得到隧道二衬的长期真实应力水平。通过Labview软件编制了数据处理及评估软件,通过光开关等硬件设备集成了隧道健康监测系统;
     (4)研究利用BOTDA技术对历史文物进行了保护监测,考虑到文物具有历史价值高、损伤监测范围大、美观要求高等特点,设计了合理的光纤布设方式和全过程监测方案。并将其运用在某独木舟出土全过程监测中,监测数据表明,采用的文物保护、加固措施非常有效,可保证独木舟出土、保护、馆藏过程中的安全,同时也证实了分布式光纤传感技术在文物保护中具有实践意义;
     (5)结合BOTDA和光纤光栅(FBG)监测技术,对某砖混结构的托换梁改造加固进行了检测,为圈梁托换成框架梁的整个过程进行安全监测。一方面保证了托换过程的安全性,另一方面为所设计的托换方式的有效性和工作性能研究提供了数据支持,为后续托换梁优化设计提供参考;
     (6)进行了BOTDA技术在结构开裂监测中的应用研究,采用标定试验和斜交光纤组的方式监测裂缝的宽度及走向,建立了光纤应变和裂缝宽度、夹角间的关系。并采用室内模拟及加速锈蚀的方式,研究其应用于钢筋锈蚀监测中的可行性和有效性;
     (7)在大量工程应用和室内试验的基础上,总结了使用BOTDA技术过程中的问题及解决方法,为解决分布式光纤传感技术应用于结构健康监测的关键技术提供了参考。
Distributed optical fiber sensor based on brilliouin scattering(BOTDA/R) has been imported into China for nearly ten years, it has been adopted in several projects by other researchers; meanwhile some remarkable achievements are reported in literature. However, the embedding method of distributed optical fiber sensor plays as a key technology while applying BOTDA in on-site project, because several factors such as fiber rupture, obvious bending would induce the failure of sensing route. Speically for the large-scale foundation engineering under constructing, the optical fiber embedded on the surface of structure would be destroyed by other cross activities. Embedding the optical fiber into concrete not only provides a safe circumstance but also record the inner strain field. BOTDA is a kind of distributed sensing technology; therefore reasonable sensing net design would achieve full-scale monitoring of structure. On the other hand, structural local performance like cracking is another significant factor affects the safety, serviceability, durability. Cracking monitoring based on BOTDA would play as an important complementarity for structural health monitoring.
     The main research contents in this thesis are as following:
     1. A new optical fiber sensor embedded method based on air-blowing and vacuum grouting is introduced which can lay the long distance distributed optical fiber (LEOFS) into the structure in a short time. The monitoring sensor nets are firstly designed to meet the objectives of structural health monitoring. Then tubes are fixed to formwork or steel bars before concrete casting. Finally air-blowing and vacuum grouting techniques are used for laying the distributed optical fibers and fixing them inside the tubes to form the LEOFS. However, special techniques are required when applying air-blowing technique to install distributed optical fiber sensors in civil engineering. The resistance like loss of air pressure and unevenness between tubes caused by the connectors will increase the difficulty of air-blowing. Therefore simulation experiment is carried out to estimate the maximum length for the LEOFS's installation.
     2. Accuracy of strain measurement is an important issue to ensure the efficiency of structural diagnosing and evaluation. Test accuracy not only depends on the performance of equipment, but also influences by strain transferring capability of distributed optical fiber sensor which used to receive structural strain signal. The performance of strain transferring is mainly affected by the characteristics of optical fiber, physical properties of binder and configuration of sensor. The influence of above parameters to strain measuring sensitivity is studied by theoretical analysis, and their quantitative relation is obtained by calibration experiments. The results of theoretical and experimental analysis can be used for guiding optimization design of distributed optical fiber sensor.
     3. Based on tunnel health monitoring project, the application of LEOFS has be put into practice. The long distance distributed optical fibers are embedded into concrete of secondary lining by air-blowing and vacuum grouting. In order to achieve life-cycle health monitoring, the initial stress field and time-varying stress field are established respectively of secondary lining established by using traditional sensors and finite element analysis, and by monitoring strain of distributed optical fibers. The long-term true stress field which used to diagnose secondary lining is calculated by adding initial stress field to time-varying stress field. At last, a structural health monitoring software based on Labview and optical switch is developed to deal with monitored data.
     4. Security detection has always been the most complicated but significant task in the preservation of cultural relics. To ensure the structural safety of a canoe with thousands of year's history during its excavation, a whole-process monitoring method based on the technique of distributed optical fiber sensor is presented. Considering the situation of the project, the layout of optical fiber sensor is determined. By analyzing the monitoring data, the influences have been evaluated in the process of reinforcement and reversal of the canoe. Monitoring results show that the distributed optical fiber sensing technology can effectively capture the changes of structural response in each process. And the analysis results show that the hull is still in safety under the cultural relic's protection. The effectiveness of this technique is also proved by practical application in construction.
     5. Due to the change of structural function, one teaching building had to be retrofitted to a large-space office building. The underpinning technology had been adopted to transform this brick-concrete structure to a frame structure. In order to ensure its safety operation, fiber Bragg grating technology (FBG) and distributed optical fiber sensor (BOTDA) had been used to monitor structural stress and strain during the whole period of construction. The test results shows that the designed underpin system performances well and can provide sufficient bearing capacity for this new retrofitted structure.
     6. Cracking monitoring provides an important way to evaluate structural safety. Cracking monitoring method based on distributed optical fiber sensor can effectively avoid undetected phenomenon existed in point-wise test method, and it can run automatically. A theoretical model of cracking monitoring based on obliquely intersected fibers and Brillouin Optical Time Domain Analysis (BOTDA) is introduced, and the numerical equation among fiber strain, crack width and crack angle is established by the calibration experiment. The experiments are also carried out to study the performance of different kinds of cracking sensors with different gauge length and pretension. The cracking simulation test proved that this new method can effectively record the width and the angle of cracks during the whole cracking process. Finally, the feasibility of corrosion monitoring based on BOTDA is considered by accelerated corrosion test.
     7. In this theis, several on-site projects and in-door experiments based on BOTDA are presented. The summarization of this research would figure out some key technology while applying BOTDA.
引文
[1-1]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [1-2]Brownjohn J. Structural health monitoring of civil infrastnicture[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences.2007, 365(1851):589-622.
    [1-3]谭界雄,位敏.我国水库大坝病害特点及除险加固技术概述[J].中国水利.2010(18):17-20.
    [1-4]谭恺炎,姚红兵.我国大坝安全监测技术的发展与展望[J].水利水电施工2006(4):115-122.
    [1-5]Mcclelland D M, Bowles D S. Life-loss estimation:what can we learn from case histories[C]. Proceedings of Australian committee on Large Dams Annual Meeting,1999.
    [1-6]吴江滨,张顶立,王梦恕.铁路运营隧道病害现状及检测评估[J].中国安全科学学报.2003,13(6):49-52.
    [1-7]关宝树.隧道工程维修管理要点集[M].北京:人民交通出版社,2004.
    [1-8]李彬,雷明锋,李文华.运营公路隧道病害对衬砌结构安全性的影响[J].铁道科学与工程学报.2011(5);40-45.
    [1-9]雷俊卿.桥梁安全耐久性与病害事故分析[J].中国安全科学学报.2005,15(2):86-90.
    [1-10]张光华,李群,邓云峰,等.长输油气管线安全生产事故监测预警平台设计与实现[J].中国安全生产科学技术.2011,7(2):55-59.
    [1-11]欧阳文权.登封市成功避让两起山体滑坡[J].资源导刊(河南).2010(9):23-23.
    [1-12]王丽.宣汉县成功避让清溪镇柏树沟中型滑坡[J].资源与人居环境.2010(15):15-16.
    [1-13]陈长征,罗跃纲,白秉兰,等.结构损伤检测与智能诊断[M].北京:科学出版社,2001.
    [1-14]李惠,周文松,欧进萍,等.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报.2006,39(2):46-52.
    [1-15]Carder D S. Observed vibrations of bridges[J]. Bulletin of the Seismological Society of America.1937,27(4):267-303.
    [1-16]Farquharson F B, Vincent G S. Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge:a report of an investigation[M]. University of Washington Press,1950.
    [1-17]Brownjohn J, Bocciolone M, Curami A, et al. Humber Bridge full-scale measurement campaigns 1990-1991 [J]. Journal of Wind Engineering and Industrial Aerodynamics.1994, 52:185-218.
    [1-18]Wong K Y. Instrumentation and health monitoring of cable-supported bridges[J]. Structural control and health monitoring.2004,11(2):91-124.
    [1-19]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报(自然科学版).1999,2:184-188.
    [1-20]史家钧,邵志常.上海徐浦大桥结构状态监测系统[J].中国土木工程学会桥梁及结构工程学会第十三届年会论文集(下册).1998.
    [1-21]杨杰,李爱群,丁幼亮,等.苏通大桥结构健康状态评估技术研究与应用(1):拉索损伤识别[J].防灾减灾工程学报.2010,30(3):325-329.
    [1-22]李爱群,丁幼亮,邓扬,等.苏通大桥结构健康状态评估技术研究与应用(2):主梁损伤预警[J].防灾减灾工程学报.2010,30(3):330-335.
    [1-23]李爱群,缪长青,李兆霞,等.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版).2003,33(5):544-548.
    [1-24]Hudson D E. Dynamic tests of full-scale structures[J]. Journal of the Engineering Mechanics Division.1977,103(6):1141-1157.
    [1-25]李惠,周峰,朱焰煌,等.国家游泳中心钢结构施工卸载过程及运营期间应变健康监测及计算模拟分析[J].土木工程学报,2012,45(3):1-9.
    [1-26]张其林.大型建筑结构健康监测和基于监测的性态研究[J].建筑结构.2012,41(12):68-75.
    [1-27]Ren L, Li H N, Zhou J, et al. Health monitoring system for offshore platform with fiber Bragg grating sensors[J]. Optical Engineering.2006,45:84401.
    [1-28]Brownjohn J M W. Lateral loading and response for a tall building in the non-seismic doldrums[J]. Engineering structures.2005,27(12):1801-1812.
    [1-29]Tan G H, Chua K G. Developing an Operational Automated Real Time Tunnel Monitoring System[C]. In Proc. Underground, Singapore,2003.
    [1-30]Straser E G, Kiremidjian A S, Meng T H &Redlefsen L. Amodular, wireless network platformfor monitoring structures[C]. SPIE 3243(1):450-456.1998.
    [1-31]Maser K, Egri R, Lichtenstein A, et al. Development of a Wireless Global Bridge Evaluation and Monitoring System[C]. P roeeedings of the Specialty Conference on Infrastructure Condition Assessment,1996.
    [1-32]MitehellK.,DangN., LiuP., etal.Web-controlled wireless network sensors forstructural health monitoring[C]. SPIE.4334:234-243,2001.
    [1-33]叶伟松,袁慎芳.无线传感网络在结构健康监测中的应用[J].传感技术学报,2006,19(3):89-89.
    [1-34]徐春红,吉林,沈庆宏等.基于无线传感器网络的桥梁结构健康监测系统[J].电子测量技术,2008,31(11):95-98.
    [1-35]董亚波,曾波,鲁东明.面向文化遗址保护的物联网技术研究与应用[J].文物保护与考古科学.2011,23(3):74-78.
    [1-36]喻言,李宏伟,欧进萍.结构监测的无线加速度传感器设计与制作[J].传感技术学报.2004,17(3):463-466.
    [1-37]罗尧治,王洽亲,童若飞,等.上海世博会英国馆结构健康监测[J].施工技术:2011(1):24-27.
    [1-38]张毅刚,乔立岩虚拟仪器软件开发环境Labwindows/CVI6.O编程指南[M].机械工业出版社,2002:129-146.
    [1-39]肖纯,瞿伟廉,谭冬梅.虚拟仪器技术在结构远程健康监测中的应用[J].通讯和计算机:中英文版.2005,2(2):44-47.
    [1-40]燕延,马增强,石彦丛.基于LabVIEW的桥梁运行状态长期监测系统的[J].仪表技术,2005(1):15-17.
    [1-41]Mendez A, Morse T F, Mendez F. Applications of embedded optical fiber sensors in reinforced concrete buildings and structures.[C]. Los Ang eles:SPIE,1989:60-63.
    [1-42]王惠文,传感器,江先进.光纤传感技术与应用[M].国防工业出版社,2001
    [1-43]Bacon F.,吴静.石英光纤的机械强度[J].电线电缆.1996(5):10-14.
    [1-44]杨鹏.提高光纤强度的方法[J].光纤与电缆及其应用技术.2006,4:33-35.
    [1-45]Inaudi D, Glisic B. Integration of Fiber Optics Sensing Systems into Composite Structures for Oil and Gas Production and Transport[C], Composite materials for offshore operations 2005.
    [1-46]Inaudi D, Glisic B. Development of distributed strain and temperature sensing cables[C], 17th International Conference on Optical Fibre Sensors,2005.
    [1-47]Inaudi D, Glisic B. Overview of fiber optical sensing application to structural health monitoring [C].13th Symposium on deformation measurement and analysis,2008.
    [1-48]葛捷,邢利生.-种应变传感光缆[P].中国专利,CN 201075145Y, 2008.
    [1-49]刘爱华,罗中平,熊状.-种传感光缆[P],中国专利,CN2747594Y,2005.
    [1-50]李宏男,任亮.结构健康监测光纤光栅传感技术[M].北京:中国建筑工业出版社,2008.
    [1-51]Hill KO, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication[J]. Applied Physics Letters.1978, 32(10):647-649.
    [1-52]Majumder M, Gangopadhyay T K, Chakraborty A K, et al. Fibre Bragg gratings in structural health monitoring--Present status and applications[J]. Sensors and Actuators A:Physical. 2008,147(1):150-164.
    [1-53]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连理工大学,2008.
    [1-54]欧进萍,周智,武湛君,等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报.2004(1):45-49.
    [1-55]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(II):系统实现[J]土木工程学报.2006(4):45-53.
    [1-56]孙汝蛟,孙利民,孙智.FBG传感技术在大型桥梁健康监测中的应用[J].同济大学学报(自然科学版).2008(2):149-154.
    [1-57]樊叶华,陈雄飞,张宇峰,等.基于光纤光栅传感技术的江阴大桥结构应变监测研究[J].交通运输工程与信息学报.2011(1):78-83.
    [1-58]赵星光,邱海涛,李川.隧道二次衬砌FBG智能监测与数值模拟[J].西安建筑科技大学学报(自然科学版).2008(1):114-120.
    [1-59]魏广庆,施斌,胡盛,等.FBG在隧道施工监测中的应用及关键问题探讨[J].岩土工程学报.2009(4).571-576.
    [1-60]李功标,瞿伟廉,刘晖.光纤光栅传感器在空间网架结构监测中的应用[J]武汉理工大学学报.2007,29(2):83-86.
    [1-61]罗尧治,翟振锋,沈雁彬光纤传感技术在网架结构健康检测中应用[J].空间结构.2006,11(4):59-63.
    [1-62]王廷林,岳前进,朱晓环,等.导管架海洋平台沉降监控[J].海洋工程.2010,28(4):122-126.
    [1-63]Inaudi D, Elamari A, Pflug L, et al. Low-coherence deformation sensors for the monitoring of civil-engineering structures[J]. Sensors and Actuators A:Physical.1994,44(2):125-130.
    [1-64]Inaudi D, Glisic B. Overview of 40 bridge monitoring projects using fiber optic sensors[C]. Bridge Maintenance, Safety, Management, Health Monitoring and Informatics,2008.
    [1-65]Cheng W, Ni J. Feasibility study of applying SOFO optical fiber sensor to segment of shield tunnel[J]. Tunnelling and underground space techonolgy.2009,24(3):31-349.
    [1-66]Inaudi D, Del Grosso A, Lanata F, et al. Automatic and remote deformation monitoring of the genoa san giorgio pier using SOFO sensors[C].14th International Conference on Optical Fiber Sensors2000.
    [1-67]Glisic B, Badoux M, Jaccoud J P, et al. Monitoring A Subterranean Structure with the SOFO System[J]. Tunnel Management International magazine.2000,2(8):22-27.
    [1-68]Glisic B, Inaudi D, Kronenberg P, et al. Dam monitoring using long SOFO sensor[C]. Hydropower, Austria,1999.
    [1-69]王树奎,韩桃明,王先忠.桩基监测中的光纤传感技术[J].河南水利与南水北调.2010(2):54-55.
    [1-70]黎昵,岳建平.光纤变形传感技术及其应用分析[J].测绘通报.2007(11):34-36.
    [1-71]Parker, T.R., et al., Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers[J]. Optics letters,1997.22(11):787-789.
    [1-72]Barnoski, M.K., et al., Optical time domain reflectometer[J]. Applied Optics,1977. 16(9):2375-2379.
    [1-73]李科,杨飞,陈峰华OTDR原理及其应用[J].山西科技.2010(2):46-47.
    [1-74]隋好丽.分布式光纤温度传感器机理及其应用技术研究[D].秦皇岛;燕山大学,2003.
    [1-75]胡再新.分布式光纤温度测量系统的原理及应用[J].中国仪器仪表.2004.(7).44-46.
    [1-76]J.P.Dakin, D.J.Pratt.Distributed Optical fiber sensors[C]. SPIE,1985,1797:76-108.
    [1-77]周胜军,刘凤军.分布式光纤温度传感器的原理和应用[J].半导体光电.1998,19(5):287-290.
    [1-78]黄尚廉,梁大巍,刘龚.分布式光纤温度传感器系统的研究[J].仪器仪表学报.1991,12(4):359-364.
    [1-79]张在宣,刘天夫,张步新,等.激光拉曼型分布光纤温度传感器系统[J].光学学报.2007,15(11):1585
    [1-80]E. P. Ippen, R. H. Stolen. Stimulated Brillouin scattering in optical fibers[J]. App. Phys.Letter.,1972,21(11):539-540.
    [1-81]T. C. Rich, D. A. Pinno. Evaluation of fiber optical waveguides using Brillouin spectroscopy[J].Applied optics.1974,13(6):1376-137.
    [1-82]N.L. Rowell, P.J. Thomas..Brillouin spectrum of single-mode optical fibers[J]. App. Phys. Letter.,1979,34(2):139-141.
    [1-83]D.Culverbouse, P. Farahi, C.N. Pannell. Stimulated Brillouin scattering:a means to realize tunable microwave generator or distributed temperature sensor[J]. Electronics letters,1989, 25(14):915-916.
    [1-84]T. Horiguchi, T. Kurashi. Strain Dependence of Brillouin frequency shift in silica optical fibers[J]. IEBEP Photonics technology letter,1989,1(5):107-108.
    [1-85]Cotter D. Stimulated Brillouin scattering in mono mode optical fiber[J]. Opt Commun, 1983,4(1):10-19.
    [1-86]T. Horiguchi, M. Tateda. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction. Theory [J]. Journal of lightwave technology,1989,7(8):1170-117.
    [1-87]T.Parker, M. Farhandiroushan, V.A.Handerek et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fiber[J]. Opt. Lette,1997,22(11):787-789.
    [1-88]T. Kurashima, T. Horiguchi. Brillouin optical-fiber time domain reflectometry[C], Tech. Dig. Int. Quantum Electron.Conf.,Vienna Austria, June 1992,14:42-4.
    [1-89]X. Y. Bao, D. J. Webb.22-Km distributed temperature sensor using Birllouin gain in an optical fiber. Opt.Lett.,1993,18(7):552-554.
    [1-90]Ravet F, Bao X, Li Y, et al. Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution [J]. Lightwave Technology, Journal of.2007,25(11):3610-3618.
    [1-91]Brown A W, Colpitts B G, Brown K. Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution[J]. Lightwave Technology, Journal of.2007,25(1):381-386.
    [1-92]Thevenaz L, Nikles M, Fellay A, et al. Applications of distributed Brillouin fiber sensing[C]. SPIE Vol.3407,1998.
    [1-93]Nikles M, Briffod F, Burke R, et al. Greatly extended distance pipeline monitoring using fibre optics[C].24th International Conference on Offshore Mechanics and Arctic Engineering,2005.
    [1-94]Ravet F, Briffod F, Nikles M. Extended Distance Fiber Optic Monitoring for Pipeline Leak and Ground Movement Detection[C].7th International Pipeline Conference,2009.
    [1-95]黄民双,陈伟民,黄尚廉,王新强.基于Brillouin散射的分布式光纤拉伸应变传感器的理论分析[J].光电工程,1995,(4).11-16.
    [1-96]董玉明,张旭苹,路元刚,刘跃辉,王顺,.布里渊散射光纤传感器的交叉敏感问题[J].光学学报,2007,(2).
    [1-97]刘迪仁,宋牟平,章献民,陈抗生.基于连续光抽运的布里渊光时域分析仪新技术[J].光学仪器.2005,27(3):70-74.
    [1-98]胡晓东,胡小唐,陈津平.基于布里渊增益的单端分布式光纤传感技术[J].光电子·激光.2000,11(1):86-89.
    [1-99]Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering[J]. Applied Optics,2008,47(33):6202-6206.
    [1-100]程效伟,李永倩,何玉钧,等.基于布里渊散射的外差检测式光纤传感系统性能分析[J].光通信技术.2007,31(4):62-64.
    [1-101]吴朝霞,吴飞,牛力勇,等.基于光频域布里渊散射的全分布式光纤应变传感器的研究[J].仪器仪表学报.2006,27(3):237-240.
    [1-102]史彦新,张青,孟宪玮.分布式光纤传感技术在滑坡监测中的应用[J].吉林大学学报:地球科学版.2008,38(5):820-824.
    [1-103]史彦新.分布式光纤应变监测系统研究[D].中国地质大学(北京),2010.
    [1-104]宋牟平,励志成,裘超.50kmn长距离布里渊光时域分析分布式光纤传感器[J].中国激光.2010(6):1426-1429.
    [1-105]Gareus D, Gogolla T, Krebber K, et al. Brillouin optical fiber frequency domain analysis for distributed temperature and Strain measurements[J]. Lightwave Technology.1997, 15(4);654-662.
    [1-106]Bao X, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering[J]. J. Lightwave Technol.,1995, 13(7):1340-1348.
    [1-107]Anthony W, Michael D, Bao X, et al. Analysis of the precision of a Brillouin scattering based distributed strain sensor[C]. SPIE, Denver.1999,3670:359-365.
    [1-108]Bao X, Zou L, Yu Q, et al. Development and applications of the distributed temperature and strain sensors based on Brillouin scattering[J]. J. Sensors,2004,3:1210-1213.
    [1-109]Fabien R, Bao X, Li Y, et al. Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution[J]. J. Lightwave technol.,2007,25(11):3610-3618.
    [1-110]Xiaoyi B, Wenhai L, Yun L, et al. Distributed fiber sensors based on stimulated Brillouin scattering with centimeter spatial resolution[C]. SPIE, Beijing.2008,7158:715802.
    [1-111]吴智深,施斌,原田隆郎,等.可用于结构健康监测的BOTDR光纤变形检出特性试验研究[J].土木工程学报.2005,38(8):56-60.
    [1-112]索文斌,施斌,张巍,等.基于BOTDR的分布式光纤传感器标定实验研究[J].仪器仪表学报,2006,27(9):985-989.
    [1-113]高俊启,施斌,张巍,等BOTDR检测钢筋混凝土梁分布式应变的试验研究[J].土木工程学报.2005,38(9):74-79.
    [1-114]Nishio M. Structural shape identification using distributed strain data[C]. Proc. of SPIE Vol. 6530,2007
    [1-115]Nishio M, Mizutani T, Takeda N. Shape identification of variously-deformed composite laminates using Brillouin type distributed strain sensing system with embedded optical fibers[C], Proc. of SPIE Vol.6932,2008.
    [1-116]Nishio M, Mizutani T, Takeda N. Structural shape reconstruction with consideration of the reliability of distributed strain data from a Brillouin-scattering-based optical fiber sensor[J]. Smart materials amp structures.2010,19(3):1-14.
    [1-117]Akiyoshi S, Naruse H, Uzawa K, et al. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor[C]. Proceedings of SPIE Vol.3986,2000.
    [1-118]Murayama H, Kageyama K, Kimpara I, et al. Structural health monitoring of IACC yachts using fiber optic distributed strain sensors:a technical challenge for America's Cup 2000[C]. Proceedings of SPIE Vol.3986,2000.
    [1-119]Shimizu T, Yari T, Nagai K, et al. Strain measurement using a Brillouin optical time domain reflectometer for development of aircraft structure health monitoring system[C]. Proceedings of SPIE Vol.4335,2001.
    [1-120]Yari T, Nagai K, Takeda, et al. Aircraft structural-health monitoring using optical fiber distributed BOTDR sensors[J]. Advanced composite materails.2004,13(1):17-26.
    [1-121]Yari T, Nagai K, Shimizu T, et al. Overview of damage detection and damage suppression demonstrator and strain distribution measurement using distributed BOTDR sensors[C]. SPIE Vol.5054,2003.
    [1-122]Lee J, Choi K, Huh Y. Damage Detection Method for Large Structures Using Static and Dynamic Strain Data from Distributed Fiber Optic Sensor[J]. International journal of steel structures.2010,10(1):91-97.
    [1-123]Zhang H, Wu Z. Performance evaluation of BOTDR-based distributed fiber optic sensors for crack monitoring[J]. Structural Health Monitoring.2008,7(2):143-156.
    [1-124]Lufan Zou, Maria Q. Feng. Detection of micrometer crack by Brillouin-scattering-baseddistributed strain and temperature sensor[C]//Proc. of SPIE Vol. 7004,2008.
    [1-125]Fei Lu, Maria Q. Feng, Xinyu Gua, et al. Field experiment on monitoring of cracks in highway asphalt overlay [C]//Proc. of SPIE Vol.7294,2009.
    [1-126]钱振东,韩光义,黄卫等.基于BOTDA的钢桥面铺装裂缝疲劳扩展研究[J].土木工程学报,2009,42(10):132-136.
    [1-127]轩元,刘洋,石启印,等. BOTDA光纤传感技术监测钢筋锈蚀损伤的试验研究[J].公路交通科技.2009,26(11):82-86.
    [1-128]甘宇宽,施斌,魏广庆,等.混凝土中钢筋锈胀分布式光纤监测试验研究[J].光纤与电缆及其应用技术.2010(3):27-29.
    [1-129]Pamukcu S, Texier S, Toulouse J. Advances in water content measurement with distributed fiber-optic sensor[C]. Proc. of GeoCongress.2006:7-12.
    [1-130]Zeng X, Bao X, Chhoa C Y, et al. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars[J]. Applied optics. 2002,41(24):5105-5114.
    [1-131]Matta F, Bastianini F, Galati N, et al. Distributed strain measurement in steel bridge with fiber optic sensors:validation through diagnostic load test[J]. Journal of Performance of Constructed Facilities.2008,22:264-273.
    [1-132]刘永莉,孙红月,尚岳全,等.基于BOTDR的传感光纤固定方式研究[J].传感技术学报.2010,23(9):1353-1358.
    [1-133]Wu Z, Xu B, Hayashi K, et al. Distributed optic fiber sensing for a full-scale PC girder strengthened with prestressed PBO sheets[J]. Engineering Structures.2006,28(7):1049-1059.
    [1-134]于立朋,吕安强.BOTDA技术在变压器绕组温度监测中的应用[J].电力系统通信.2011(7):47-51.
    [1-135]Zhou Z, He J, Yan K, et al. Large scale distribution monitoring of FRP-OF based on BOTDR technique for infrastructures[J]. Proc. of SPIE Vol.6530,2007.
    [1-136]Zhou Z, Jianping H, Huang M, et al. Casing Pipe Damage Detection with Optical Fiber Sensors:A Case Study in OilWell Constructions[J]. Advances in Civil Engineering.2010:1-9.
    [1-137]Li X, Parker T, Farhadiroushan M, et al. Evaluating a Concept of Using Distributed Optical Fiber Temperature and Strain Sensor for Continuous Monitoring of Casing and Completion Mechanical Deformation in Intelligent Wells[J]. Offshore Technology Conference.2004.
    [1-138]Zou L, Bao X, Ravet F, et al. Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure[J]. Applied optics.2006, 45(14):3372-3377.
    [1-139]Zou L, Bao X, Ravet F, et al. Distributed fiber strain sensor based on Brillouin scattering for inspection of pipeline buckling[C]. Proc. of SPIE Vol.5855,2005.
    [1-140]Zhang C, Bao X, Ozkan I F, et al. Prediction of the pipe buckling by using broadening factor with distributed Brillouin fiber sensors[J]. OPTICAL FIBER TECHNOLOGY.2008, 14(2):109-113.
    [1-141]Inaudi D, Belli R, Walder R. Detection and localization of micro-leakages using distributed fiber optic sensing[C].7th International Pipeline Conference,2008.
    [1-142]Kluth R, Watley D, Farhadiroushan M. Case Studies on Distributed Temperature and Strain Sensing (DTSS) by using optic fibre[C].International Conference on Condition Monitoring and Diagnosis,2006.
    [1-143]Branko Glisic, Merit Enckell, Frank Myrvoll, et al Distributed sensors for damage detection and localization[C].4th International Conference on Structural Health Monitoring on Intelligent Infrastructure,2009.
    [1-144]Zhang W, Shi B, Zhang Y, et al. The strain field method for structural damage identification using Brillouin optical fiber sensing[J]. Smart materials amp structures.2007, 16(3):843-850.
    [1-145]周智,何建平,吴源华,等.土木结构的光纤光栅与布里渊共线测试技术[J].土木工程学报.2010,43(3):111-118.
    [1-146]张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究[J].工程地质学报.2004,12(4):422-426.
    [1-147]施斌,徐学军,王镝,等.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J].岩石力学与工程学报.2005,24(15):2622-2628.
    [1-148]丁勇,施斌,孙宇,等.基于BOTDR的白泥井3号隧道拱圈变形监测[J1.工程地质学报.2006,14(5):649-653.
    [1-149]Klar A, Linker R. Feasibility study of automated detection of tunnel excavation by Brillouin optical time domain reflectometry[J]. Tunnelling and underground space technology,2010, 25(5):575-586.
    [1-150]Delepine-Lesoille S, Lanticq V, Magnien P, et al. B-OTDR and OFDR distributed optical fiber strain sensing for sinkhole detection[C]. Proc. of SPIE Vol.7004,2008.
    [1-151]丁勇,王平,何宁,等.基于BOTDA光纤传感技术的SMW工法桩分布式测量研究[J].岩土工程学报.2011(5):719-724.
    [1-152]郝英奇,丁勇,何宁.分布式光纤传感测试系统(BOTDA)用于H型钢梁变形监测的实验研究[J].实验力学.2011(4):447-456.
    [1-153]刘杰,施斌,张丹,等.基于BOTDR的基坑变形分布式监测实验研究[J].岩石力学.2006,27(7):1224-1228.
    [1-154]黄志怀,刘汉东BOTDR技术监测GFRP锚杆应变的试验研究[J].华北水利水电学院学报.2005,26(2):49-51.
    [1-155]葛捷.分布式布里渊光纤传感技术在海堤沉降监测中的应用[J].岩土力学,2009,30(6):1857-1860.
    [1-156]张俊义,晏鄂川,薛星桥,等BOTDR技术在三峡库区崩滑灾害监测中的应用分析[J].地球与环境.2005,33(10):355-358.
    [1-157]Kato S, Kohashi H. Study on the Monitoring System of Slope Failure Using Optical Fiber Sensors[C]. GeoCongress,2006.
    [1-158]刘永莉.分布式光纤传感技术在边坡工程监测中的应用研究[D].浙江大学,2011.
    [1-159]金伟良,张恩勇,邵剑文,等.海底管道失效原因分析及其对策[J].科技通报.2004,20(6):529-533.
    [1-160]吴钰骅,金伟良,毛根海,等.海底输油管道底砂床冲刷机理研究[J]海洋工程.2007,24(4):43-48.
    [1-161]刘德华,宋牟平,金伟良,等.基于布里渊散射的长距离分布式监测网络技术[J].科技通报.2004,20(5):415-419.
    [1-162]金伟良,张恩勇,邵剑文,等.分布式光纤传感技术在海底管道健康监测中的应用[J].中国海上油气(工程).2003,15(4):5-9.
    [1-163]刘德华,宋牟平,金伟良,等.应用于土木工程的布里渊散射分布式监测网络[J].传感技术学报.2003,16(003):277-281.
    [1-164]Jin W L, Shao J W, Liu D H. Basic Strategy of Health Monitoring onSubmarine Pipeline[C]. The 22nd International Conference on Offshore Mechanics&Arctic Engineering, Mexico 2003.
    [1-165]Liu D H,Jin W L, Song M P. Applying Brillouin health monitoringnetwork for civil engineering[C]. The First International Conference on StructuralHealth Monitoring and Intelligent Infrastructure, Japan,2003.
    [1-166]Jin W L, Shao J W,Zhang E Y. Basic Strategy of Health Monitoring on Submarine Pipeline by Distributed Optical Fiber Sensor, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering OMAE, Vol 2,2003,531-536.
    [1-167]刘德华.超长距离分布式光纤传感技术及其工程应用[D].浙江大学,2005.
    [1-168]吴钰华.海底管道-流体-海床相互作用机理和监测技术研究[D].浙江大学,2007.
    [1-169]傅翼.海底管道分布式光纤传感系统布设方案研究[D],浙江大学,2006.
    [1-170]傅翼,金伟良,粟京,等.海底管道中长距离微管真空灌浆试验研究[J].新型建筑材料.2005(1):14-19.
    [1-171]邵剑文.海底管道的健康监测系统与评估研究[D],2006.
    [1-172]袁泉水.海底管道检测维修工程管理和健康监测系统[D].浙江大学,2006.
    [2-1]Jin Weiliang, Shao Jianwen, Zhang Enyong. Basic strategy of health monitoring on submarine pipeline by distributed optical fiber sensor[C].Pro.22nd OMAE. Cancun, Mexico, 2003.
    [2-2]Ansari F, Yuan L. Mechanics of Bond and Interface Shear Transfer in Optical Fiber Sensors [J]. Journal of Engineering Mechanics,1998,124(4):385-394.
    [2-3]Lufan Zou, Maria Q. Feng. Detection of micrometer crack by Brillouin-scattering-baseddistributed strain and temperature sensor[C]//Proc. of SPIE Vol. 7004,2008.
    [2-4]Fei Lu, Maria Q. Feng, Xinyu Gua, et al. Field experiment on monitoring of cracks in highway asphalt overlay[C]//Proc. of SPIE Vol.7294,2009.
    [2-5]钱振东,韩光义,黄卫等.基于BOTDA的钢桥面铺装裂缝疲劳扩展研究[J].土木工程学报,2009,42(10):132-136.
    [2-6]李宏男,任亮.结构健康监测光纤光栅传感技术[M].北京:中国建筑工业出版社,2008.
    [3-1]施斌,徐学军,王镝等.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J].岩石力学与工程学报,2005,24(15):2622-2627.
    [3-2]FABIO MATTA, FILIPPO BASTIANINI, NESTORE GALATI. Distributed Strain Measurement in Steel Bridge with Fiber Optic Sensors:Validation through Diagnostic Load Test[J]. Journal of performance of constructed facilities,2008,22(4);264-273.
    [3-3]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报,2002,36(4):371-402
    [3-4]ZHOU ZHI, HE JIAN-PING, YAN KAI, et al. Fiber-reinforced polymer-packaged optical fiber sensors based on Brillouin optical time-domain analysis [J]. Optical Engineering, 2008,47(1):1-10.
    [3-5]Kai Tai Wan, Christopher K.Y. Leung. Applications of a distributed fiber optic crack sensor for concrete structures[J]. Sensors and Actuators,2007(135):458-464.
    [3-6]金伟良.长距离海底管道分布式光纤传感技术[R].浙江大学,2004
    [3-7]Hornung S, Cassidy S A, Yennadhiou P, et al. The Blown fiber cable[J]. IEEE Journal on selected areas in communications.1986,4(5):679-685.
    [3-8]粟京,金伟良,傅翼,等.一种用于超长微管真空灌浆的浆料[P],中国发明专利,CN1765812.A,2006.
    [3-9]Zhang H and Wu Z S 2008 Performance evaluation of BOTDR-based distributed fiber optic sensors for crack monitoring[J].Structural Health Monitoring 7 143-56.
    [3-10]Ding Y, Shi B and Zhang D 2010 Data processing in BOTDR distributed strain measurement based on pattern recognition[J].Optik-International Journal for Light and Electron Optics 1212234-9.
    [4-1]Lee D.C., Lee J.J., Kwon I.B. Monitoring of fatigue crack growth in steel structures using intensity-based optical fiber sensors[J]. Journal of Intelligent Material Systems and Structures,2000,11:100-107.
    [4-2]Guido P., Massimo O., Aleberto V., et al. Long term in-situ test of a low-cost fiber-based crack monitoring system [C]. Conference of IEEE Sensors,2008:325-328.
    [4-3]Leung C. K.Y., Elvin Niell, Olson N., et al. A novel distributed optical crack sensor for concrete structures [J]. Engineering Fracture Mechanics,2000,65:133-148.
    [4-4]Wan K. T., Leung C. K.Y. Fiber optic sensor for the monitoring of mixed mode cracks in structures[J]. Sensors and Actuators,2007,135:370-380.
    [4-5]陈江,刘浩吾.分布式光纤裂缝检测的有限元分析及试验[J].力学学报,2009,41(4):542-548.
    [4-6]吴永红,蔡海文,刘浩吾,吴中如.裂缝光纤传感的工程应用[J].光电子.激光,2007,18(12):1438-1441.
    [4-7]孙宝臣,徐华,李剑芝,杜彦良.基于光纤网络的全分布裂缝检测技术研究[J].传感技术学报,2007,20(07):1672-1675.
    [4-8]欧进萍,侯爽,周智,A V. Dyshlyuk多段分布式光纤裂缝监测系统及其应用[J].压电与声光,2007,29(2):144-147.
    [4-9]Lu Fei, Feng Maria Q., Gua Xin Yu, et al. Field experiment on monitoring of cracks in highway asphalt overlay[C]//Proc. of SPIE Vol.7294,2009
    [4-10]钱振东,韩光义,黄卫,尹祖超.基于BOTDA的钢桥面铺装裂缝疲劳扩展研究[J].土木工程学报,2009,42(10):132-136.
    [5-1]Ghandehari, M. Ingress Monitoring in Concrete Structures[C].Proceedings of the 15th ASCE Conference on Engineering Mechanics, New York,2001.
    [5-2]Melhorn, K., Flachsbarth, J. and Kowalsky, W. Novel Sensors for long-term monitoring of pH and humidity in concrete[C]. Proceeding of the 6th IWSHM Conference, Stanford CA, 387-394,2007.
    [5-3]Leung, C.K.Y., Wan, K.T. and Chen, L.A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures[J]. Sensors,2008,8(3):1960-1976.
    [5-4]Lee J, Yun C, Yoon D. A structural corrosion-monitoring sensor based on a pair of prestrained fiber Bragg gratings[J]. MEASUREMENT SCIENCE & TECHNOLOGY. 2010,21(1):1-7.
    [5-5]Lo Y L, Shaw F Y. Development of corrosion sensors using a single-pitch Bragg grating fiber with temperature compensations[C]. SPIE,3325:64-72,1998.
    [5-6]夏晋.锈蚀钢筋混凝土构件力学性能研究[D].浙江大学博士论文,2010.
    [5-7]叶见曙.结构设计原理[M].第2版.北京:人民交通出版社,2005.
    [5-8]黄凤霞.FRP加固钢筋混凝土梁正常使用下的刚度研究[D].东南大学硕士论文,2007.
    [5-9]徐芝纶.弹性力学简明教程[M].第3版.北京:高等教育出版社,2006.
    [6-1]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1998.
    [6-2]罗方.地质雷达在隧道健康诊断中的应用[J].长安大学学报(自然科学版),2006,26(3):5 1-54.
    [6-3]李永鸿,徐光黎,杨银湖等.地震反射波法技术及其在隧道超前地质预报中的应用研究[J].岩土工程学报,2005,27(10):1180-1184.
    [6-4]李丹,李川,赵永贵等.地震CT与FBG传感器技术在隧道结构诊断中的应用[J].工程地质学报,2008,16(6):839-843.
    [6-5]施楚贤.砌体结构理论与设计[M].北京:中国建筑工业出版社,1992.
    [6-6]李雁,吕恒林,殷惠光.托换技术在砖混结构加固改造中的应用[J].建筑技术.2008,39(5):339-342.
    [6-7]程远兵,王三会.两种简易可行的砖墙托换梁[J].四川建筑科学研究.2005,31(4):44-47.
    [6-8]王君龙.环境对文物的影响与控制[J].延安大学学报:自然科学版.1998,17(2):54-57.
    [6-9]段新芳,王平,周冠武,等.应力波技术在古建筑木构件腐朽探测中的应用[J].木材工业.2007,21(2):10-12.
    [6-10]董亚波,曾波,鲁东明.面向文化遗址保护的物联网技术研究与应用[J].文物保护与考古科学.2011(3):74-78.
    [6-11]范峰,金晓飞,王伟,等.沧州铁狮子结构健康监测系统研究及测试试验[J].文物保护与考古科学.2009(4):38-47.
    [6-12]张鲁,郭青林,裴强强,等.综合变形监测方法在新疆交河故城崖体加固中的应用[J].敦煌研究.2007(5):28-31.
    [6-13]闫会春,杨娜.古建木结构健康监测系统预警机制探讨[J].武汉理工大学学报.2010(9):266-270.
    [7-1]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现[J].土木工程学报.2006(4):45-53.
    [7-2]肖纯,瞿伟廉,谭冬梅.虚拟仪器技术在结构远程健康监测中的应用[J].通讯和计算机:中英文版.2005,2(2):44-47.
    [7-3]燕延,马增强,石彦丛.基于Lab VIEW的桥梁运行状态长期监测系统的[J].仪表技术,2005(1):15-17
    [7-4]陈树学,刘萱.Lab VIEW宝典[M].北京:电子工业出版社,2011.
    [7-5]User Manual DITEST STA-R (Version 1.0)[K]. Omnisens SA, Switzerland.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700